TFH细胞及其相关细胞因子在变应性鼻炎小鼠模型中的表达和意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分变应性鼻炎小鼠动物模型的建立
     目的:建立变应性鼻炎小鼠动物模型,探讨变应性鼻炎鼻腔粘膜随鼻内激发时间不同的组织学变化。
     方法:4~6周龄BALB/c小鼠,用卵清蛋白50μg、氢氧化铝凝胶5mg加生理盐水1ml配成混悬液进行腹腔注射基础致敏共7次;5%卵清蛋白生理盐水滴鼻进行鼻腔激发,按组分别连续激发10天,20天,30天。对照组用生理盐水腹腔注射和滴鼻。观察小鼠行为学变化,酶联免疫吸附法测试外周血OVA-sIgE的水平,HE染色观察鼻粘膜嗜酸性粒细胞浸润情况,检测结果采用SPSS16.0统计软件进行数据处理,组间比较用T检验。
     结果:造模结束后小鼠行为学评分分别为5.01±1.01、6.43+1.12、8.56+1.64,对照组0.85+0.23;鼻黏膜内EOS计数分别为45.91(45.91±5.80) pg/ml、48.81(48.81±3.49) pg/ml、51.38(51.38±3.19) pg/ml对照组0.69±0.12;血清OVA-sIgE浓度分别45.91(45.91±5.80)pg/ml.48.81(48.81±3.49)pg/ml51.38(51.38±3.19)pg/ml,对照组为41.71(41.71±2.58)pg/ml。T检验显示,实验组和对照组之间均存在显著性差异(P<0.05),AR模型组之间差异有统计学意义(P<0.05)。
     结论:变应性鼻炎小鼠动物模型造模成功,随着鼻内激发时间的延长,OVA-sIgE浓度和症状有升高趋势。
     第二部分TFH细胞在变应性鼻炎小鼠模型外周血中的流式细胞分析
     目的:流式细胞术分析TFH细胞在变应性鼻炎小鼠模型外周血的变化和意义。
     方法:变应性鼻炎小鼠模型成功建立后,用红细胞裂解液处理得到的外周血单个核细胞(PBMC)。CD4-Fitc和CXCR5-PE染色后用流式细胞仪分析检查外周血的CD4+CXCR5细胞的比例,ELISA分析血清总OVA-sIgE水平,用统计学软件SPSS16.0作T检验和Pearson相关性分析。
     结果:卵清蛋白激发AR模型组外周血中TFH细胞占外周血单个核细胞的百分比分别为7.94±2.66%、8.65±3.49%、9.77±3.24%,对照组为4.97±0.20%,经比较差异有显著性,前者明显高于后者(T-test,P<0.05);AR模型组之间的百分比随着免疫激发时间延长的而增加,经比较差异有显著性(T-test, P<0.05)。Pearson相关性分析显示TFH细胞的表达水平与总OVA-sIgE水平呈正相关(r=0.87,P=0.021)。
     结论:TFH细胞在变应性鼻炎发病中有重要的作用,可能与IgE水平升高有关。
     第三部分IL-21在变应性鼻炎小鼠模型中的表达及与TFH之间的关系
     目的:探讨IL-21分子在变应性鼻炎小鼠模型中的表达及与OVA-sIgE、TFH细胞的关系。方法:变应性鼻炎BALB/c小鼠造模成功后,ELISA法测试外周血IL-21、OVA-sIgE的量,流式细胞术分析TFH细胞在外周血单个核细胞中的含量,SPSS16.0中Pearson相关性分析IL-21分子与各组数据之间的联系,均数间的比较用T检验。
     结果:IL-21在对照组为186.25±11.68pg/ml, AR模型1组为181.13±4.93pg/ml,AR模型2组为168.46±11.04pg/ml, AR模型3组为164.54±10.52pg/ml。各试验组和对照组小鼠外周血IL-21的表达经比较差异有显著性意义(T-test,P<0.05),试验组IL-21的表达水平要比正常组低,而且随着鼻内激发时间的延长,IL-21的表达水平逐渐下降;Pearson相关分析显示外周血IL-21的表达水平与CD4+CXCR5+T细胞比例呈负相关(r=-0.80,P=0.048),与血清总OVA-sIgE水平呈负相关关系(r=-0.86,P=0.031)。
     结论:IL-21与TFH细胞及OVA-sIgE的含量呈负相关,临床上可能对变应性鼻炎有一定的治疗作用。
     第四部分TFH相关因子在变应性鼻炎小鼠模型鼻黏膜中的表达
     目的:探讨TFH相关因子CXCR5及Bcl-6在变应性鼻炎小鼠模型鼻粘膜中的表达及可能意义。
     方法:小鼠变应性鼻炎模型造模成功后,用免疫组织化学方法分析CXCR5在小鼠鼻黏膜中的表达情况。并用Westernblot和PCR的方法对TFH关键转录因子Bcl-6进行分析,数据用医学统计学软件SPSS16.0处理及比较。
     结果:Western blot测试显示TFH关键转录因子的表达在实验组鼻黏膜明显升高,其相对密度值分别为0.67、0.84、0.98,而对照组鼻黏膜为0.53。鼻黏膜适时荧光定量PCR检测显示Bcl-6mRNA的表达也明显增高,其扩增倍数分别为1.63、1.77、1.85、1.92,而对照组鼻黏膜为0.90(T-test, P<0.05)。鼻黏膜CXCR5免疫组织化学分析的结果显示实验组鼻黏膜CXCR5+细胞数比对照组鼻黏膜中CXCR5+细胞数明显增多(T-test, P<0.05),广泛分布在粘膜及粘膜下层中。且随着鼻内激发时间的延长表达增多。
     结论:变应性鼻炎小鼠鼻粘膜中CXCR5及Bcl-6表达明显增强,可能参与了变应性鼻炎的发病过程。
Part I Establishment of mouse model with allergic rhinitis
     Objective:To establish a mouse model with allergic rhinitis, explore tissue changes in nasal mucosa with challenge times.
