Th17细胞亚群在支气管哮喘中的发病机制及TLR2对Th17细胞分化的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Th17和Tc17细胞亚群及其细胞因子白介素17在哮喘小鼠动物模型中的表达研究
     【目的】探讨辅助性T细胞17(Th17)和CD8+IL-17+细胞(Tc17)在支气管哮喘小鼠中的比例变化及其意义。
     【方法】24只BABL/c小鼠随机分成两组:哮喘组和正常对照组,每组12只,用卵蛋白(OVA)致敏和激发的方法建立小鼠哮喘模型。然后用流式细胞术检测脾脏单个核细胞中Th17细胞和Tc17细胞所占的百分比;用酶联免疫吸附试验(ELISA)检测支气管肺泡灌洗液中细胞因子IL-17的水平;双标免疫荧光检测肺组织中Th17细胞和Tc17细胞的表达。
     【结果】哮喘组肺组织炎症改变明显;哮喘组脾脏细胞中Th17细胞比例显著高于对照组(P<0.0001),Tc17细胞比例与显著高于对照组(P<0.001);哮喘组BALF中,IL-17水平显著高于正常对照组(P<0.001);哮喘组BAL中细胞总数和嗜酸性粒细胞数目明显高于对照组(P<0.01);肺组织免疫荧光结果示Th17细胞和Tc17细胞在哮喘小鼠的肺部有表达,主要分布在支气管周围和血管周围,并且数量明显高于对照组(P<0.01)。
     【结论】哮喘小鼠的Th17细胞和Tc17细胞数量增多,并且分泌的细胞因子IL-17水平升高,而且哮喘小鼠肺部有较多的Th17细胞和Tc17细胞浸润,提示Th17细胞和Tc17细胞可能参与了哮喘的发病机制。
     第二部分Toll样受体2信号对小鼠淋巴瘤EL4细胞系表达白细胞介素(IL)-17影响的研究
     【目的】探讨TLR2信号通路对小鼠淋巴瘤细胞系EL4细胞表达分泌IL-17A的影响。
     【方法】用ELISA法检测各组细胞上清液中IL-17A表达水平,实时荧光定量RT-PCR法检测各组细胞中RORyt和IL-17A的:mRNA的表达水平变化。
     【结果】TLR2配体可以显著增加细胞IL-17A和RORyt和IL-17A的mRNA的表达,而TLR2抗体可以将这种促进作用抵消一部分,TLR2配体刺激后细胞上清中IL-17A蛋白水平也明显升高。
     【结论】Toll样受体2信号对小鼠淋巴瘤EL4细胞系表达IL-17是起促进作用的,这种作用可能是通过促进转录因子RORyt的表达来实现的。
     第三部分Toll样受体2信号激活对Th17细胞分化和功能的影响研究
     【目的】探讨Toll样受体2信号在调节Th17细胞的分化和功能方面的作用,并且初步探讨参与调控的信号通路机制。
     【方法】制作小鼠哮喘模型,免疫磁珠分选CD4+T细胞经体外诱导分化成Th17细胞,细胞分为四组:(1)空白对照组,(2)用TLR2的配体(LTA)激活TLR2信号组,(3)TLR2的抗体阻断TLR2信号组,(4)RORc基因的干扰慢病毒组。然后MTT法检测各组的细胞增殖情况,流式细胞仪检测各组胞内因子IL-17A的水平,ELISA检测各组的细胞上清液中的IL-17A蛋白水平,Real-time RT-PCR检测各组的Th17相关细胞因子(IL-17A、IL-17F和IL-22)的mRNA水平,并检测转录因子RORyt的mRNA水平的变化。
     【结果】(1)MTT检测结果示,LTA、LTA+TLR2抗体和LTA+慢病毒都能增加Th17细胞的增殖,与空白对照组比较,P值的大小分别为P<0.05,P<0.001和P<0.01。(2)实时荧光定量PCR结果表明慢病毒感染细胞后可使RORc的mRNA水平下降86%,各组的Th17相关基因(?)nRNA水平检测,LTA组引起IL-17A、IL-17F和IL-22的mRNA水平明显升高(P<0.05),LTA+TLR2抗体组和LTA+慢病毒组上述升高效应又被逆转(P<0.05)。(3)蛋白水平检测胞内因子染色流式分析LTA可以明显刺激增加IL-17A+细胞的百分比,IL-17A+CD8-%由11.7%增加到22.5%(P<0.05)。ELISA检测细胞上清中的IL-17A结果为LTA组引起IL-17A蛋白水平增高(P<0.05),而LTA+TLR2抗体组和LTA+慢病毒组蛋白水平又下降(相比较与LTA组,P<0.05)。(4)TLR2信号对转录因子RORyt mRNA水平的影响:LTA组的RORyt mRNA水平明显增高(P<0.001)。
     【结论】TLR2信号能促进Th17细胞的增殖,能增强Th17细胞的功能,并且是通过增加特异性的转录因子RORyt的表达来实现的。
     第四部分支气管哮喘患者的血浆IL-21和总IgE水平及其相关性研究
     【目的】探讨白介素-21(IL-21)和总IgE在支气管哮喘发病时的血清水平及其两者相关性。
     【方法】随机收集哮喘急性发作期患者38例(急性发作组),哮喘缓解期患者23例(缓解组)和健康者19例(对照组)血清,用双抗体夹心酶联免疫吸附试验检测血清IL-21和总IgE水平
     【结果】哮喘急性发作期患者血清IL-21水平明显高于正常对照组(P<0.05),急性发作期IL-21明显高于缓解期组(P<0.05),而缓解期和正常对照组差异无统计学意义。血清总IgE水平哮喘急性发作期和缓解期均明显高于正常对照组(P<0.05)。哮喘急性发作期血清IL-21水平和总IgE水平有显著负相关(r=-0.32,P<0.05)。【结论】IL-21可能通过调节IgE的分泌,在支气管哮喘的发病中发挥重要作用。
