表面织构与合金化改善密封材料摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦磨损是机械设备失效的主要原因之一,大约80%的零件失效是由于各种形式的磨损引起的,磨损不仅消耗能源和材料,而且加速设备报废、导致频繁更换零件,对经济造成极大的损失。本文从改变材料表面形貌和组织对摩擦性能影响的角度出发,以端面密封材料的摩擦磨损形式为研究对象,利用摩擦磨损试验平台和ABAQUS有限元模拟分析了表面织构化的摩擦磨损行为及接触应力分布,为机械密封摩擦副的耐磨技术开发提供试验和理论依据。
     以现有科研成果和文献作为指导,利用波长为1064nm的Nd:YAG脉冲激光在摩擦副材料表面进行织构化处理,将高能量密度的脉冲激光等间隔作用于摩擦副材料表面并使之熔化,从而形成均匀分布的凹坑/凹槽结构,通过改变脉冲次数、能量和间隔,获得不同尺寸、形状及分布密度的表面织构。测试表面织构之间的硬度值;分析激光处理对材料的热影响效应;采用白光干涉三维轮廓仪表征织构的三维形貌;用扫描电子显微镜观察热影响区附近的熔化溅射状态。模拟密封摩擦副,对织构化密封材料PTFE/GCr15钢进行环/盘式摩擦磨损试验,测试不同摩擦配副和织构参数,如:直径、深度、间距、密度、形状等,对摩擦学性能的影响,得出最佳的微孔参数。通过ABAQUS有限元软件对滑动接触过程进行三维有限元数值模拟,分析了不同微孔直径、间距和分布密度下的等效应力。
     对表面织构化的45钢进行表面双辉等离子渗金属处理,纯铬/钼板作为源极,工艺参数为:极间距20mm、源极电压800V、试验温度880~900℃,渗铬时间4h、工作气氛为氩气。用光学金相显微镜观察合金渗层截面形貌;测试合金层截面的显微硬度;采用X射线衍射仪对合金渗层进行物相分析,用扫描电子显微镜和能谱仪测试渗层成分。
     试验结果表明:在贫油润滑条件下,激光织构化处理将密封材料摩擦副PTFE环/GCr15盘的摩擦系数由0.1降低到0.075,磨损率降低到光滑配副盘的2/3。织构化后,配副的PV值由6.5 MPa·m/s提高到16.4 MPa·m/s,最大PV值提高了1.5倍以上,油膜寿命延长了2倍以上。
     对两种类型表面织构(凹槽型/微孔型)的摩擦性能研究发现,油润滑下,微孔型织构的摩擦系数(0.065)低于凹槽型(0.08),微孔型织构的存油能力优于凹槽型,沟槽型和微孔型的磨损率在10.0×10~(-16)m~3/N*m左右,为光滑试样15.2×10~(-16)m~3/N*m的2/3,且磨损寿命较光滑配副增大一个数量级。
     对于微孔化配副,摩擦系数和磨损率随微孔直径、深度的增大而减小,但过大的微孔直径对磨损率不利;随着微孔密度增大,磨损寿命增加,而摩擦系数和磨损率先减小后增大。结合微孔直径、深度、密度的分析可以得出:微孔直径为150μm、间距500μm、深度30~40μm、密度8~9%的织构化密封材料摩擦学性能最佳,摩擦系数为0.055~0.06,与光滑配副相比降低了30%左右,磨损率仅为光滑配副的1/3。
     在织构化钢盘表面进行双辉离子渗金属Cr、Mo,形成厚度为20~30μm的合金渗层,渗铬层表面Cr含量约为43.4%,生成Cr_(23)C_6等碳化物,硬度由HV250提高到HV1100左右;渗钼层表面Mo含量约为13.0%,含有Fe_3Mo_3C等碳化物,表面硬度高达HV800。
     在贫油润滑下,经过渗Cr/Mo处理,微孔化配副的摩擦系数由0.07降低到0.055,磨损率由8.1×10~(-16)m~3(N*m)~(-1)下降到4.8×10~(16)m~3(N*m)~(-1),干摩擦条件下,经过渗Cr/Mo处理,微孔化配副的摩擦系数由0.16下降到0.135,摩擦配副环的磨损率降低了50%以上。表面织构化和合金化结合,在贫油/干摩擦条件下,获得了较低的摩擦系数以及良好的耐磨性。
     ABAQUS有限元模拟结果表明,微孔的存在虽然在一定程度上减小了接触面积、增大了接触面的平均等效应力,但与光滑表面相比,明显减小了摩擦接触面前端和边缘区域的应力集中现象,使接触表面间应力均匀化,其中,微孔密度在8%~9%范围内的应力分布状态最佳,与摩擦磨损试验结果一致。
     利用弹流理论计算出润滑膜厚与粗糙峰的比值,通过Stribeck曲线判断不同速度和载荷下的润滑状态,由于织构化处理提高了流体润滑效应,摩擦配副可以在较低的速度下由混合/边界润滑过渡到流体润滑状态;结合磨损形貌分析,光滑表面的摩擦配副磨损状况加剧,而织构化表面的摩擦配副磨痕深度较浅,犁沟较少,微织构可以捕捉摩擦轨道上的磨屑,减小磨粒磨损;微织构可以作为润滑剂的存储器,延长了润滑膜的使用寿命。
Friction and wear are the primary reasons of 80% invalidation in mechanical equipments, as a result of a huge economy loss, which not only waste energy and resource but also accelerate the equipments discarded and replaced. In this paper, mechanism of friction and wear reduction of laser surface texturing and behavior of contacted stress were analyzed, based on the effect of changing surface topography and structure on tribological properties, face seal system as the research target, friction and wear test and ABAQUS finite element simulation as the experimental flats. And the friction and wear discipline of laser texturing was also investigated. Experimental and theoretical basis of anti-wear technique of mechanical friction pairs can be provided in mechanical seal.