     Methods:BALB/c mice,4to6weeks old with50μg ovalbumin, aluminium hydroxide gel5mg and lml saline sensitized by intraperitoneal injection of7times;5%ovalbumin solution dropped for nasal provocation, were continuous applied of10days,20days,30days. The control group was replaced by0.9%saline. To observe the mice behavior, the level of OVA-sIgE by ELISA, nasal mucosa infiltration of eosinophils by HE, the results was analyzed using SPSS16.0.
     Results:The mice behavior scores of experiment were5.01±1.01,6.43±1.12,8.56±1.64, control group0.85±0.23; nasal mucosal EOS counts were5.63±1.25,9.25±2.10,15.37±2.36,0.69±0.12in the control group; the serum OVA-sIgE concentration was45.91(45.91±5.80)pg/ml、48.81(48.81±3.49) pg/ml、51.38(51.38±3.19) pg/ml, in control group (41.71±2.58pg/ml). T test showed that there were significant differences between the experimental group and the control (P<0.05), and between the model groups (P<0.05).
     Conclusion:Allergic rhinitis mouse model was established successfully; more nasal challenges, the concentration of OVA-sIgE and the symptoms were more increased.
     Part II Flow cytometric analysis of TFH cells in allergic rhinitis mouse model
     Objective:To investigate the expression and significance of TFH cells in allergic rhinitis mouse model.
     Methods:After allergic rhinitis mice model established successfully,peripheral blood mononuclear cells(PBMC) were obtained with red cell lysates which were analyzed using CD4-Fitc and CXCR5-PE by flow cytometry to get the proportion of CD4+CXCR.5+cells in peripheral blood, the total serum OVA-sIgE levels was tested by ELISA, the relationship was analyzed by Pearson correlation in SPSS16.0.
     Results:TFH cells in AR model groups were respectively7.94±2.66%、8.65±3.49%、9.77±3.24%, the control group was4.97±0.20%, the difference was significant analyzed by T-test(P<0.05);differences between the model groups showed to be significant (T-test, P<0.05) and Pearson correlation analysis showed that the expression level of TFH cells and total OVA sIgE levels were positive (r=0.87, P=0.021)
     Conclusion:TFH cells have an important role in the pathogenesis of allergic rhinitis, which might be associated with the elevated OVA-sIgE.
     Part III Relationships between IL-21and TFH in mouse model with allergic rhinitis
     Objective:To investigate the expression of IL-21and its relationships between OVA-sIgE and TFH cells in allergic rhinitis mouse model.
     Methods:Peripheral blood was collected from allergic rhinitis BALB/c mice to test IL-21and OVA-sIgE by ELISA quantity, the percentage of TFH cells in PBMC by flow cytometry. its relationships between them were analyzed by Pearson correlation in SPSS16.0.
     Results:The expressions of11-21were186.25±11.68pg/ml in the control,181.13±4.93pg/ml in group AR1,168.46±11.04pg/ml in group AR2,164.54±10.52pg/ml in group AR3. After statistical analysis, IL-21showed to be negative correction with CD4+CXCR5+T cell ratio((r=-0.80, P=0.048) and total serum OVA-sIgE levels (r=-0.86, P=0.031)
     Conclusion:IL-21was negative correction with CD4+CXCR5+T cell ratio and total serum OVA-sIgE levels; it might have some therapeutic effect on allergic rhinitis in clinic.
     Part IV Expression and significance of TFH related cytokines in mouse nasal mucosa with allergic rhinitis
     Objective:To investigate the expression and significance of TFH related factor CXCR5and Bcl-6in allergic rhinitis of mouse nasal mucosa.
     Methods:The expression of CXCR5in nasal mucosa was analysed by immunohistochemical method. The TFH transcription factor of Bcl-6was tested by means of Westernblot and PCR, data processing and compare were used by medical statistical software SPSS16.0.
     Results:Westernblot showed the expression of bcl-6factor was increased significantly in the experimental groups, the relative density values were0.67,0.84,0.98, while the control was0.53. PCR assay showed Bcl-6mRNA expression were significantly increased, the amplification were0.90,1.63,1.77,1.85,1.92individually (T-test, P<0.05). CXCR5+cells increased significantly from the control group to different experimental groups (T-test. P<0.05), and were widely distributed in the mucosa and submucosa.