PartⅠChanges of the Ratio of T helper 17 cells and CD8+IL-17+T cells and the Level of Interleukin-17 in a Mouse Model of Asthma
     【Objective】To investigate the changes of Th17 cells and Tc17 cells and the level of IL-17 in a mouse model of asthma.
     【Methods】Twenty-four BABL/c mice were randomly divided into asthma group and control group. Mice were sensitized and challenged with ovalbumin(OVA) as asthmatic mouse models. The ratio of Th17 cells and Tcl7 cells in splenocytes was detected by flow cytometry. The level of IL-17 in bronchoalveolar lavage fluid(BALF) was determined by enzyme-linked immunosorbent assay(ELISA).The expression of Th17 cells and Tc17 cells in lungs was confirmed by double immunofluorescence.
     【Results】The frequency of Thl7 cells and Tc17 cells in splenocytes from asthmatic mice were significantly higher than those of normal controls(P<0.0001 and P< 0.001, respectively); the level of cytokine IL-17 in BALF of asthmatic mice was more higher than those of normal controls(P<0.0001);the numbers of total cells and eosinophils in BAL were significantly higher than those of normal controls (both P<0.01).Th17 cells and Tc17 cells can be found in lung tissues of asthmatic mice, the numbers of these two kinds of cells were were significantly higher than those of normal controls (both P<0.01).
     [Conclusion] Th17 cells and Tc17 cells may play an important role in the pathogenesis of asthma.
     PartⅡToll-like Receptor 2 Signaling in EL4 T Cells Promotes the Expression of Interleukin-17
     【Objective】To investigate the effect of toll-like receptor 2 signaling on the expression of interleukin-17 in EL4 T cell line.
     【Methods】The RORγt and IL-17A mRNA expression were determined by real time RT-PCR, the expression of interleukin-17 protein were detected by ELISA.
     [Results] The real time RT-PCR results suggest that TLR2 ligand treatment can significantly up-regulate expression of RORyt and IL-17A on mRNA level and on protein level.
     【Conclusion】The toll-like receptor 2 signaling in EL4 cells can promote the expression of interleukin-17, this is probably dependent on up-regulating of the expression of the transcriptional factor RORyt.
     PartⅢThe Differentiation and Function of T Helper 17 cells Promoted by Toll-like Receptor 2 Signaling in vitro via RORgammat pathway
     【Objective】To investigate the role of toll-like receptor 2 signaling on the differentiation and function of Th17 cells.
