GaN基功率型LED器件及汽车前照灯散热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发光二极管(LED)被称为二十一世纪的光源。然而随着发光二极管功率的不断增大,热流密度也不断增大,散热问题已经成为制约其发展和应用的瓶颈,因此必须不断改善LED器件及应用过程的热设计。本文针对GaN基功率型LED,采用数值模拟与实验相结合的方法,从材料、器件、汽车前照灯应用系统三个层面对其进行了深入系统的热分析和研究。
     III价氮化物是功率型LED芯片制做的主要材料,其位错密度较大。本文在热导率计算的修正Callaway模型中,引入了位错和同位素散射的影响,计算了GaN的热导率。结果表明位错和杂质对热导率的影响都存在临界值。讨论了位错密度和同位素影响的相对大小,当位错密度小于1010 cm-2时,同位素对GaN热导率影响很大,而当位错密度大于这一值时,同位素影响很小,从而澄清了同位素对热导率影响大小的争议。同时在输运性质计算的Monte Carlo方法中引入了位错的影响,发现位错对迁移率的影响也存在一临界值。
     针对功率型LED芯片,建立了利用准确的芯片热源模型计算芯片温度分布和热应力的方法。研究了基板的热导率和底板换热系数对芯片最高温度和最大应力的影响,指出综合考虑散热和成本,采用热导率为140 Wm-1K-1的硅基板是一个很好的选择。倒装芯片的研究发现,倒装芯片只有合理的设计键合区域才能改善芯片的散热性能。
     为了方便的对LED热阻进行测试,设计了一种简单易用的器件热阻测试方法——快速切换法,并基于此方法设计了LED热阻测试仪器。利用设计的热阻测试仪对车灯用大功率LED的热阻进行了测试,测试结果与器件标称值符合的较好。
     针对LED汽车前照灯设计了热测试实验系统。并设计了导热板、热管及直接热沉式的热控制方案。研究发现将LED直接置于热沉上的方案散热效果最优,热管方案次之,导热板方案最差。用6个LEWD1A型LED组成的前照灯的测试表明采用热沉式方案,总功率为40 W,室温时,LED结点温度为70 oC;环境温度升高为80 oC时,结点温度为123 oC,前照灯可以长时间正常工作。
Due to its advantage over bulb and fluorescent lamp, light emitting diode (LED) was reported as light source for the 21th century. However, with the increase of power and heat flux, high die temperature has become the main bottleneck for its further application. Consequently, thermal design should be indispensable in design and application of LED. To improve the performance of LED, GaN-based high-brightness (HB) LED was experimentally and numerically studied from the angles of material, device and application in LED automotive headlamp.
     First, thermal conductivity and electron transport of III-Nitride were calculated. III-Nitride featuring high dislocation density is the leading material for HB LED chips. Regarding this characteristic, in modified Callaway’s model, effects of dislocation and isotope were all put into account to investigate the thermal conductivity of GaN. The results showed that effects of dislocation and impurity on thermal conductivity largely depend on its concentration. To address the ambiguity of the impact of isotope on thermal conductivity, relative importance of isotope and dislocation was investigated. It was found that there are critical values of impurity concentration and dislocation density below which the isotope effect on conductivity has to be considered and beyond which impurity and dislocation have significant impact. Dislocation scattering was also added into the Monte Carlo method to study electron transport. Numerical results of InN showed that electron mobility in InN with structural defects has a critical dislocation density below which dislocations have no effect on the mobility and beyond which the increased dislocation density results in an order-of-magnitude decrease in the electron mobility in InN.
     Based on accurate heat source, a model to calculate the temperature and thermal stress filed was put forward. Effects of substrate thermal conductivity and heat transfer coefficient on device performance were investigated. Numerical result showed that performance of device can be improved significantly by changing prevailing sapphire substrate with other high conductivity substrate, especially Si substrate. Flip-chip was also studied with this model. It was found that flip-chip may deteriorate the heat dissipation unless bonding area was deliberately arranged.
     To evaluate the thermal performance of device, a convenient and practical method was established to measure thermal resistance of LED. Based on this model, thermal resistance test instrument was presented. Thermal resistance of an exclusive LED for automotive headlamp was measured using this instrument. Experimental result showed that tested value of thermal resistance was similar to its nominal value.