     Using a pulsed laser with a wavelength of 1064nm, the high-energy density pulsed laser were acted on frictional mates surfaces, forming the surface texturing structures of dimple/groove distributed equably, instructed with research achievements and literatures. Surface texturing with various dimensions, shapes and densities were generated in frictional material surfaces, by means of changing pulsed time, energy and interval. Vicker hardness between two dimples was measured to analyze the heat-affected function with laser induced. 3D topography was denoted with white-light intervene profile apparatus and the melt splashed status was observed by SEM. Simulating the face seal, friction and wear performance of texturing seal material mates PTFE/GCr15 were estimates. And the effect of various frictional mates and texturing parameters, such as diameter, depth, clearance, density and shape on tribological properties was also tested and the optimal texturing parameters can be acquired. Three-dimensional finite element simulations of sliding processing with ABAQUS software were adopted to analyze the equivalent stress with different diameters, clearances and densities.
     Then the alloying elements Cr, Mo were sputtered to the laser texturing steel surface by means of double glow plasma technology with the optimal technical parameters of 20mm pole interval, 800V source voltage, 880~900℃working temperature, 4h penetrating time and Ar as ambience. The intersection topography of alloying layer was observed by optical microscope, and the intersectional hardness was measured. Phases and organization were analyzed by XRD, and the ingredient of alloying layer was evaluated by SEM and EDS.
     The experimental results show that laser texturing can decrease the friction coefficient of PTFE ring/GCr15 disc from 0.1 to 0.075, and wear rate of mated texturing disc is 2/3 of the smooth disc with oil lubrication. After laser texturing, the PV value is increased from 6.5 MPa·m/s to 16.4 MPa·m/s and the maximal PV value can be improved by above 1.5 times. The oil film longevity is prolonged to 2 times.