     【Methods】The CD4+T cells were isolated from spleens of asthmatic mice and purified by negative selection with a magnetic cell sort, then for Th17 differentiation, cells were cultured under Th17 condition(IL-6 and TGF-β1) for three days. Where indicated, LTA, TLR2 antibody and RORc-MR-lentivirus were added to cultures. Intracellular staining of cytokine IL-17A was analyzed by flow cytometry. IL-17A cytokine production was assessed by ELISA kits. For Th17 cell proliferation assays, we conducted MTT. Analyses of Th17-related genes(il-17a,il-17f,il-22 and rorc) transcripts were performed with real-time RT-PCR.
     【Results】(1) Th17 cells proliferated more intensively where LTA was added in the media than those cultured without LTA(P<0.05,P<0.001 and P<0.01,respectively).(2) Fully differentiated Th17 cells treated with a TLR2 agonist LTA were found to produce increased amount of IL-17 proteins(P<0.05),and the neutralizing antibody for TLR2 can reverse the effects of LTA(P<0.05).(3)The results of intracellular staining of cytokine IL-17A showed that IL-17+cells were more dominant in LTA treated groups(from 11.7% up to 22.5%(P< 0.05).(4)Th17-associated mRNA(IL-17A、IL-17F and IL-22)were upregulated by a TLR2 agonist LTA (P<0.05),however,TLR2 antibody and RORc-MR-lentivirus can cancer out these effects(P< 0.05).
     【Conclusion】TLR2 signaling can enhance Th17 differentiation and promote Th17 cell development.
     Part IV The Interleukin-21 and Total Serum IgE Levels in Serum of Asthmatics and Their Correlation Analysis
     【Objective】In order to investigate levels of interleukin-21 (IL-21) and total serum IgE in asthmatics,and to explore the relationship between IL-21 and total serum IgE in patients with allergic asthma.
     【Methods】Totally 80 subjects were recruited and were divided into three groups:Control group(n=19),allergic asthma group (n=38) and controlled asthma group (n=23).The levels of IL-21 and total IgE in serum were detected by ELISA.
     【Results】The IL-21 levels in serum control group,allergic asthma group and controlled asthma group were 17.19,21.99 pg/ml and 17.18 pg/ml, respectively.The levels of IL-21 were significantly different from each other between the control group and allergic asthma group (P<0.05).Negative relationship was found between the levels of IL-21 and total serum IgE in allergic asthma group (r=-0.32,P<0.05).
     【Conclusion】Our results suggested that IL-21 might be involved in the pathogenesis of allergic asthma in human.
引文
1.Park, H., Z. Li, X.O. Yang, et al., A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol,2005.6(11):p.1133-41.
    2. Doe, C., M. Bafadhel, S. Siddiqui, et al., Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest,2010.138(5):p.1140-7.
    3. Wakashin, H., K. Hirose, I. Iwamoto, et al., Role of IL-23-Th17 cell axis in allergic airway inflammation. Int Arch Allergy Immunol,2009.149 Suppl 1:p.108-12.
    4. Wakashin, H., K. Hirose, Y. Maezawa, et al., IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med,2008.178(10):p.1023-32.
    5.Harrington, L.E., R.D. Hatton, P.R. Mangan, et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol,2005.6(11):p.1123-32.
    6. Ivanov, Ⅱ, B.S. McKenzie, L. Zhou, et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell,2006.126(6):p.1121-33.
    7. Huber, M., S. Heink, H. Grothe, et al., A Th17-like developmental process leads to CD8(+) Tc17 cells with reduced cytotoxic activity. Eur J Immunol,2009.39(7):p. 1716-25.
    8. Kondo, T., H. Takata, F. Matsuki, et al., Cutting edge:Phenotypic characterization and differentiation of human CD8+ T cells producing IL-17. J Immunol,2009. 182(4):p.1794-8.
    9.Yen, H.R., T.J. Harris, S. Wada, et al., Tel 7 CD8 T cells:functional plasticity and subset diversity. J Immunol,2009.183(11):p.7161-8.
    10. Ciric, B., M. El-behi, R. Cabrera, et al., IL-23 drives pathogenic IL-17-producing CD8+ T cells. J Immunol,2009.182(9):p.5296-305.