     Conclussion:CXCR5+cells and Bcl-6expression increased in mice nasal mucosa,which might play a role in the pathogenesis of allergic rhinitis.
引文
1.Bousquet J, Khaltaev N, Cruz AA, et a.l Allergic rhinitis and its impact on asthma(ARIA) 2008 update (in collaboration with the WorldHealth Organization, GA2LEN and Allergy,2008,63 (Suppl 86):8-160.
    2.SAITO H, HOWIE K, WATTIE J, et al.Allergen-induced murine upper airway inflammation:local and systemic changes in murine experimental allergic rhinitis [J].Immunology,2001,104:226-234.
    3.Braunstahl GJ, Fokkens WJ, Overbeek SE, KleinJan A, Hoogsteden HC, Prins JB. Mucosal and systemic inflammatory changes in allergic rhinitis and asthma:a comparison between upper and lower airways. Clin Exp Allergy 2003; 33(5):579-87.
    4.赵秀杰,董震,杨占泉,等.鼻超敏反应实验模型的建立[J].中华耳鼻咽喉科杂志,1993,28(1):18.
    5.钱彦方,李炳文,周正谋,等.克鼻敏对豚鼠超敏鼻炎模型电镜光镜的病理观察[J].北京中医药大学学报,1999,22(6):36-38.
    6.Tanka K, Okamoto Y.A nasal allergy model developed in the guinea pig by intranasal application of-2,4-toluene diisocyanate[J].Int Archs Al-lergy Appl Immun,1988,85 (4):392-397.
    7.张丽,杜经纬,王丽洪,谭毅,龚晓波,江鹏,王智彪.豚鼠和新西兰兔变应性鼻炎模型建立及比较.重庆医科大学学报,2010,35(3):335-338.
    8.余洪猛,文三立,刘志刚,方勇,王华.豚草花粉变应原致过敏性鼻炎豚鼠模型的建立.上海实验动物科学.2001,21(4):212-214.
    9.Monika ME. Garl A, Jona S. Degranulation status of airway tissue eosinophils mouse models of allergic airway inflammation [J].Res Cell Mole Biol.2001,24 (3):352-359.
    10.李华斌.韩德民.IL-9与呼吸道炎症[J].国外医学耳鼻咽喉科学分册,2003.27(2):75-77.
    11.Saito H, Ma, sumoto K, Denburg AF, et al. Pathogenesis of murine experimental allergic rhinitis:A Study of local and systemic consequences of IL-5 Deficieney [J].J Immunol,2002,168(6):3017-3023.
    12.燕志强,章凤新.嗜酸性细胞功能研究进展[J].国外医学耳鼻咽喉科学分册,2004,25(5):304-307.
    13.毛辉,王曾民.CD34+细胞与支气管哮喘[J].国外医学呼吸系统分册,2002,22(4):190-193.
    14.张华,赵娟,雍军,孙捷.实验性变应性鼻炎鼠类模型的建立.新疆医科大学学报,2006,29(1):56-57.
    15.冯纬纭,谢芳,侯田培,方燕飞,徐娟丽.建立变应性鼻炎的动物模型.光明中医,2010,25(2):224-225.
    16.余洪猛,文三立,刘志刚,方勇.蛔虫变应原致过敏性鼻炎豚鼠模型建立.上海实验动物科学.2000,12(4):217-219.
    17.刘晓宇,张强,吉坤美,李荔,刘志刚.粉尘螨疫苗免疫治疗过敏性鼻炎小鼠鼻黏膜的电镜观察.江西师范大学学报(自然科学版),2011,35(5):532-536.
    18.韩灵,孙悦奇,付清玲,文卫平,史剑波.呼吸道变应性炎性反应小鼠模型的建立.中华耳鼻咽喉头颈外科杂志,2013,48(3)224-228.
    19.EllisR, LeighR, Southam D, et al. Morphometric analysisofmouse airways after chronic allergen challenge. Lab Invest,2003,83:1285-1291.
    20.佘文煜,董震.实验性变应性鼻炎鼻黏膜组织重塑的特点.中华耳鼻咽喉头颈外科杂志,2006,41(1):48-53.
    21.吉晓滨,杜洪,臧林泉,李雯,谢军,王磊.豚鼠变应性鼻炎模型鼻黏膜的病理改变.山东大学耳鼻喉眼学报,2007,21(4):312-315.
    1. Kay AB. Allergy and allergic diseases. N Engl J Med,2001,344(1):30-7.
    2. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nature Medicine,2012, 18(5):693-704.
    3. Skoner DP. Allergic rhinitis:definition, epidemiology, pathophysiology, detection and diagnosis. J Allergy Clin Immunol,2001,108 (1 Suppl):S2-S8.
    4. Maurer M, Zuberbier T. Undertreatment of rhinitis symptoms in Europe:findings from a cross-sectional questionnaire survey. Allergy,2007,62(9):1057-63.