     Compared with the tribological properties of two texturing with shape of groove and dimple, the friction coefficient of dimple-shape texturing sample is 0.065, lower than 0.08.of groove texturing sample, and the oil-storage ability of dimple is higher than the groove texturing sample. The wear rate of two texturing is about 10×10~(-16)m~3/N*m, which is 2/3 of the smooth disc of 15.3×10~(-16)m~3/N*m.
     For the dimple texturing mates, the friction coefficient and wear rate are decreased with diameter and depth increasing, and the oversized dimple will give a disadvantage to wear rate. With the dimple density increasing, the wear longevity is prolonged while the friction coefficient is decreased firstly then elevated. Combining various dimple parameters, it is concluded that the sample with dimples of 150μm in diameter, 500μm in clearance, 40μm in depth and 8.8% density has a optimal tribological performance, with the friction coefficient 0.055~0.06, and the wear rate is one third of the smooth sample's.
     Then the alloying elements Cr, Mo were sputtered to the laser texturing steel surface by means of double glow plasma technology to form the hardened phases such as Cr_(23)C_6 and Fe_3Mo_3C, which can increase the pressed hardness and surface hardness from HV250 to above HV1100. The intersectional distribution of soft and hard phases in matrix may improve the wear-resistance ability. Cooperating effect of laser surface texturing and double glow plasma surface alloying technology on sliding surfaces, a lower friction coefficient and better wear-resistance can be achieved.
     The Cr and Mo alloying layer about 20~30μm is formed on texturing surfaces by means of double glow plasma technology. The Cr concentration is 43.4% with carbide phase Cr_(23)C_6 in Cr alloying layer, improving the hardness from HV250 to HV1100. And the Mo concentration is 13.0% with carbide phase Fe_3Mo_3C in Mo alloying layer with HV800.
     After Cr/Mo sputtering process, the friction coefficient of texturing mated is decreased from 0.07 to 0.055, and the wear rate is declined from 8.1×10~(-16)m~3(N*m)~(-1) to 4.8×10~(-16)m~3(N*m)~(-1) with oil lubrication. In dry friction, the friction coefficient of texturing and alloying frictional mates is decreased from 0.16 to 0.135, and the wear rate is declined to50%. Cooperating effect of laser surface texturing and double glow plasma surface alloying technology on sliding surfaces, a lower friction coefficient and better wear-resistance can be achieved.
     The finite element simulating results indicate that the dimples may decrease the contacted areas, increasing the average equivalent stress. It can be seen that the stress concentration in the front and edge on contacted surface is minimized, equalizing the whole stress and reducing the stress grads. The samples with about 8%~9% dimple density have the optimal stress distribution. The simulation results are consistent with the friction tests, validating the results of friction testing to some extents.
     The ratios of lubricating film and surface asperity of smooth and texturing friction mates are calculated with elasticity- hydrodynamics theory to estimate the lubricating states under various load and velocity with Stribeck Curve. The texturing sample may increase the ratios of lubricating film and surface asperity, transfer the lubricated region from boundary to hydrodynamic lubrication at lower speed in shorter time, compared with the smooth.
     Combining the worn surfaces morphologies, the wear track in texturing disc is shallower with less ploughs than the rigorous surface on smooth. The texturing can act as a lubricant reservoir and a trap for wear particles, both affording the contact surface lubricating fluid continuously and eliminating the plowing contribution to friction.
引文
[1]张嗣伟.摩擦学的进展与展望[J].摩擦学学报,1994,14(1):84-88.
    [2]葛世荣.摩擦学导论[M].北京:机械工业出版社,2007.
    [3]温诗铸.我国摩擦学研究的历史回顾—为纪念中国机械工程学会摩擦学分会成立25周年而作[J].润滑与密封,2006,173(1):1-7.
    [4]王大中.摩擦学重在应用[J].材料保护,2004,37(7):7-9.
    [5]蔡仁良,顾伯勤,宋鹏云.过程装备密封技术[M],北京,化学工业出版社,2002.
    [6]顾永泉.机械密封实用技术[M].北京:机械工业出版社,1992.