    11.Kryczek, I., S. Wei, L. Vatan, et al., Cutting edge:opposite effects of IL-1 and IL-2 on the regulation of IL-17+ T cell pool IL-1 subverts IL-2-mediated suppression. J Immunol,2007.179(3):p.1423-6.
    12. Henriques, A., L. Ines, M. Couto, et al., Frequency and functional activity of Th17, Te17 and other T-cell subsets in Systemic Lupus Erythematosus. Cell Immunol, 2010.264(1):p.97-103.
    13. Zhao, Y., A. Balato, R. Fishelevich, et al., Th17/Tc17 infiltration and associated cytokine gene expression in elicitation phase of allergic contact dermatitis. Br J Dermatol,2009.161(6):p.1301-6.
    1 Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B.TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.Immunity.2006 Feb;24(2):179-89.
    2 Wang RF, Peng G, Wang HY. Regulatory T cells and Toll-like receptors in tumor immunity.Semin Immunol.2006 Apr; 18(2):136-42.
    3 Sutmuller RP,den Brok MH,Kramer M.Toll-like receptor 2 controls expansion and function of regulatory T cells.J Clin Invest.2006,Feb;116(2):485-94.
    4 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001,25:402-408.
    5 Zeytun A, van Velkinburgh JC, Pardington PE,Cary RR, Gupta G. Pathogen-specific innate immune response. Adv Exp Med Biol.2007;598:342-57.
    6 Sandor F, Buc M. Toll-like receptors. I. Structure, function and their ligands. Folia
    , Biol(Praha).2005;51(5):148-57.
    7 Dieter Kabclitz. Expression and function of Toll-like receptors in T lymphocytes. Current Opinion in Immunology 2007,19:39-45.
    8 Sukkar MB, Xie S, Khorasani NM, Kon OM, Stanbridge R, Issa R, Chung KF. Toll-like receptor 2,3, and 4 expression and function in human airway smooth muscle. J Allergy Clin Immunol.2006,118(3):641-8.
    9 Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, Takaesu G, Hori S, Yoshimura A, Kobayashi T. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem.2008 Jun 20;283(25):17003-8.
    10 Ichiyama K, Hashimoto M, Sekiya T, Nakagawa R, Wakabayashi Y, Sugiyama Y, Komai K, Saba I, Moroy T, Yoshimura A. Gfil negatively regulates T(h)17 differentiation by inhibiting RORgammat activity. Int Immunol.2009 Jul;21(7):881-9.
    11 Ivanov Ⅱ McKenzie B S, Zhou L, et al. The orphan nuclear receptor RORgt directs the differentiation program of proinflammatory IL17+ T helper cells.cell,2006.126: 1121-1133.
    12 Harrington L E, HaUon R D, Mangan P R et al.Interleukin 17·producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol,2005,6:1123-1132.
    13 Reynolds JM, Pappu BP, Peng J, Martinez GJ, Zhang Y, Chung Y, Ma L, Yang XO, Nurieva RI, Tian Q, Dong C. Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity.2010 May 28;32(5):692-702.
    1.Lissitsyn, Y., A.B. Becker, A.L. Kozyrskyj, et al., Level of Toll-like receptor agonist exposure differentially determines chemokine production in humans. Can J Physiol Pharmacol,2007.85(7):p.739-46.
    2. Martin, B., K. Hirota, D.J. Cua, et al., Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity,2009.31(2):p.321-30.
    3. Komai-Koma, M., L. Jones, G.S. Ogg, et al., TLR2 is expressed on activated T cells as a costimulatory receptor. Proc Natl Acad Sci U S A,2004.101 (9):p.3029-34.
    4. Hernandez-Ruiz, J., N. Salaiza-Suazo, G. Carrada, et al., CD8 cells of patients with diffuse cutaneous leishmaniasis display functional exhaustion:the latter is reversed, in vitro, by TLR2 agonists. PLoS Negl Trop Dis,2010.4(11):p. e871.
    5. Cottalorda, A., B.C. Mercier, F.M. Mbitikon-Kobo, et al., TLR2 engagement on memory CD8(+) T cells improves their cytokine-mediated proliferation and IFN-gamma secretion in the absence of Ag. Eur J Immunol,2009.39(10):p. 2673-81.