    5. Boyce JA, Bochner B, Finkelman FD, et al. Advances in mechanisms of asthma, allergy, and immunology in 2011 [J]. J Allergy Clin Immunol,2012,129 (2): 335-341.
    6. Durham SR. The inflammatory nature of allergic disease. Clin Exp Allergy,1998, 28 (suppl 6):20-4.
    7. Holgate ST. Innate and adaptive immune responses in asthma[J]. Nat Med,2012, 18 (5):673-683.
    8. Nurieva RI, Chung Y, Hwang D, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1,2, or 17 cell lineages[J]. Immunity,2008,29 (1):138-149.
    9. Nurieva RI, Chung Y, Martinez GJ, et al. Bcl6 mediates the development of T follicular helper cells [J].Science,2009,325 (5943):1001-1005.
    10. SAITO H,HOWIE K,WATTIE J,et al.Allergen-induced murine upper airway inflammation:local and systemic changes in murine experimental allergic rhinitis [J].Immunology,2001,104:226-234.
    11.Braunstahl GJ, Fokkens WJ, Overbeek SE, KleinJan A, Hoogsteden HC, Prins JB. Mucosal and systemic inflammatory changes in allergic rhinitis and asthma:a comparison between upper and lower airways. Clin Exp Allergy 2003; 33(5):579-87.
    12.陈慰峰主编.医学免疫学.[M].第3版.北京:人民卫生出版社,2003:100-108.
    13. Fazil leau N, Mark L, McHeyzer-Willams L J et al. Follicular helper T cells: lineage and location [J]. Immunity,2009; 30(3):324-335.2
    14.刘良忠,王静,雷宇,安选,胡鹏,胡怀东,张大志,任红.循环滤泡型辅助性T淋巴细胞及IL-21在自身免疫性肝炎中的初步研究.免疫学杂志,2010,26(12):1065-1069.
    15.余文庆,徐洪涛,邢同京,咸建春,叶军,张立新,李浩.滤泡辅助性T细胞及其相关分子在慢性HBV感染发病机制中的作用.中华临床医师杂志(电子版),2012,6(16):4874-4876.
    16.李凤惠,吕洪敏,王芳,向慧玲,王凤梅,李晓爽,泽塔多吉,王鹏.慢性HBV 感染者外周血CD4+CXCR5+TFH细胞的测定及其与FoxP3+Treg细胞的相关性.世界华人消化杂志2012,20(13):1100-1106.
    17.黄晓梅,陈协群,高广勋,余芳,肖春.滤泡辅助性T细胞在特发性血小板减少性紫癜患者的变化及其意义.现代生物医学进展,2011,11(5):827-830.
    18.李秋菊,党二乐,呼蕾,吴岩,刘振锋,何争,晋亮,王刚.天疱疮和大疱性类天疱疮患者外周血滤泡辅助性T细胞水平的研究.中华皮肤科杂志,2012,45(3):155-158.
    19.孔凡贞,李成荣,李秋,王国兵,杨军.急性期川崎病患儿滤泡辅助性T细胞改变观察.中华微生物学和免疫学杂志,2011,31(11):1027-1032.
    20.崔冉,徐建华.类风湿关节炎患者外周血TFH及Th9的变化及临床意义.中华微生物学和免疫学杂志,2012,32(2):114-119.
    21.时凤敏,周平,陈国江,李新颖,李育蓉,黎燕,沈倍奋,韩根成.滤泡辅助性T细胞(TFH)在炎性肠病中的表达研究.军事医学,2011,35(12):902-905.
    22.龚芳,苏强,申卫红,潘宇红,黄璇.支气管哮喘患者外周血CD4+ CXCR5滤泡辅助性T细胞样细胞的变化及其意义.南京医科大学学报(自然科学版)2013,33(1):102-104.
    23.冯敛,刘昀,王慧,李祖望,李华斌,吴长有.人外周血和扁桃体中TFH细胞与其他Th细胞亚群之间的关系.免疫学杂志,2011,27(1):42-48.
    24. Zaretsky AG, Taylor JJ, King IL, et al. T follicular helper cells diferentiate from Th2 cells in response to helminth antigens [J]. J. Exp. Med,2009,206(5) 991-999.
    25. De Jong E, Suddason T, Lord GM, et al.Translational mini-review series on Th17 cells:development of mouse and human T helper 17 cells [J]. Clin Exp Immunol, 2010,159(2):148-158.
    26. Sarkar S, Cooney LA, Fox DA. The role of T helper type 17 cells in inflammatory arthritis [J]. Clin Exp Immunol,2010,159(3):225-237.
    1.Chtanova T, Tangye SG, Newton R, et al. T follicular helper cells express a distinctive transcrip tional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol,2004; 173:68-78.
    2. Peluso I, Fantini MC, Fina D, et al. IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+T lymphocytes. J Immunol,2007; 178: 732-739.
    3. Zeng R, Spolski R, Casas E, et al. The molecular basis of IL-21-mediated proliferation. Blood,2007;109:4135-4142.
    4.SAITO H, HOWIE K, WATTIE J, et al.Allergen-induced murine upper airway inflammation:local and systemic changes in murine experimental allergic rhinitis [J].Immunology,2001,104:226-234.