    [7]Lebeck A O.Hydrodynamic lubrication in wavy contacting face seals[J].ASME Journal of Lubrication Technology,1978,100:81-90.
    [8]E.迈尔.机械密封[M].北京:化学工业出版社,1981.
    [9]王玉明.从第十届国际流体密封会议看机械密封基础研究动向[J].流体工程,1984,12(11):43-50.
    [10]Lebeck A O.Principles and design of mechanical face seals[J].TJ246.L43.1991,1.
    [11]А.И.戈卢别夫.端面密封及动力密封[M].北京:化学工业出版社,1968.
    [12]Summers Smith.The mechanismof film Generation in mechanical Face Seals[J].Tribology International,1982,12:272-311.
    [13]Christensen H.Stochastic models for hydrodynamic lubrication of rough surfaces[J].Proc.Instn.Mech.Engrs.,1969-1970,184(1):1013-1026.
    [14]戈建志,李克永.机械密封润滑状态及摩擦扭矩的研究[J].流体工程,1993,21(1):1-6.
    [15]葛培琪.考虑粗糙度和径向锥度的密封混合摩擦的计算模型[J].润滑与密封,2001,16(5):392-401.
    [16]顾永泉.流体动密封(上册)[M].北京:中国石化出版社,1990.
    [17]Mayer E.Leakage and friction of mechanical seals with special consideration of hydrodynamic mechanical seals[C].Proc.of 1~(st) Inter.Conf.on fluid sealing.Paper E3,1961
    [18]Mayer E.The mo-hydrodynamic in mechanical seals[C].Proc.of 4~(th) inter.conf.on fluid sealing.1970,124-134.
    [19]陈国桓.流体动压效应与密封准数G[J].化工机械,1979,6(1):1-8.
    [20]Lyman F A,Saibel E.Leakage through rotary shaft seals[C].Proc.Fourth Applied Mechanics Conference,1963.
    [21]Stanghan-Batch B A.Face lubrication in mechanical face seals[J].Instn.Mech. Engrs.,c59/71:54-59.
    [22]Iny E H.The design of hydrodynamically lubricated seals with predictable operating characteristics[C].5th Internarional Conference on Fluid Sealing,BHRA,April 1971.
    [23]陈震.机械密封技术研究进展—摩擦学[J].流体工程,1989,17(5):30-34.
    [24]Lebeck A O.端面密封波度的预计、测量、起因和影响[C].第十届国际流体密封会议论文集,四川密封技术研究所编译,重庆:科学技术文献出版社重庆分社,1987.
    [25]杨惠霞,顾永泉.考虑表面锥度、波度和粗糙度的两维机械密封混合摩擦研究[J].流体机械,1994,32(5):3-8.
    [26]I.Etsion.Performance of end-face seals with diametical tilt and coning hydrostatic effects[J].ASLE Transaction,1980,23(3):2792-2881.
    [27]I.Etsion.Dynamic analysis of non-contacting face seals[J].Lubrication Technology,1982,194(2):460-468.
    [28]Findlay J A.Cavitation in mechanical face seals[J].Transactions of the ASME.Journal of Lubrication Technology,1968,90(2):356-364.
    [29]Nau B S.Observations and analysis of mechanical seal film characteristics[J].Journal of Lubrication Technology,1980,102(2):341-349.
    [30]顾永泉.机械密封实用技术[M].机械工业出版,2001.
    [31]Pape J G.Fundamental research on a radial race seals[J].ASLE Transactions,1968,11(3):302-309.
    [32]Lebeck A O.A study of mixed lubrication in contacting mechanical face seals[C].Proc.4th Leeds-lyon Symposiumon Lubrication,lyon,1977:46-57.
    [33]Barnard P C,LWeir R S.A theory for mechanical seal face thermodynamics[C].8th inf.conf.on Fluid Sealing,BHRA,1978.