    6. Dasgupta, G., A.A. Chentoufi, S. You, et al., Engagement of TLR2 Reverses the Suppressor Function of Conjunctiva CD4+CD25+ Regulatory T Cells, and Promotes Herpes Simplex Virus Epitope-Specific CD4+CD25- Effector T Cell Responses. Invest Ophthalmol Vis Sci,2011.
    7. Tan, A.H. and K.P. Lam, Pharmacologic inhibition of MEK-ERK signaling enhances Th17 differentiation. J Immunol,2010.184(4):p.1849-57.
    8. KJ, L. and S. TD, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,2001.25:p. 402-408.
    9. Qian, F.H., Q. Zhang, L.F. Zhou, et al., Polymorphisms in the toll-like receptor 2 subfamily and risk of asthma:a case-control analysis in a Chinese population. J Investig Allergol Clin Immunol,2010.20(4):p.340-6.
    10. Potaczek, D.P., M. Nastalek, K. Okumura, et al., An association of TLR2-16934A>T polymorphism and severity/phenotype of atopic dermatitis. J Eur Acad Dermatol Venereol,2010.
    11. Kerkhof, M.,D.S. Postma, B. Brunekreef, et al., Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma. Thorax,2010.65(8):p.690-7.
    12. Bjornvold, M., M.C. Munthe-Kaas, T. Egeland, et al., A TLR2 polymorphism is associated with type 1 diabetes and allergic asthma. Genes Immun,2009.10(2):p. 181-7.
    13. Patel, M., D. Xu, P. Kewin, et al., TLR2 agonist ameliorates established allergic airway inflammation by promoting Th1 response and not via regulatory T cells. J Immunol,20O5.174(12):p.7558-63.
    14. Velasco, G., M. Campo, O.J. Manrique, et al., Toll-like receptor 4 or 2 agonists decrease allergic inflammation. Am J Respir Cell Mol Biol,2005.32(3):p.218-24.
    15. Sutmuller, R.P., M.H. den Brok, M. Kramer, et al., Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest,2006.116(2):p.485-94.
    16. Knapp, S., S. von Aulock, M. Leendertse, et al., Lipoteichoic acid-induced lung inflammation depends on TLR2 and the concerted action of TLR4 and the platelet-activating factor receptor. J Immunol,2008.180(5):p.3478-84.
    17. Hattar, K., U. Grandel, A. Moeller, et al., Lipoteichoic acid (LTA) from Staphylococcus aureus stimulates human neutrophil cytokine release by a CD14-dependent, Toll-like-receptor-independent mechanism:Autocrine role of tumor necrosis factor-[alpha] in mediating LTA-induced interleukin-8 generation. Crit Care Med,2006.34(3):p.835-41.
    18. Ivanov, II, B.S. McKenzie, L. Zhou, et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell,2006.126(6):p.1121-33.
    19. Jetten, A.M., Retinoid-related orphan receptors (RORs):critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal,2009.7:p. e003.
    20. Hwang, E.S., Transcriptional regulation of T helper 17 cell differentiation. Yonsei Med J,2010.51(4):p.484-91.
    1.Spolski, R. and W.J. Leonard, Interleukin-21:basic biology and implications for cancer and autoimmunity. Annu Rev Immunol,2008.26:p.57-79.
    2. Fina, D., M.C. Fantini, F. Pallone, et al., Role of interleukin-21 in inflammation and allergy. Inflamm Allergy Drug Targets,2007.6(1):p.63-8.
    3. Zhou, L., Ivanov, II, R. Spolski, et al., IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol, 2007.8(9):p.967-74.
    4.Bettelli, E., Y. Carrier, W. Gao, et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature,2006. 441(7090):p.235-8.
    5. Ivanov, II, B.S. McKenzie, L. Zhou, et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cell(?). Cell,2006.126(6):p.1121-33.
    6. Korn, T., E. Bettelli, W. Gao, et al., IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature,2007.448(7152):p.484-7.
    7. Nurieva, R., X.O. Yang, G. Martinez, et al., Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature,2007.448(7152):p.480-3.