    5.Braunstahl GJ, Fokkens WJ, Overbeek SE, KleinJan A, Hoogsteden HC, Prins JB. Mucosal and systemic inflammatory changes in allergic rhinitis and asthma:a comparison between upper and lower airways. Clin Exp Allergy 2003; 33(5):579-87.
    6.Spolski R, Leonard W J. Interleukin-21:basic biology and implications for cancer and autoimmunity [J]. Ann Rev Immunol,2008,26:57-79.
    7.林锦骠,李宁丽.IL-21的研究进展.现代免疫学.2009,29(3):255-258.
    8.吴东红,杨志刚,李庆华.L-21对Jurkat细胞增殖及WAVE-1表达的影响.中华全科医学,2009,7(8):789-790.
    9.王东萍,张连生,曾鹏云,易良才.IL-21对慢性粒细胞白血病患者调节性T细胞的影响.中国肿瘤生物治疗杂志.2012:19,(5):517-520.
    10.张振亚,张伟,陈学谦,安广权,单保恩,于跃明.IL-21调节免疫平衡对大肠 癌细胞生长的抑制作用.中国老年学杂志,2010,30(6):731-735.
    11.周忠海,张南征,朱云,张娟,吕小婷,周燏,陈玲,孙蕾清,张颂,刘军权,陈复兴.IL-21增强γδT细胞体外抗肿瘤活性的实验研究.现代免疫学,2012,32(3):226-229.
    12.胡春蓉,陈春波,谭晓菁,石统东.IL-21对慢乙肝患者HBeAb生成与B淋巴细胞增殖的促进作用.免疫学杂志,2011,27(2):126-130.
    13.司方明.IL-21及其受体表达与溃疡性结肠炎分级的相关性.军医进修学院学报,2009,30(4):479-480.
    14.柏立欣,张子宁,付雅静,刘静,朱明路,姜拥军,王亚男,尚红.HIV感染者不同亚群T细胞IL-21及IL-21受体表达研究.中国免疫学杂志,2013,9(3):255-259.
    15.崔玲玲,王礼文.类风湿关节炎患者外周血单个核细胞IL-21R mRNA的检测及其临床意义.临床检验杂志,2009,27(1):57-60.
    16.张蓉萍.RA患者血清IL-17、IL-21的水平变化及临床意义.求医问药,2012,10(5):543-544.
    17.李开艳,熊盛道,朱晶,曹勇,熊维宁.沙美特罗/氟替卡松对支气管哮喘患者血清IL-21与总IgE水平的影响.医药导报,2011,30(8):1027-1029.
    18.龚芳,苏强,申卫红,潘宇红,黄璇.支气管哮喘患者外周血CD4+CXCR5+滤泡辅助性T细胞样细胞的变化及其意义.南京医科大学学报(自然科学版),2013,33(1):102-104.
    19.王士杰,鹿玲.过敏性紫癜患儿血IL-21、TGF-β1、TNF-a和免疫球蛋白变化及意义.临床儿科杂志,2011,29(2):159-161.
    20.Hiromura Y, Kishida T, Nakano H, et al. IL-21 administration into the nostril alleviates murine allergic rhinitis [J] J Immunol,2007,179:7157-7165.
    21.Kishida T, Hiromura Y, Shin-Ya M, et al. IL-21 induces inhibitor of differentiation 2 and leads to complete abrogation of anaphylaxis in mice [J]. J Immunol,2007, 179:8554-8561.
    22. Spolski R, Leonard WJ. Interleukin-21:basic biology and implications for cancer and autoimmunity [J]. Ann Rev Immunol,2008,26:57-79.
    23.Wu Z, Kim HP, Xue HH, et al. Interleukin-21 receptor gene induction in human T cells is mediated by T-cell receptor induced Spl activity [J]. Mol Cell Biol,2005, 25:9741-9752.
    24.Zeng R, Spolski R, Casas E, et al. The molecular basis of IL-21-mediated proliferation[J]. Blood,2007,109:4135-4142.
    25.Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of t he IL-21 and IL-23 pat hways [J]. Nat Immunol,2007,8(9):967-974.
    26.Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T (H) 17 cells[J]. Nature,2007,448:484-487.
    1. Kay AB. Allergy and allergic diseases. N Engl J Med,2001,344(1):30-7.
    2. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nature Medicine, 2012,18(5):693-704.
    3. Skoner DP. Allergic rhinitis:definition, epidemiology, pathophysiology, detection and diagnosis. J Allergy Clin Immunol,2001,108 (1 Suppl):S2-S8.
    4. Maurer M, Zuberbier T. Undertreatment of rhinitis symptoms in Europe:findings from a cross-sectional questionnaire survey. Allergy,2007,62(9):1057-63.
    5. Durham SR. The inflammatory nature of allergic disease. Clin Exp Allergy, 1998,28 (suppl 6):20-4.
    6. Strachan DP. Hay fever, hygiene and household size. BMJ,1989,299(6710): 1259-60.
    7. Zhu J, Paul WE. Peripheral CD4+T-cell differentiation regulated by networks of cytokines and transcription factors. Immunological Reviews,2010,238 (1): 247-62.