     Experimental system for LED automotive thermal test was designed. With this system, three thermal management schemes including aluminum plate, heat pipe and heat sink were tested. From the thermal point of view, heat sink was the best one, heat pipe the second, aluminum plate the third. A headlamp comprising 6 HB LED was also tested. It was found that at room temperature, with a headlamp power of 40 W, junction temperature of LED was about 70 oC by placing LED directly on heatsink. While the ambient temperature was set to 80 oC, junction temperature was 123 oC. Automotive headlamp can work very well.
引文
[1] Schubert E F, Kim J K. Solid-State Light Sources Getting Smart. Science, 2005, 308: 1274-1278
    [2]周太明,宋贤杰,周伟. LED: 21世纪照明新光源.照明工程学报, 2001, 12(4): 37- 40
    [3] Steranka F M, Bhat J, Collins D, et al. High Power LEDs -Technology Status and Market Applications. phys. stat. sol. (a), 2002, 194(2): 380-388
    [4] Yam F K, Hassan Z. Innovative advances in LED technology. Microelectronics Journal, 2005, 36(2): 129-137
    [5] http://www.lumileds.com
    [6] Schubert E F. Light-Emitting Diodes. UK: Cambridge university Press, 2003
    [7] Allen J W, Moncaster M E, Starkiewicz J. Electroluminescent devices using carrier injection in gallium phosphide. Solid State Electronics, 1963, 6(2): 95-96
    [8] Grimmeiss H G, Scholz H J. Efficiency of recombination radiation in GaP. Phys. Lett., 1964, 8(4): 233-235
    [9] Thomas D G, Hopfield J J, Frosch C J. Isoelectronic traps due to nitrogen in gallium phosphide. Phys. Rev. Lett., 1965, 15(22): 857-860
    [10] Nakamura S. GaN growth using GaN buffer layers. Jpn. J. Appl. Phys., 1991, 30(10A): 1705-1707
    [11] Nakamura S, Mukai T, Senoh M. High-power GaN P-N junction blue light emitting diode. Jpn. J. Appl. Phys., 1991, 30(12A): 1998-2001
    [12] Nakamura S, Senoh M, Mukai T. P-GaN/n-InGaN/n-GaN double heterostructure blue light emitting diode. Jpn. J. Appl. Phys., 1993, 32(1A): 8-11
    [13] Nakamura S, Senoh M, Iwasa N, et al. Superbright green single quantum well structure light emitting diode. Jpn. J. Appl. Phys., 1995, 34(10B): 1332-1335
    [14] T Mukai, K Takekawa, S Nakamura. InGaN-based blue light emitting diodes grown on epitaxially laterally overgrown GaN substrates. Jpn. J. Appl. Phys., 1998, 37(7B) :839-841
    [15] Krames M R, Collins D, Gardner N F, et al. High-power III-nitride emitters for solid state lighting. Phys. Stat. Solidi. (a), 2002, 192(2): 237-245
    [16] Steigerwald D A, Bhat J C, Collins D,et al. Illumination with solid state lighting technology. IEEE J. Selet. Top. Quant. Electron., 2002, 8(2): 310-320
    [17] Mueller M R, Mueller G O, Krames M R, et al. High power phospher-converted light emitting diodes based on III-nitrides. IEEE J. Selet. Top. Quant. Electron., 2002, 8(2): 339-345
    [18] http://www.ledsmagazine.com
    [19] Tsao J Y. Solid state lighting-Lamps-Chips, and materials for tomorrow. IEEE Circuits & Devices magazine, 2004, 20(3): 28-37
    [20]崔元日,潘苏予.第四代照明光源——白光LED.灯与照明, 2004, 28(2): 31-34
    [21]刘木清,周德成,梅毅. LED与传统光源光效比较分析.照明工程学报, 2006, 17(4): 41-45
    [22] Arik M, Becker C, Weaver S, et. al. Thermal Management of LEDs: Package to System. in: Proceedings of Third International Conference on Solid State Lighting. Bellingham, USA, 2004. 64-75
    [23] Arik, M P, J Weaver. Thermal challenges in the future generation solid state lighting applications: light emitting diodes. in: Proceedings of IEEE Intersociety conference on Thermal Phenomena. San Diego, USA, 2002. 113-120