    [34]顾永泉.液体端面密封中的相变及汽相密封[J].化工通用机械,1981,9(10):39-47.
    [35]顾永泉.机械密封的空化和空化边界的确定[J].流体机械,1998,26(12):16-20.
    [36]刘录,沈齐英,邵予工.变工况时气液两相机械密封端面动压实验分析[J].石油机械,2002,30(8):11-13.
    [37]刘录,沈齐英,邵予工.机械密封端面的动压效应研究[J].现代机械,2002,(3):33-36.
    [38]I.Etsion.Hydrostatic effects in a mechanical radial face seal[J].Transactions of the ASME Journal of Lubrication Technology,1979,101(2):283-292.
    [39]Lebeck A O.A mixed friction hydrostatic mechanical face seals model with thermal rotation and wear[J].ASLE Transactions,1979,23(4):375-387.
    [40]Doust T G,Parmar A.hydrostatic effects in a mechanical face seal[J].ASLE Transactions,1986,29(4):467-472.
    [41]Lebeck A O.利用混合摩擦模型对接触式机械密封端面密封性能研究[C].第十二届国际流体密封会议译文集,中国石化公司重大设备国产化办公室,1991.
    [42]王汝美.实用机械密封技术问答[M].北京:中国石化出版社,1995.
    [43]李宝彦,李云鹏,张建中等.泵用机械密封端面摩擦的研究[J].石油学报,1995,16(3):140-143.
    [44]M Nakada.Trends in engine technology and tribology[J].Tribology International,1994,27(1):3-8.
    [45]Priest M,Taylor C M.Automobile engine tribological-approaching the surface[J].Wear,2000,241:193-203.
    [46]Merlo A M.The contribution of surface engineering to the product performance in the automotive industry[J].Surface and Coating Technology,2003,174-175:21-26.
    [47]Wallfahrer U,Bowen L.High performance semisynthetic automotive engine oils using polymer esters as an anti-wear booster[J].Lubrication Engineering,1997,53:23-28.
    [48]郭志光,刘维民.新型无硫、磷有机钼化合物润滑油添加剂对钢/钢摩擦副摩擦磨损性能影响研究[J].摩擦学学报,2006,26(2):97-101.
    [49]Guo Z G,Liu W M.Tribological behavior of molybdenum coordination compound without sulfur and phosphorus as oil additive for steel-steel Contact[J].Tribology,2006,26(2):97-101.
    [50]H C Wong,N Umehara,K Kato.The effect of surface roughness on friction of ceramics sliding in water[J].Wear,2001,218:237-243.
    [51]Holmberg K,Ronkainen H,Matthews A.Tribology of thin coatings[J].Ceramics International,2000,26:787-795.
    [52]Dumitru G,Romano V,Weber H P,et al.Laser treatment of tribological DLC films [J].Diamond Rel Mater 2003,12:1034-1040.
    [53]A Erdemir.Review of engineered tribological interfaces for improved boundary lubrication[J].Tribology International,2005,38:249-256.
    [54]Xiaolei Wang,Koji Kato.Improving the anti-seizure ability of SiC seal in water with RIE texturing[J].Tribology Letters,2003,14(4):275-280.
    [55]Y Uehara,M Wakuda,Y Yamauchi,et al.Tribological properties of dimpled silicon nitride under oil lubrication[J].Journal of the European Ceramic Society,2004,24:369-373.
    [56]闫利文.微机械制造工艺及其应用[J].现代制造工程,2004,3:83-85.
    [57]Kanenko s.Application of porous materials to annular plain seals part 1-static characteristics[J].ASME Jour.of Trib.1989,111(4):655-660.
    [58]Kanenko s.Application of porous materials to annular plain seals part 2-Dynamic characteristics[J].ASME Jour.of Trib,1990,112(4):624-630.
    [59]Etsion I,Michael O.Enhancing sealing and dynamic performance with partially porous Mechanical Face seals[J].Tribology Transaction,1994,37(4):701-710.