    8. Lemanske RF JR, Busse WW. Asthma:factors under lying inception, exacerbation, and disease progression. J Allergy Clin Immunol,2006,117(2 Suppl Mini-Primer): S456-461.
    9. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity,2006,24(2):179-89.
    10. DiPaolo RJ, Brinster C, Davidson TS, et al. Autoantigen-specific TGF-β-induced Foxp3+regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol,2007,179(7):4685-93.
    11. Barrett NA, Austen KF. Innate Cells and T Helper 2 Cell Immunity in Airway Inflammation. Immunity,2009,31(3):425-37.
    12. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol,2011, 29:621-663.
    13. Kemeny D. The role of the T follicular helper cells in allergic disease. Cellular & Molecular Immunology,2012,9(5),386-9.
    14. Nakaya M, Dohi M, Okunishi K, et al. Noninvasive system for evaluating allergen-induced nasal hypersensitivity in murine allergic rhinitis. Lab Invest, 2006,86(9):917-26.
    15. Eriksson J, Bjerg A, Lotvall J, et al. Rhinitis phenotypes correlate with different symptom presentation and risk factor patterns of asthma. Respir Med,2011, 105(11):1611-1.
    16. Togias A. Rhinitis and asthma:evidence for respiratory system integration. J Allergy Clin Immunol,2003,111(6):1171-1183.
    17. Wenzel SE, Schwartz LB, Langmack EL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am. J. Respir. Crit. Care Med,1999, 160(3):1001-8.
    18. Humbert M, Menz G, Ying S, et al. The immunopathology of extrinsic (atopic) and intrinsic (non-atopic) asthma:More similarities than differences. Immunol Today,1999,20(11):528-33.
    19. Holgate ST, Polosa R. Treatment strategies for allergy and asthma. Nat. Rev. Immunol,2008,8(3):218-30.
    20. Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med,2000,192(11):1545-52.
    21.耿万友,侯睿,孙树民,鲁金波,杜立银.原癌基因Bcl-6研究进展.动物医学进展,2013,34(3):110-113.
    22.叶珊,吴正升,王晓楠,王弦,杨雪晴,吴强.乳腺癌及乳腺良性病变中BCL-6mRNA和蛋白表达及生物学意义.临床与实验病理学杂志.2012,28(1):7-10.
    23. Gunn MD, Ngo VN, Ansel KM, et al. AB-cell-homing chemokine made in lymphoid follicles activates Burkitt s' lymphoma receptor-1 [J]. Nature,1998,391: 799-803.
    24.邹春华,周青春,冯玮,黄涛金,胡远兵.趋化因子受体CXCR5在肺癌中的表达及其意义.现代肿瘤医学,2010,18(5):906-8.
    25.易诚青,马春辉,张国桥,周晓凯,曹云.CXCL13和CXCR5在骨缺损成骨微环境中的表达特征.上海交通大学学报(医学版),2012,32(12):1536-1540.
    26.程超群,刘涛.变应性鼻炎中调节性T细胞和Bcl-6的研究进展.中国医药指南,2012,10(7):447-448.
    27.龚芳,苏强,申卫红,潘宇红,黄璇.支气管哮喘患者外周血CD4+CXCR5+滤泡辅助性T细胞样细胞的变化及其意义.南京医科大学学报(自然科学版).2013,33(1):102-104.
    28. Reinhardt RL, Liang HE, Locksley RM. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol,2009,10(4),385-393.
    29. Zaretsky AG, Taylor JJ, King IL, et al. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J Exp Med,2009,206(5):991-9.
    30. Tsuji M, Komatsu N, Kawamoto S, et al. Preferential generation of follicular B helper T cells,from Foxp3+T cells in gut Peyer's patches. Science,2009, 323(5920):1488-92.
    31. Yu D, Rao S, Tsai LM, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity,2009,31(3):457-468.
    1. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med.2000,192:1553-62.
    2. KimCH, Rott LS, Clark-Lewis I, Campbell DJ, WuL, ButcherEC. Subspecialization ofCXCR5+T cells:B helper activity is focused in a germinal center-localized subset of CXCR5+T cells. J. Exp.Med.2001,193:1373-81.
    3. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, et al. Follicular B helper T cells expressCXC chemokine receptors 5, localize to B cell follicles, and support immunoglobulin production. J. Exp.Med.2000,192:1545-52..,
    4. Murphy KM, Reiner SL.2002. The lineage decisions of helper T cells. Nat. Rev. Immunol.2:933-44.
    5. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol.2007, 25:821-52.
    6. Zhu J, Paul WE.2008. CD4 T cells:fates, functions, and faults. Blood 112:1557-69.
    7. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu. Rev.Immunol.2010,28:445-89.
    8. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, et al. Bc16 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science.2009,325:1006-10.
    9. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, et al. Bcl6 mediates the development of T follicular helper cells. Science.2009,325:1001-5.