    [24] Hong E, Narendran N A method for projecting useful life of LED lighting systems. in: Proceedings of Third International Conference on Solid State Lighting. Bellingham, USA, 2004. 93-99
    [25]于彬海.结温与热阻制约大功率LED发展.发光学报, 2005, 26(6): 762-765
    [26]邵嘉平. 25 lm/W级GaN半导体照明材料外延生长与评测[博士学位论文].北京:清华大学电子工程系, 2006
    [27] Levinshtein M E.先进半导体材料性能与数据手册(杨树人,殷景志译).北京:化学工业出版社, 2003
    [28] Klochikhin A A, Davydov V Y, Emtsev V V, et al. Acceptor states in the photoluminescence spectra of n-InN. Phys. Rev. B, 2005, 71(19): 195207
    [29] Mahboob I, Veal T D, Piper L F J, et al. Origin of electron accumulation at wurtzite InN surfaces. Phy. Rev. B, 2004, 69(20): 201307
    [30] Mokoc H. Nitride semiconductors and devices. Berlin: Springer, 1999
    [31]韩彦军. GaN基蓝绿色发光二极管工艺物理与技术的研究[博士学位论文].北京:清华大学电子工程系, 2003
    [32] Zheleva T S, Nam O H, Bremser M D, et al. Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Appl. Phys. Lett, 1997, 71(17): 2472-2474
    [33] Jezowski A, Danilchenko B A, Bockowski M, et al. Thermal conductivity of GaN crystals in 4.2-300 K range. Solid state communications, 2003, 128(2-3):69-73
    [34] Luo C Y, Marchand H, Clarke D R, et al. Thermal conductivity of lateral epitaxial overgrown GaN films. Applied Physics Letters, 1999, 75(26): 4151-4153
    [35] Florescu D I, Asnin V M, Pollak F H, et al. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermalmicroscopy. Applied Physics Letters, 2000, 77(10):1464-1466
    [36] Asnin V M, Pollak F H, Ramer J, et al. High spatial resolution thermal conductivity of lateral epitaxial overgrown GaN/sapphire (0001) using a scanning thermal microscope. Applied Physics Letters, 1999, 75(9): 1240-1242
    [37] Luo C, Clarker D R, Dryden J R. The temperature dependence of the thermal conductivity of single crystal GaN films. J. Electron. Mater., 2001,30(3): 138-146
    [38] Mion C, Mutha J F, Preble E A, et al. Accurate dependence of gallium nitride thermal conductivity on dislocation density. Appl. Phys. Lett., 2006, 89(9): 092123
    [39] Callaway J. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev., 1959, 113(4): 1046-1051
    [40] Palmer M A, Bartkowski K, Gmelin E, et al. Thermal conductivity of germanium crystals with different isotopic compositions. Phys. Rev. B, 1997, 56(15): 9431-9447
    [41] Kamatagi M D, Sankeshwar N S, Mulimani B G. Thermal conductivity of GaN. Diamond Relat. Mater. 2007, 330(16): 98-106
    [42] Zou D, Balandin A A, Florescu D I, et al. Thermal conductivity of GaN films: Effects of impurities and dislocations. J. Appl. Phys., 2002, 92(5): 2534-2539
    [43] Morelli D T, Heremans J P, Slack G A. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Physical Review B, 2002, 66(19):195304
    [44] Anwar A F M, Wu S L, Webster R T. Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors. IEEE Transactions on Electron Devices, 2001, 48(3): 567-572
    [45] Farahmand M, Garetto C, Bellotti E, et al. Monte Carlo simulation of electron transport in the III-Nitride wurtzite phase materials system: binaries and ternaries. IEEE Transactions on Electron Devices, 2001, 48(3): 535-542
    [46] O’Leary S K, Foutz B E, Shur M S, et al. Steady-state and transient electron transport within bulk wurtzite indium nitride: An updated semiclassical three-valley Monte Carlo simulation analysis. Appl. Phys. Lett., 2005, 87(22): 222103
    [47] Ibrahim M A, Korotkov R Y. Modeling of electron mobility in GaN materials. Journal of applied physics, 2005, 97(9): 093715