    [60]Etsion I,Burstein L.A model for mechanical seals with regular microsurface structure [J].Tribology Transaction,1996,39(3):677-683.
    [61]Etsion I,Halperin G,Greenberg Y.Increasing mechanical seal life with laser textured seal aces[A].15thInternational Conference on Fluid Seal[C].London:Professional Engineering Publishing Limited,1997:3-10.
    [62]Etsion I,Kligerman Y,Haplerin G.Analytical and experimental investigation of laser-texture mechanical seal faces[J].Tribology Transactions,1999,42(3):511-516.
    [63]Wang X,Kato K,Adachi K,Aizawa K.The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed[J].Tribological International,2001,34:703-711.
    [64]Kligerman Y,Etsion I.Analysis of the hydrodynamic effects in a surface textured circumferential gas seals[J].Tribology Transaction,2001,44(3):472-478.
    [65]于新奇.激光加工多孔端面机械密封的性能研究[D].上海,华东理工大学,2004.
    [66]彭旭东.不同型面微孔对激光加工多孔端面机械密封性能的影响,2006,26(4):367-371.
    [67]Etsion I,Halperin G,Greenberg Y.Increasing mechanical seal life with laser textured seal faces[C].15~(th) International Conference on Fluid Seal.London:Professional Engineering Publishing Limited,1997:3-10.
    [68]Etsion I,Kligerman Y,Haplerin G.Analytical and experimental investigation of laser-texture mechanical seal faces[J].Tribology Transactions,1999,42(3):511-516.
    [69]Etsion I,Halperin G.A laser surface textured hydrostatic mechanical seal[J].Tribology Transaction,2002,45(3):430-434.
    [70]Pride S,Folkert K.Effect of micro-surface texturing on breakaway torque and blister formation on carbon-graphite faces in a mechanical seal[J].Lubrication Engineering, 2002,58(10):16-21.
    [71]Etsion I.Improving tribological performance of mechanical seals by laser surface texturing[A].In Proc.17~(th) Intnational Pump Users Symposium[C]2000:17-22.
    [72]Etsion I,Halppem G,Geranberg Y.Increasing mechanical seals life with laser-textured seal faces[A].15th International conference on fluid seal.London:Professional Engineering Publishing Limited[C],1997,3210.
    [73]Etsion I,Higerman Y,Halperin G.Analytical and experimental investigation of laser-textured mechanical seal faces[J].Tribology Transactions,1999,42(3):511-516.
    [74]徐滨士,粱秀兵.先进表面工程及其再制造中的应re[M].现代表面工程技术.太原:山西科学技术出版社.2002,7:3-10.
    [75]高原,徐重.空心阴极放电及在辉光离子渗金属中的应用[J].热加工工艺,1991(6):23-26.
    [76]徐重,王从曾,苏永安.离子渗钨钼手用钢锯条的应用研究[J].金属热处理,1988(3):134-137.
    [77]Xu Zhong.Method and apparatus for introducing normally solid materials into substrate surfaces[P].US Patent.452202685.
    [78]高原,徐重.金属材料表面涂覆离子渗金属工艺[P],中国专利:89103743.8.
    [79]Zhang G H,He Z Y,Pan J D,et al.Mechanical and tribological properties of Ti6Al4V hardened by double glow plasma hydrogen-free arbonitriding[J].Materials Science Forum.2005,475-479:3951-3954.
    [80]高原,徐重.双阴极—高频加强辉光放电离子渗镀工艺及设备[P].中国专利:ZL01108400.6.
    [81]王从曾,徐重,苏永安.不等电位空心阴极放电特性的研究[J].太原工业大学学报,1990(4):21-25.
    [82]张树林.空心阴极电子枪基本参量的确定[J].东工技术,1984,3:282-285.
    [83]高原,徐重.双层辉光离子渗金属渗入机理的研究[J].真空,1993(2):23-36.