    10. Yu D, Rao S, Tsai L, Lee S, He Y, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity.2009,31:457-68.
    11. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity.2008,29:138-49.
    12. Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med.2010,207:353-63.
    13. Zotos D, Coquet JM, Zhang Y, Light A, D'Costa K, et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med.2010,207:365-78.
    14. Poholek AC, Hansen K, Hernandez SG, Eto D, Chandele A, et al. In vivo regulation of Bc16 and T follicular helper cell development. J. Immunol.2010, 185:313-26.
    15. Avery DT, Deenick EK, Ma CS, Suryani S, Simpson N, et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J. Exp. Med.2010,207:155-71.
    16. Rolf J, Bell SE, Kovesdi D, Janas ML, Soond DR, et al. Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J. Immunol.2010,185:4042-52.
    17. Klein U, Dalla-Favera R. Germinal centres:role in B-cell physiology and malignancy. Nat. Rev. Immunol.2008,8:22-33.
    18. Basso K, SaitoM, Sumazin P, Margolin A, WangK, et al. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal-center B cells. Blood.2010,115:975-84.
    19. Allen CDC, Okada T, Cyster JG. Germinal-center organization and cellular dynamics. Immunity.2007,27:190-202.
    20. Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, et al. Primary B cell immunodeficiencies:comparisons and contrasts. Annu. Rev. Immunol.2009, 27:199-227.
    21. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem.2007,76:1-22.
    22. Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-WilliamsMG. Follicular helper T cells:lineage and location. Immunity.2009,30:324-35.
    23. TarlintonD, Radbruch A, Hiepe F, DOrner T. Plasma cell differentiation and survival. Curr. Opin. Immunol.2008,20:162-69.
    24. Shapiro-ShelefM, CalameK. Regulation of plasma-cell development. Nat. Rev. Immunol.2005,5:230-42.
    25. Tangye S, TarlintonD. MemoryBcells:effectors of long-lived immune responses. Eur. J. Immunol.2009,39:2065-75.
    26. Good-Jacobson KL, Shlomchik MJ. Plasticity and heterogeneity in the generation of memory B cells and long-lived plasma cells:the influence of germinal center interactions and dynamics. J. Immunol.2010,185:3117-25.
    27. Kuo TC, Shaffer AL, Haddad J, Choi YS, Staudt LM, Calame K. Repression of BCL-6 is required for the formation of human memory B cells in vitro. J. Exp. Med.2007,204:819-30.
    28. Casamayor-Palleja M, Feuillard J, Ball J, Drew M, MacLennan IC. Centrocytes rapidly adopt a memory B cell phenotype on co-culture with autologous germinal centre T cell-enriched preparations. Int. Immunol.1996,8:737-44.
    29. Crotty S, Cameron CE, Andino R. RNA virus error catastrophe:direct molecular test by using ribavirin. Proc. Natl. Acad. Sci. USA.2001,98:6895-900.
    30. Michelle A. Linterman, Robert J. Rigby, Raphael. K. Wong, et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. Vol.2011,206 (3): 561-576.
    31. Nicholas Simpson, Paul A. Gatenby, Anastasia Wilson, et al.Expansion of Circulating T Cells Resembling Follicular Helper T Cells Is a Fixed Phenotype That Identifies a Subset of Severe Systemic Lupus Erythematosus. ARTHRITIS & RHEUMATISM.2010,62(1):222-233.
    32. JieMa, Chenlu Zhu, BinMa, et al.Increased frequency of circulating follicular helper T cells in patients with rheumatoid arthritis.Clinical and Developmental Immunology.2012,2012(1):1-7.
    33. Chenlu Zhu, Jie Ma, Yingzhao Liu, et al.Increased Frequency of Follicular Helper T Cells in Patients with Autoimmune Thyroid Disease. J Clin Endocrinol Metab. 2012,97(3):943-50.
    34. Massimiliano Sarra, Ivan Monteleone, Carmine Stolfi, Massimo Claudio Fantini,et al. Interferon-gamma-expressing Cells Are a Major Source of Interleukin-21 in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2010,16: 1332-1339.
    35. Junyan Feng, Lu Lu, Cong Hua, et al.High Frequency of CD4+CXCR5+ TFH Cells in Patients with Immune-Active Chronic-Hepatitis B.2011,6 (7):1-9.
    36. Irah L. King, Markus Mohrs.IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells are T follicular helper cells. J. Exp. Med.2009,206 (5):1001-1007.
    37. James A. Harker, Gavin M. Lewis, Lauren Mack, Elina I. Zuniga.Late Interleukin-6 Escalates T Follicular Helper Cell Responses and Controls a Chronic Viral Infection.2011,334(6057):825-829.
    38. Laurence de Leval, David S. Rickman, Caroline Thielen, Aurelien de Reynies. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. BLOOD,2007,109(11):4952-4963.
    39. Luthje K, Kallies A, Shimohakamada Y, Belz GT, Light A, Tarlinton DM, et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat Immunol.2012,13(5):491-498.
    40. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, MaL, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity.2008; 29(1):138-49.