    [48] Wang K J, Cao Y, Simon J, et al. Effect of dislocation scattering on the transport properties of InN grown on GaN substrates by molecular beam epitaxy. Appl. Phys. Lett. 2006, 89(16): 162110
    [49] Polyakov V M, Schwierz F, Fritsch D, et al. Monte Carlo study of steady-state and transient transport in wurtzite InN. Phys. Stat. Sol.(C), 2006, 3(3): 598-601
    [50] Polyakov V M, Schwierz F. Low-field electron mobility in wurtzite InN. Appl. Phys. Lett.2006, 88(3): 032101
    [51] Lebedev V, Cimalla V, Baumann T, et al. Effect of dislocations on electrical and electron transport properties of InN thin films. II. Density and mobility of the carriers. Journal of applied physics. 2006, 100(9): 094903
    [52] Thakura J S, Naik R, Naik V M, et al. Temperature dependence of mobility and carrier density in InN films. Journal of applied physics, 2006, 99(2): 023504
    [53] Zhong Z W, Lee S G. Thermal strain analysis for flip chip packaging. Proceedings of SPIE, 2003, 4945: 138-145
    [54] Arik M, Weaver S. Chip scale thermal management of high brightness LED packages. Proceedings of SPIE, 2004, 5530: 214-223
    [55] Christensena A, Nicolb D, Fergusonb I, et al. Thermal design considerations in the packaging of GaN based light emitting diode. in: Proceedings of Fifth International Conference on Solid State Lighting.Bellingham, WA, USA, 2005.594118
    [56]吴慧颖,钱可元,胡飞,等.倒装大功率白光LED热场分析与测试.光电子?激光, 2005, 16(5): 511-514
    [57]马泽涛,朱大庆,王晓军.一种高功率LED封装的热分析.半导体光电, 2006, 27(1): 16-19
    [58] Hu J Z, Yang L Q, Hwang W J, et al.Thermal and mechanical analysis of delamination in GaN-based light-emitting diode packages. Journal of Crystal Growth, 2006, 288(1): 157-161
    [59]曹阳,于新刚,梁新刚.高功率发光二极管封装结构的热分析.中国工程热物理学会学术会议论文集,广州, 2007. 71-75
    [60] Schwegler V. Junction temperature determination of InGaN LED under operation. Annual Report, Dept. of Optoelectronics, University of Ulm, 1999. 13-17
    [61] Kim L, Lee G W, Hwang W J, et al. Thermal analysis and design of GaN-based LEDs for high power applications., phys. stat. sol. (c), 2003, 0(7): 2261-2264
    [62]李炳乾,布良基,甘雄文,等. LED正向压降随温度的变化关系研究.光子学报, 2003, 32(11): 1349-1351
    [63] Hong E, Narendran N. A method for projecting useful life of LED lighting systems. in: Proceedings of Third International Conference on Solid State Lighting, Bellingham, USA, 2004. 93-99
    [64] Gu Y M, Narendran N, A non-contact method for determining Junction temperature of phosphor-converted white LEDs. in: Proceedings of Third International Conference on Solid State Lighting, Bellingham, USA, 2004. 107-114
    [65] Cho J, Sonel C, Park Y, et al. Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift. phys. stat. sol. (a), 2005, 202(9):1869-1873
    [66] Chhajed S, Xi Y, Gessmanna T, et al. Junction temperature in light-emitting diodes assessed by different methods. Proceedings of SPIE, 2005, 5739: 16-24
    [67] Kim L, Shin M W. Thermal resistance measurementof LED package with multichips. IEEE Transactions on Components and Packaging Technologies, 2007, 30(4): 632-636
    [68] Mahalingam M, Thermal Management in Semiconductor Device Packaging. Proceedings of IEEE, 1985, 73(9): 1396-1404
    [69] Hetsroni G, Mosyak A, Segal Z, et al. Uniform temperature heat sink for cooling of electronic devices. International Journal of Heat and Mass Transfer, 2002, 45(16): 3275-3286
    [70] Cohen A B. Thermal management of air and liquid cooled multichip modules. IEEE Transaction on Componets, Hybrids, and Manufacturing Technology, 1987, 10(2): 159-175