    8.中华医学会呼吸病学分会哮喘学组,支气管哮喘防治指南(支气管哮喘的定义、诊断、治疗和管理方案).中华结核和呼吸杂志,2008.31(3):p.177-185.
    9. Ozaki, K., R. Spolski, R. Ettinger, et al., Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol, 2004.173(9):p.5361-71.
    10. Ettinger, R., G.P. Sims, A.M. Fairhurst, et al., IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol,2005. 175(12):p.7867-79.
    11.Ozaki, K., R. Spolski, C.G. Feng, et al., A critical role for IL-21 in regulating immunoglobulin production. Science,2002.298(5598):p.1630-4.
    12. Suto, A., H. Nakajima, K. Hirose, et al., Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line C(epsilon) transcription of IL-4-stimulated B cells. Blood,2002.100(13):p.4565-73.
    13. Harada, M., K. Magara-Koyanagi, H. Watarai, et al., IL-21-induced Bepsilon cell apoptosis mediated by natural killer T cells suppresses IgE responses. J Exp Med, 2006.203(13):p.2929-37.
    14. Kishida, T., Y. Hiromura, M. Shin-Ya, et al., IL-21 induces inhibitor of differentiation 2 and leads to complete abrogation of anaphylaxis in mice. J Immunol,2007.179(12):p.8554-61.
    15. Hiromura, Y., T. Kishida, H. Nakano, et al., IL-21 administration into the nostril alleviates murine allergic rhinitis. J Immunol,2007.179(10):p.7157-65.
    16. Frohlich, A., B.J. Marsland,I. Sonderegger, et al., IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood,2007.109(5): p.2023-31.
    1.Kim, H.Y., R.H. DeKruyff, and D.T. Umetsu, The many paths to asthma:phenotype shaped by innate and adaptive immunity. Nat Immunol,2010.11(7):p.577-84.
    2. Vercelli, D., Gene-environment interactions in asthma and allergy:the end of the beginning? Curr Opin Allergy Clin Immunol,2010.10(2):p.145-8.
    3. Wang, W., J.J. Li, P.S. Foster, et al., Potential therapeutic targets for steroid-resistant asthma. Curr Drug Targets,2010.11(8):p.957-70.
    4. Pichavant, M., S. Goya, E.H. Meyer, et al., Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med,2008.205(2):p.385-93.
    5.Johnston, R.A., M. Zhu, Y.M. Rivera-Sanchez, et al., Allergic airway responses in obese mice. Am J Respir Crit Care Med,2007.176(7):p.650-8.
    6. Wang, X.S., A.Y. Wu, P.S. Leung, et al., PGE suppresses excessive anti-IgE induced cysteinyl leucotrienes production in mast cells of patients with aspirin exacerbated respiratory disease. Allergy,2007.62(6):p.620-7.
    7. Dryden, D.M., C.H. Spooner, M.K. Stickland, et al., Exercise-induced bronchoconstriction and asthma. Evid Rep Technol Assess (Full Rep),2010(189):p. 1-154,Ⅴ-Ⅵ.
    8. Mosmann, T.R., H. Cherwinski, M.W. Bond, et al., Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol,1986.136(7):p.2348-57.
    9. Romagnani, S., Human TH1 and TH2 subsets:doubt no more. Immunol Today, 1991.12(8):p.256-7.
    10. Romagnani, S., The Th1/Th2 paradigm. Immunol Today,1997.18(6):p.263-6.
    11.Noble, A., D.Z. Staynov, and D.M. Kemeny, Generation of rat Th2-like cells in vitro is interleukin-4-dependent and inhibited by interferon-gamma. Immunology,1993. 79(4):p.562-7.
    12. Harrington, L.E., R.D. Hatton, P.R. Mangan, et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol,2005.6(11):p.1123-32.
    13. Park, H., Z. Li, X.O. Yang, et al., A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol,2005.6(11):p.1133-41.
    14. Cosmi, L., F. Liotta, E. Maggi, et al., Th17 cells:new players in asthma pathogenesis. Allergy,2011.
    15. Wright, J.F., Y. Guo, A. Quazi, et al., Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem,2007.282(18):p. 13447-55.
    16. Wright, J.F., F. Bennett, B. Li, et al., The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J Immunol,2008. 181(4):p.2799-805.