    [84]高原,徐重.金属与非金属元素的等离子共渗[P].中国专利:ZL01141329.8.
    [85]李琴.浅论机械密封中摩擦副材料的选择[J].化工设计通讯,2002,28(4):52-56.
    [86]何松,蔡仁良.激光纹理技术在机械密封中的应用[J].化工设备与防腐,2002,5(2):115-117.
    [87]王宏杰,郭文刚,董兆辉.激光刻蚀技术的应用[J].红外与激光工程,2004,33(5):469-472.
    [88]张庆茂,刘文今.激光熔凝层组织与摩擦学特性的研究[J].强激光与粒子,2006, 18(3):389-392.
    [89]李成明,徐重.离子渗金属中等离子体参数与工艺参数的相关性[J].中国有色金属学报,2003,13(2):311-314.
    [90]张厚君,张英才.内燃机活塞系中的摩擦学[J].汽车工艺与材料,1995,12:19-24.
    [91]晏绪光,高文斌,杨水起.激光脉冲和工件参数对激光微孔加工质量的影响[J].应用激光,1994,14(3):127-130.
    [92]冯树强,肖安定,刘东华.不锈钢激光打孔研究[J].广西工学院学报,1999,10(3):38-41
    [93]G.Dumitru,V.Romano,H.P.Weber,et al.Laser microstructuring of steel surfaces for tribological applications[J].Applied Physics A,70(2000):485-487.
    [94]张庆茂,刘文今.激光熔凝层组织与摩擦学特性的研究[J].强激光与粒子,2006,18(3):389-392.
    [95]张建宇,高立新,王会刚.激光强化改善半钢材料耐磨性的实验研究[J].激光杂志,2005,26(3):77-78.
    [96]王玉明,杨惠霞,姜南.流体密封技术[J].液压气动与密封,2004(3):1-5.
    [97]Wang Yu ming,Yang Hui xia,Jiang Nan.Fluid seals technology[J].Hydraulic neumatics & Seals,2004(3):1-5.
    [98]I Etsion.Ideas and tendencies in furore mechanical seal development[J].Lubrication Engineering,1990(2):122-125.
    [99]Itzhak Green.Real time monitoring and control mechanical of face seal dynamic behavior[J].Sealing Technology,2001,11(96):6-11.
    [100]顾永泉.流体动密封[M].东营:石油大学出版社,1990.
    [101]海因茨K.米勒,伯纳德·S.纳乌.流体密封技术:原理与应用[M].北京:机械工业出版社,2002.
    [102]赵洪运,范伟光,严莉,徐晓丹,杨友.边界润滑条件下奥氏体的耐磨性及其磨损机理[J].金属热处理,2003,28(2):24-27.
    [103]寇志仁,孙丽静,郭广杰.边界润滑问题探讨[J].山东煤炭科技,2000,(4):42-43.
    [104]张会臣,季世军,姜振君.边界润滑条件下摩擦化学反应机理研究[J].大连海事大学学报,1999,25(2):105~108.
    [105]雒建斌,温诗铸.润滑状态的转变[J].材料研究学报,1997,11(2):102-108.
    [106]施洪生,胡元中,王慧.有边界润滑的往复运动摩擦副中的表面膜[J].清华大学学报(自然科学版),2005,45(8):1032-1034.
    [107]王国庆,刘宏昭,孙百俊.考虑边界润滑的间隙机构运动副接触磨损[J].长安大学学报(自然科学版).2002,22(6):85-88.
    [108]张俄平.关于迈尔边界条件的讨论[J].润滑与密封,2001,1:72-73.
    [109]杨文通,张风和,丁津原.混合润滑状态下边界膜失效机理[J].东北大学学报(自然科学版),1998,19(3):306-308.
    [110]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [111]冯树强,肖安定,刘东华.不锈钢激光打孔研究[J].广西工学院学报,1999,10(3):38-41.