    [71]杨世铭,陶文铨.传热学.北京:高等教育出版社, 1998. 5
    [72]侯曾祺,胡金刚.航天器热控制技术-原理与应用.北京:中国科学技术出版社, 2001. 158
    [73] Nguyen T, Mochizuki M, Mashiko K, et. al. Use of heat pipe/heat sink for thermal managenlent of high performance CPUs. in: Proceeding of Sixteenth IEEE Semi-Thermtm Symposium. San Jose, USA, 2000. 76-79
    [74] Wang Y, Vafai K. An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe. International Journal of Heat and Mass Transfer, 2000, 43(15): 2657-2665
    [75] Kercher D S, Lee J B, Brand O, et al. Microjet cooling devices for thermal management of electronics. IEEE Transactions on components and packaging technologies, 2003, 26(2): 359-366
    [76]罗小兵,李志信,过增元.一种流体驱动器—合成喷驱动器.仪器仪表学报, 2000, 21(5): 504-507
    [77] Pavlova A, Amitay M. Electronic cooling using synthetic jet impingement. Journal of Heat Transfer, 2006, 128(9): 897~907
    [78] Lee D Y, Vafai K. Comparative analysis of jet impingement and microchannel cooling for high heat flux applications. International Journal of Heat and Mass Transfer, 1999, 42(9): 1555-1568
    [79]俞坚,马重芳, Lawer J.陶瓷微通道内的传热和压降特性.工程热物理学报, 2004, 25(1): 142-144
    [80] Qu W L, Mudawar I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. International Journal of Heat and Mass Transfer,2002, 45(12): 2549-2565
    [81] Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI. IEEE Electron Dev. Lett., 1981, 2(5): 126-129
    [82]李腾,刘静.芯片冷却技术的最新研究进展及其评价.制冷学报, 2004, 3: 22-32
    [83] Singhal V, Garimella S V, Raman A. Microscale pumping technologies for microchannel cooling systems. Appl Mech Rev, 2004, 57(3): 191-221
    [84] Disalvo F J. Thermoelectric cooling and power generation. Science, 1999, 285: 703-706
    [85] Min G, Rowe D M. Cooling performance of integrated thermoelectric microcooler. Solid-State Electronics, 1999, 43(5): 923-929
    [86] Sheu G J, Hwu F S, Tu S H, et al. The heat dissipation performance of LED applied a MHP. in: Proceedings of Fifth International Conference on Solid State Lighting, Bellingham, USA, 2005. 594113
    [87] Cheng J H, Liu C K, Chao Y L, et al. Cooling performance of silicon-based thermoelectric device on high power LED. in: Proceedings of IEEE International Conference on Thermoelectrics, South Carolina, USA, 2005. 53– 56
    [88] Lumileds. Power Light Source LUXEON K2 Emitter. Technical Datasheet DS51, 2006
    [89] Petrosk J. Thermal challenges facing new generation light emitting diodes. Proceedings of SPIE, 2002, 4776: 215-222
    [90] Aqkahn T, Garimella S V, Petroski J, et al. Optimal design of miniature piezoelectric fans for cooling light emitting diodes. in: Proceedings of the Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, USA, 2004. 663-671
    [91] Ma Z T, Wang X J, Zhu D Q, et al. Thermal analysis and modeling of LED arrays integrated with an innovative liquid-cooling module. in: Proceedings of 6th International Conference on Electronics Packaging Technology, Shen Zhen, China, 2005. 1564677
    [92] Lai Y, Cordero N, Barthel F, et al. Liquid cooling of bright LEDs for automotive applications. in: Proceedings of the 12th International Workshop on Thermal Investigation of ICs and Systems, Nice, France, 2006. 80-85
    [93]黄秉钧.高亮度LED照明技术发展与太阳能照明应用.技术报告
    [94] Luo X B, Liu S. A closed micro jet cooling system for high power LEDs. in: Proceedings of 7th International Conference on Electronics Packaging Technology Proceedings, Shang Hai, China, 2006.592-598
    [95]罗小兵,刘胜,江小平,等.基于微喷射流的高功率LED散热方案的数值和实验研究.中国科学(E辑), 2007, 37(9): 1194-1204