    17. Pelletier, M., L. Maggi, A. Micheletti, et al., Evidence for a cross-talk between human neutrophils and Th17 cells. Blood,2010.115(2):p.335-43.
    18. Ouyang, W., J.K. Kolls, and Y. Zheng, The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity,2008.28(4):p.454-67.
    19. Thai, P., Y. Chen, G. Dolganov, et al., Differential regulation of MUC5AC/Muc5ac and hCLCA-1/mGob-5 expression in airway epithelium. Am J Respir Cell Mol Biol, 2005.33(6):p.523-30.
    20. Kao, C.Y., Y. Chen, P. Thai, et al., IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol,2004.173(5):p.3482-91.
    21. Kao, C.Y., F. Huang, Y. Chen, et al., Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-kappaB-dependent signaling pathway. J Immunol,2005.175(10):p. 6676-85.
    22. Ivanov, II, B.S. McKenzie, L. Zhou, et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell,2006.126(6):p.1121-33.
    23. Acosta-Rodriguez, E.V., L. Rivino, J. Geginat, et al., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol,2007.8(6):p.639-46.
    24. Annunziato, F., L. Cosmi, V. Santarlasci, et al., Phenotypic and functional features of human Th17 cells. J Exp Med,2007.204(8):p.1849-61.
    25. Cosmi, L., R. De Palma, V. Santarlasci,et al., Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med,2008.205(8):p. 1903-16.
    26. Santarlasci, V., L. Maggi, M. Capone, et al., TGF-beta indirectly favors the development of human Th17 cell(?) by inhibiting Thl cells. Eur J Immunol,2009. 39(1):p.207-15.
    27. Ghoreschi, K., A. Laurence, X.P. Yang, et al., Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature,2010.467(7318):p.967-71.
    28.Oukka, M., Th17 cells in immunity and autoimmunity. Ann Rheum Dis,2008.67 Suppl 3:p. iii26-9.
    29. Gately, M.K., L.M. Renzetti, J. Magram, et al., The interleukin-12/interleukin-12-receptor system:role in normal and pathologic immune responses. Annu Rev Immunol,1998.16:p.495-521.
    30. Willenborg, D.O., S.A. Fordham, M.A. Staykova, et al., IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue:a possible role for nitric oxide. J Immunol,1999. 163(10):p.5278-86.
    31. Willenborg, D.O., S. Fordham, C.C. Bernard, et al., IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol,1996.157(8):p. 3223-7.
    32. Renno, T., V. Taupin, L. Bourbonniere, et al., Interferon-gamma in progression to chronic demyelination and neurological deficit following acute EAE. Mol Cell Neurosci,1998.12(6):p.376-89.
    33. Krakowski, M. and T. Owens, Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol,1996.26(7):p.1641-6.
    34. Oppmann, B., R. Lesley, B. Blom, et al., Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity,2000.13(5):p.715-25.
    35. McGeachy, M.J., Y. Chen, C.M. Tato, et al., The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol,2009.10(3):p.314-24.
    36. Cua, D.J., J. Sherlock, Y. Chen, et al., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature,2003. 421(6924):p.744-8.
    37. Fouser, L.A., J.F. Wright, K. Dunussi-Joannopoulos, et al., Th17 cytokines and their emerging roles in inflammation and autoimmunity.Immunol Rev,2008.226:p. 87-102.
    38. van Beelen, A.J., M.B. Teunissen, M.L. Kapsenberg, et al., Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol,2007.7(5):p. 374-81.
    39. Chen, Z. and J.J. O'Shea, Th17 cells:a new fate for differentiating helper T cells. Immunol Res,2008.41(2):p.87-102.
    40. Gocke, A.R., P.D. Cravens, L.H. Ben, et al., T-bet regulates the fate of Thl and Th17 lymphocytes in autoimmunity. J Immunol,2007.178(3):p.1341-8.
    41.Doodes, P.D., Y. Cao, K.M. Hamel, et al., Development of proteoglycan-induced arthritis is independent of IL-17. J Immunol,2008.181(1):p.329-37.