    41. Ozaki K, Spolski R, Feng CG, Qi CF, Cheng J, Sher A, et al. A critical role for IL-21 in regulating immunoglobulin production. Science.2002,298(5598): 1630-1634.
    42. Shang XZ, Ma KY, Radewonuk J, Li J, Song XY, Griswold DE, et al. IgE isotype switch and IgE production are enhanced in IL-21-deficient but not IFN-gamma-deficient mice in a Th2-biased response. Cell Immunol.2006; 241(2): 66-74.
    43. Hiromura Y, Kishida T, Nakano H, Hama T, Imanishi J, Hisa Y, et al. IL-21 administration into the nostril alleviates murine allergic rhinitis. J Immunol.2007; 179 (10):7157-7165.
    44. Suto A, Nakajima H, Hirose K, Suzuki K, Kagami S, Seto Y, et al. Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line ε(epsilon) transcription of IL-4-stimulated B cells. Blood.2002,100(13):4565-4573.
    45. Kobayashi S, Haruo N, Sugane K, Ochs HD, Agematsu K. Interleukin-21 stimulates Bcell immunoglobulin E synthesis in human beings concomitantly with activationinduced cytidine deaminase expression and differentiation into plasma cells. Hum Immunol.2009,70(1):35-40.
    46. Erazo A, Kutchukhidze N, Leung M, Christ AP, Urban JF Jr, Curotto de Lafaille MA, et al. Unique maturation program of the IgE response in vivo. Immunity. 2007;26(2):191-203.
    47. Xiong H, Dolpady J, Wabl M, Curotto de Lafaille MA, Lafaille JJ. Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med 2012; 209(2):353-364.
    48. Wesemann DR, Magee JM, Boboila C, Calado DP, Gallagher MP, Portuguese AJ, et al.Immature B cells preferentially switch to IgE with increased direct Smu to Sepsilon recombination. J Exp Med.2011,208(13):2733-2746.
    49. Pol E, Karlsson R, Roos H, Jansson A, Xu B, Larsson A, et al. Biosensor-based characterization of serum antibodies during development of an anti-IgE immunotherapeutic against allergy and asthma. J Mol Recogn.2007,20(1): 22-31.
    50. Tsuruoka N, Arima M, Arguni E, Saito T, Kitayama D, Sakamoto A, et al. Bc16 is required for the IL-4-mediated rescue of the B cells from apoptosis induced by IL-21. Immunol Lett.2007,110(2):145-151.
    51. Kitayama D, Sakamoto A, Arima M, Hatano M, Miyazaki M, Tokuhisa T. A role for Bc16 in sequential class switch recombination to IgE in B cells stimulated with IL-4 and IL-21. Mol Immunol.2008,45(5):1337-1345.
    52. Talay O, Yan D, Brightbill HD, Straney EE, Zhou M, Ladi E, et al. IgE+memory B cells and plasma cells generated through a germinal-center pathway. Nat Immunol.2012,13(4):396-404.
    53. Yang Z, Sullivan BM, Allen CD. Fluorescent in vivo detection reveals that IgE(+) B cells are restrained by an intrinsic cell fate predisposition. Immunity.2012, 36(5):857-872.
    54. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol.2002,20(1):87-90.
    55. Jung S, Siebenkotten G, Radbruch A. Frequency of immunoglobulin E class switching is autonomously determined and independent of prior switching to other classes. J Exp Med.1994,179(6):2023-2026.
    56. Misaghi S, Garris CS, Sun Y, Nguyen A, Zhang J, Sebrell A, et al. Increased targeting of donor switch region and IgE in Sgammal-deficient B cells. J Immunol.2010,185(1):166-173.
    57. Zhang K, Mills FC, Saxon A. Switch circles from IL-4-directed epsilon class switching from human B lymphocytes. Evidence for direct, sequential, and multiple step sequential switch from mu to epsilon Ig heavy chain gene. J Immunol.1994,152(7):3427-3435.
    58. Baskin B, Islam KB, Evengard B, Emtestam L, Smith CI. Direct and sequential switching from mu to epsilon in patients with Schistosoma mansoni infection and atopic dermatitis. Eur J Immunol.1997,27(1):130-135.
    59. Cameron L, Gounni AS, Frenkiel S, Lavigne F, Vercelli D, Hamid Q. S epsilon S mu and S epsilon S gamma switch circles in human nasal mucosa following ex vivo allergen challenge:evidence for direct as well as sequential class switch recombination. J Immunol.2003,171(7):3816-3822.
    60. Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol.2003,4(7):670-679.
    61. Kashiwakuma D, Suto A, Hiramatsu Y, Ikeda K, Takatori H, Suzuki K, et al. B and T lymphocyte attenuator suppresses IL-21 production from follicular Th cells and subsequent humoral immune responses. J Immunol.2010,185(5): 2730-2736.
    62. DM Kemeny. The role of the T follicular helper cells in allergic disease. Cellular & Molecular Immunology.2012,9(5):386-389.
    63. Shane Crotty.Follicular Helper CD4 T Cells (TFH). Annu. Rev. Immunol.2011, 29:621-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700