    [112]G.Dumitru,V.Romano,H.P.Weber,et al.Laser microstructuring of steel surfaces for tribological applications[J].Applied Physics A,70(2000):485-487.
    [113]张庆茂,刘文今.激光熔凝层组织与摩擦学特性的研究[J].强激光与粒子,2006,18(3):389-392.
    [114]张建宇,高立新,王会刚.激光强化改善半钢材料耐磨性的实验研究[J].激光杂志,2005,26(3):77-78.
    [115]高原,徐重.金属材料表面涂覆离子渗金属工艺[P],中国专利:89103743.8.
    [116]徐重.等离子表面冶金技术的现状与发展[J].中国工程科学,2002,2(4):36-41.
    [117]崔福斋,郑传林.等离子表面工程新进展[J],中国表面工程,2003(4):7-10.
    [118]高原,徐重.双层辉光离子渗金属渗入机理的研究[J].真空,1993(2):23-26.
    [119]田民波,刘德令.薄膜科学与技术手册[M].北京,机械工业出版社,1991.
    [120]袁庆龙,池成忠,苏永安.Surface alloying of Cu with Ti by double glow discharge process[J].Transactions of Nonferrous Metals Society of China,2004,14(3):516-519.
    [121]徐晋勇,高清.碳钢表面冶金W-Mo强化层的研究[J].中国钨业,2005,20(5):26-29.
    [122]李成明,贺志勇,徐重.离子钨钼共渗的扩散机制[J].中国有色金属学报,2000,10(2):185-188.
    [123]赵斌,吴建生,李忠厚,刘小萍,高原,徐重.双层辉光离子渗W-Mo后析出物TTT图测定[J].中国有色金属学报,2000,10(5):676-678.
    [124]安家宪.离子渗钼试验研究[J].太原理工大学学报,2000,31(5):552-555.
    [125]袁庆龙,苏永安,徐重.纯铜双层辉光离子渗镍研究[J].真空科学与技术学报,2004,24(1):40-42.
    [126]张平则,徐重,张高会,等.Ti-Cu表面阻燃钛合金研究[J].稀有金属材料与工程.2005,34(1):162-165.
    [127]李忠厚,刘小平.Fe-W-Mo-Co时效硬化合金的表面冶金工艺[J].中国有色金属 学报,1999,9(4):790-794..
    [128]高原,徐晋勇.等离子Mo-Cr共渗表面高速钢层的研究[J].中国表面工程,2004,(12):28-32.
    [129]Bowden F P,Tabor D.The friction and lubricant of solids.Pt.Ⅱ.London,Oxford University Press,1964.
    [130]田民波,刘德令.薄膜科学与技术手册[M].北京,机械工业出版社,1991.
    [131]刘家俊.材料磨损原理及其耐磨性(第三版)[M].北京:清华大学出版社,1993.
    [132]齐效文,杨育林,薛飞.接触应力和相对滑动速度对金属表面自修复膜生成的影响及机制[J].润滑与密封,2007,32(7):20-26.
    [133]栾茂田,黎勇,范静海,叶祥记.考虑接触应力非线性分布的接触力元模式及其验证分析[J].固体力学学报,2005,26(2):216-220.
    [134]曲庆文.凸轮工作过程中轮廓表面的接触应力分析[J].机械学报,2004,17(3):13-15.
    [135]李贵涛,王树人.数值仿真技术与三维接触应力测量[J].机械设计,2001,6:43-45.
    [136]潘新祥,严立,徐久军,王亮,高玉周.粗糙面在梯度表面层上滑动接触的应力分布[J].应用力学学报,2000,17(2):56-64.
    [137]冯伟,谢小鹏.基于有限元方法的销盘实体接触应力仿真实现[J].润滑与密封,2007,32(4):117-120.
    [138]Wang Qin,Zhang Jin,Ma Xiao qiu,Dong Ben han.Hybrid method to analyze contact stress distribution on dry friction interfaces[J].Chinese Journal of Aeronautics,2002,15(2):77-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700