    42. Kurschus, F.C., A.L. Croxford, A.P. Heinen, et al., Genetic proof for the transient nature of the Th17 phenotype. Eur J Immunol,2010.40(12):p.3336-46.
    43. Nistala, K., S. Adams, H. Cambrook, et al., Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc Natl Acad Sci U S A, 2010.107(33):p.14751-6.
    44. Cosmi, L., R. Cimaz, L. Maggi, et al., CD4+CD161+T cells showing transient nature of the Th17 phenotype are present in the synovial fluid from patients with juvenile idiopathic arthritis. Arthritis Rheum,2011.
    45. Annunziato, F., L. Cosmi, F. Liotta, et al., Type 17 T helper cells-origins, features and possible roles in rheumatic disease. Nat Rev Rheumatol,2009.5(6):p.325(?)31.
    46. Louis, R., L.C. Lau, A.O. Bron, et al., The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med,2000.161(1):p. 9-16.
    47. Woodruff, P.G., R. Khashayar, S.C. Lazarus, et al., Relationship between airway inflammation, hyperresponsiveness, and obstruction in asthma. J Allergy Clin Immunol,2001.108(5):p.753-8.
    48. Lamblin, C., P. Gosset, I. Tillie-Leblond, et al., Bronchial neutrophilia in patients with noninfectious status asthmaticus. Am J Respir Crit Care Med,1998.157(2):p. 394-402.
    49. Alcorn, J.F., C.R. Crowe, and J.K. Kolls, TH17 cells in asthma and COPD. Annu Rev Physiol,2010.72:p.495-516.
    50. Laan, M. and A. Linden, The IL-17 family of cytokines--applications in respiratory medicine and allergology. Recent Pat Inflamm Allergy Drug Discov,2008.2(2):p. 82-91.
    51. Doe, C., M. Bafadhel, S. Siddiqui, et al., Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest,2010.138(5):p.1140-7.
    52. Moon, H.G., Y.M. Tae, Y.S. Kim, et al., Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung. Allergy,2010.65(9):p.1093-103.
    53. Choi, J.P., Y.S. Kim, Y.M. Tae, et al., A viral PAMP double-stranded RNA induces allergen-specific Th17 cell response in the airways which is dependent on VEGF and IL-6. Allergy,2010.65(10):p.1322-30.
    54. Wilson, R.H., G.S. Whitehead, H. Nakano, et al., Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am J Respir Crit Care Med,2009.180(8):p.720-30.
    55. Al-Ramli, W., D. Prefontaine, F. Chouiali, et al., T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol,2009.123(5):p. 1185-7.
    56. Molet, S., Q. Hamid, F. Davoine, et al., IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol, 2001.108(3):p.430-8.
    57. Barczyk, A., W. Pierzchala, and E. Sozanska, Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir Med,2003.97(6):p. 726-33.
    58. Kawaguchi, M., D. Takahashi, N. Hizawa, et al., IL-17F sequence variant (His161Arg) is associated with protection against asthma and antagonizes wild-type IL-17F activity. J Allergy Clin Immunol,2006.117(4):p.795-801.
    59. Hizawa, N., M. Kawaguchi, S.K. Huang, et al., Role of interleukin-17F in chronic inflammatory and allergic lung disease. Clin Exp Allergy,2006.36(9):p.1109-14.
    60. Cosmi, L., L. Maggi, V. Santarlasci, et al., Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol,2010.125(1):p.222-30 e1-4.
    61.Annunziato, F., L. Cosmi, and S. Romagnani, Human and murine Th17. Curr Opin HIV AIDS,2010.5(2):p.114-9.
    62. Wang, Y.H., K.S. Voo, B. Liu, et al., A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med,2010.207(11):p.2479-91.
    63.Lajoie, S., I.P. Lewkowich, Y. Suzuki, et al., Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat Immunol,2010.11(10):p.928-35.
    64. McKinley, L., J.F. Alcorn, A. Peterson, et al., TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol,2008. 181(6):p.4089-97.
    65. Nair, P., M.M. Pizzichini, M. Kjarsgaard, et al., Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med,2009. 360(10):p.985-93.
    66. Tesmer, L.A., S.K. Lundy, S. Sarkar, et al., Th17 cells in human disease. Immunol Rev,2008.223:p.87-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700