    [96] Wakabayashi N, Yamauchi S. Lighting device for use in automotive headlight, has loop-type heat pipe with heat receiving portion thermally connected to light source andheat releasing portion thermally connected to connecting portion of housing. JP, A, 2006164967, 2004.11.12
    [97] Ui K. LED lamp e.g. headlamp of motor vehicle, consists of thermally conductive aluminum plates fixed at upper and lower sides of lamp unit in resin case. JP, A, 2006302753, 2006.11.2
    [98] Inoue T, Yagi S. Vehicle lamp e.g. headlamp, for forming low-beam distribution pattern, has metal bracket tiltably supported by lamp body with heat sink, where heat sink and bracket are connected by flexible heat pipe with high thermal conductivity. US, A1, US2007025105, 2007.2.1
    [99] Coushaine C M. LED light source for e.g. headlight, has electrical conductors, each with tension reliever that compresses when printed circuit boards are assembled to central heat conductor, and heat sink in thermal contact with one board. US, B2, 7075224, 2006.7.11
    [100] Nakamura S, Pearton S, Fasol G. The Blue Laser Diode-The Complete Story. Berlin: Springer, 2000. 149-188
    [101] Lester S S, Ponce F A, Craford M G, et al. High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett., 1995, 66(10): 1249-1251
    [102] Kittel C.固体物理学(项金钟,吴兴惠译).北京:化学工业出版社, 2005. 74-75
    [103] Brockhouse B N. Lattice vibrations in silicon and germanium. Phys. Rev. Lett., 1959, 2(6): 256– 258
    [104] Flurescu D I, Asnin V M, Pollak F H, et al. High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire(0001): Doping dependence. J. Appl. Phys., 2000, 88(6): 3295-3300
    [105] Tian C L, Majumdar A, Gerner F M. Microscale Energy Transport. Washington: Taylor&Francis, 1997
    [106] Joshi Y P, Tiwari M D, Verma G S. Role of four-phonon process in the lattice thermal conductivity of silicon from 300 K to 1300K. Phys. Rev. B, 1970, 1(2): 642-646
    [107] Slack G A, Galginaitis S S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Phys. Rev. 1963, 113 (1A): 253-268
    [108] Pearton S J, Zolper J C, Shul R J, et al. GaN: Processing, defect, and devices. Appl. Phys.,1999, 86(1): 1-78
    [109] Klemens P G. The scattering of low-frequency lattice waves by static imperfections. Proceedings of the physical society of London, 1955, 68(12): 1113-1128
    [110] Chen G, Tien C L. Thermal conductivity of quantum well structures. Journal of Thermophysics and HeatTransfer, 1993, 7(2): 311-318
    [111] Schwarz R B, Khachaturyan K, Weber E R. Elastic moduli of gallium nitride. Applied Physics Letters, 1997, 70(9): 1122-1124
    [112] Witek A. Some aspects of thermal conductivity of isotopically pure diamond a comparison with nitrides. Diamond and Related Materials, 1998, 7(7): 962-964
    [113] Berman R. Comment on Witek’s paper on thermal conductivity of some nitrides. Diamond and Related Material, 1999, 8(11): 2016-2017
    [114]叶良修.小尺寸半导体器件的蒙特卡罗模拟.北京:科学出版社, 1997. 13-15
    [115] Furuta T, Tomizawa M. Velocity electric field relationship for minority electrons in highly doped p-GaAs. Appl. Phys. Lett., 1989, 56(9): 824-826
    [116] Moglestue C. Monte Carlo Simulation of Semiconductor Devices. London: Chapman&Hall, 1993. 87-114
    [117] Ziman J M. Electrons and Phonons. Oxford: Clarendon Press, 1960
    [118] Fawcett W, Boardman A D, Swain S. Monte Carlo determination of electron transport properties in gallium arsenide. J. Phys. Chem. Solids., 1970, 31(9):1963-1990
    [119] Pop E. Self-heating and scatting of thin body transistors [D]. Stanford university: Depart ment of electrical engineering, 2004
    [120] Pantelides S T.. The electronic structure of impurities and other point defects in semiconductors. Rev. Mod. Phys., 1978,50(4): 797– 858
    [121] Conwell E, Weisskopf V F. Theory of impurity scattering in semiconductors. Phys Rev., 1950, 77(3): 388-390
    [122] Elsner J, Jones R, M I Heggie, et al. Deep acceptors trapped at threading-edge dislocations in GaN. Phys. Rev. B, 1998, 58(19): 12571– 12574
    [123] Look D C, Sizelove J R. Dislocation scattering in GaN. Phys. Rev. Lett., 1999, 82(6): 1237-1240
    [124] Jacoboni C, Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductor with applications to covalent material. Rev. Mod. Phys., 1983,55(3): 645-705
    [125] Chuang S L. Physics of optoelectronic Devices. New York: John Wiley & Sons, 1995
    [126] Blatt F J, Schroeder P A, Foiles C L, et al. Thermoelectric Power of Metals, New York: Plenum Press, 1976
    [127] S Yamaguchi, R Izaki, A Yamamoto. Thermoelectric properties of and devices based on free-standing GaN. Appl. Phys. Lett, 2005, 86(25): 252102
    [128] Piprek J, Katona T, DenBaars S P, et al. 3D simulation and analysis of AlGaNGaN ultraviolet light emitting diodes. Proceedings of SPIE, 2004, 5366: 127-136
    [129]郝兰众,李燕,刘云杰,等. LaAlO3/BaTiO3超晶格薄膜的生长及结构分析.功能材料, 2005, 3(36): 346-347
    [130]刘昌军,过润秋.基于工业控制计算机的MOCVD控制系统设计.现代电子技术, 2004,10: 101-105
    [131] Gerhard K Wachutka, Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE transaction on computer-aided design, 1990, 9(11): 1141-1149
    [132] Veronis G, Suh W, Liu Y, et al. Coupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting diodes. Journal of Applied Physics, 2005, 97(4) : 044503
    [133]韦丹.固体物理学.北京:清华大学出版社, 2003. 167-168
    [134] Noda N, Hetnarsk I R B, Tanigawa Y. Thermal Stresses, New York: Taylor & Francis, 2003.147-185
    [135] Eggleston J M, Kane T J, Kuhn K, et al. The slab geometry laser. I. Theory. IEEE Journal of Quantum Electronics, 1984,20(3):289-301
    [136]王军荣.高功率泵浦激光介质的热分析与热控制[博士学位论文].北京:清华大学工程力学系, 2005
    [137] Liu W L, Balandin A A. Thermal conduction in AlxGa1-xN alloys and thin films. Journal of Applied Physics, 2005, 97(7) : 073710
    [138] INSPEC. Properitys of Gallium Arsenide. New York, 1986
    [139]陈则韶,葛新石,顾毓沁.量热技术和热物性测定.合肥:中国科学技术大学出版社, 1990. 157
    [140] Hu J Z, Yang L Q, Hwang W J, et al. Thermal and mechanical analysis of delamination in GaN-based light-emitting diode packages. Journal of Crystal Growth, 2006, 288(1): 157-161
    [141] Mo C L, Fang W Q, Pu Y, et al. Growth and characterization of InGaN blue LED structure on Si(1 1 1) by MOCVD. Journal of crystal growth, 2005, 285(3): 312-317
    [142] Xiong C B, Jiang F Y, Fang W Q, et al. The characteristics of GaN-based blue LED on Si substrate. Journal of Luminescence, 2007, 122(SI): 185-187
    [143] Mudawar I. Assessment of high-heat-flux thermal management schemes. IEEE Transactions On Components and Packaging Technologies, 2001, 24(2): 122-141
    [144] Venugopalan H S, Gao X, Zhang T T, et al. Fabrication of high-lumen InGaN flip chip LEDs. in Proceedings of third International Conference on Solid State Lighting, Bellingham, USA, 2004. 260-266
    [145]朱德忠,顾毓沁,于新刚,等.新型的LED车灯配光板的热测试方法.中国发明专利,申请号: 200510030866.8,公开号: CN1955730
    [146]曹阳.投射式LEWD1G型LED汽车前照灯散热分析[硕士学位论文].北京:清华大学工程力学系, 2007
    
    [147] http://www.hebeiltd.com.cn
    [148]藤敏康.实验误差与数据处理.南京:南京大学出版社, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700