空间环境诱变小麦叶绿素缺失突变体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以空间环境诱变创制的三份小麦叶绿素缺失突变体Mt135、Mt6172和Mt18为试验材料,对其生物学特性、主要农艺性状、叶绿体超微结构、光合特性和遗传规律进行了初步研究,主要结果如下:
     1、Mt135和Mt6172的表型特征主要表现为白化株、条纹株和绿株三种类型。其中白化株不能存活,苗期即死亡;条纹株正常成穗结实,但株高、株粒数、株粒重和千粒重显著降低。Mt18是一个受低温诱导的温度敏感型叶绿素突变体,叶色变化主要表现为绿-白-绿的变化过程,能够正常成穗结实,主要农艺性状都发生显著降低。
     2、叶绿体超微结构分析表明,与原始亲本相比,Mt135条纹株绿色组织在苗期叶绿体数目减少,超微结构无显著差异;拔节期叶绿体数目与原始亲本无显著差异,基粒片层数目减少;抽穗期叶绿体数目和基粒片层数明显增多。Mt135条纹株白色组织和白化株叶绿体数目在苗期和拔节期减少,基粒类囊体数减少或消失,基质类囊体清晰可见,并在抽穗期出现空化叶绿体。Mt6172条纹株绿色组织仅在拔节期叶绿体数目少于原始亲本,叶绿体超微结构在三个时期均表现正常;Mt6172条纹株白色组织和白化株叶绿体存在不同类型的变异,叶绿体数目在三个时期均少于原始亲本。Mt18的叶绿体数目和结构在变白前期与原始亲本无显著差异,变白期突变体叶绿体基粒类囊体数减少甚至完全消失,复绿期突变体叶绿体数目少于原始亲本,大部分叶绿体恢复正常。
     3、叶绿素荧光动力学参数分析表明,与原始亲本相比,Mt135条纹株绿色组织的光合效率在苗期和拔节期显著降低,抽穗期显著升高,而条纹株白色组织和完全白化株完全失去光合能力;Mt6172条纹株的光合效率苗期正常,拔节期和抽穗期显著降低,白化株依然保持着极低的光合能力;Mt18在变白期的光合效率显著降低,但变白前期和复绿期基本正常。另外,随着光照强度的增加,与原始亲本相比,Mt135条纹株绿色组织的光合效率在拔节期下降最显著,抽穗期显著升高,条纹株白色组织和白化株不能进行光合作用;Mt6172条纹株的光合电子传递速率在不同生育期均显著降低,而光能转化率和实际量子产量无显著变化,白化株光合效率极低;Mt18的光合效
     4、初步遗传分析表明,Mt135和Mt18表现为细胞质遗传,而Mt6172是一个由核基因控制的隐性遗传突变材料。cDNA-AFLP初步分析显示,突变体与原始亲本均在分子水平上存在显著差异,扩增差异条带类型表现为增加、缺失、增强和减弱四种。
     以上试验结果证实,空间环境可诱变创制不同遗传特点的小麦叶绿素缺失突变体。三份叶绿素缺失突变体的叶绿体超微结构存在不同程度的缺陷,光合作用受到较大的影响,光合特性与主要农艺性状发生了显著改变,为小麦光合作用基础研究提供了新材料。
Three chlorophyll-deficient wheat mutants, i.e., Mt135, Mt6172 and Mt18, which derived from spaceflight mutagenesis, were studied in terms of biological characteristics, main agronomic traits, chloroplast ultrastructure, photosynthesis and inherited model. The main results were as following:
     1. The leaf color of the mutants Mt135 and Mt6172 showed three phenotypes: albino, stripe and green, in which the albino plants with entire albino leaves died during seedling stage, while the plant height, grains per plant, grain weight per plant and 1000-grain weight of plants with green-and-white striped leaves were lower than those of the wild types; Mt18 was a temperature-sensitive winter wheat chlorophyll mutant. The leaf color varied from green to albino and regreen with the temperature from low to normal during the whole growth stage, and the main agronomic traits were lower than those of the wild type.
     2. Chloroplast ultrastructure observation showed that the chloroplast number in green tissue of Mt135 striped plants was less than that of the wild type, but no significant difference in the ultrastructure. The similar number of chloroplast but less number of granum-thylakoids in Mt135 striped plants was observed at the elongation stage. At the heading stage, the number of chloroplast and granum-thylakoids were increased significantly. Both at seedling and elongation stage, the chloroplast number of white tissue in Mt135 striped plants and albino plants was less than that of the wild type, and the number of granum-thylakoids reduced or completely disappeared, but the strom-thylakoid was obviously visible, and some chloroplasts without internal ultrastructure were found at heading stage. Mt6172 had less chloroplast in the green tissue at the elongation stage, but had normal ultrastructure at the three stages. There were different chloroplast variation of the white tissue in Mt6172 striped plants and albino plants, and the chloroplast number was less than that of the wild type among the three growth stages. There was no significant difference between Mt18 and the wild type during prior albino stage; at the albino stage, the number of granum-thylakoids and grana lamellae became fewer or completely disappeared, but the strom-thylakoid was obviously visible; after returning green, structure of most chloroplasts recovered into normal, but number of chloroplast was still lower than that of the wild type.
     3. The analysis of chlorophyll fluorescence kinetic parameters between the mutants and their wild type revealed that the photosynthetic efficiency of the green tissue in Mt135 striped plants reduced significantly at both seedling and elongation stages, and then increased at heading stage, while the white tissue of Mt135 striped plants and albino plants lost photosynthetic capacity completely; the photosynthetic efficiency of Mt6172 striped plants was normal at seedling stage, and was reduced significantly at elongation and heading stages, and albino plants still maintained very low photosynthetic capacity; the photosynthetic efficiency of Mt18 was normal at both prior albino and re-green stages and lower than that of the wild type at albino stage. In addition, with the increase of light intensity, the photosynthetic efficiency of the green tissue in Mt135 striped plants was lowest at elongation stage, and then increased significantly at heading stage. However, the white tissue of Mt135 striped plants and albino plants lost photosynthetic capacity completely; Mt6172 striped plants was significantly lower than that of wild type at different growth stages, while there was no significant differences in qP and Y(Ⅱ) between mutant and wild type, and albino plants still maintained very low photosynthetic capacity; the photosynthetic efficiency of Mt18 was significantly lower than that of the wild type only at albino stage.
     4. Preliminary genetic analysis showed that the inheritance model of Mt135 and Mt6172 was cytoplasmic, while Mt6172 a recessive nuclear. cDNA-AFLP analysis revealed significant differences between the chlorophyll-deficient mutants and their wild types at the molecular level. The type of different bands among the three mutants showed increment, deletion, strongth and weakness.
     It was concluded that different chlorophyll-deficient wheat mutants could be induced by spaceflight environment, with the characteristics of destructed chloroplast ultrastructure, deeply affected photosynthesis as well as decreased main agronomic traits. These chlorophyll-deficient wheat mutants could be new materials for basic study of wheat photosynthesis.
引文
1.苍晶,于龙凤,王豫颖,张达,郝再彬,胡宝忠.大豆叶绿素缺失突变体HS 821的农艺性状和生化特性[J].核农学报,2007,21(1):9-12
    2.曹莉,王辉,孙道杰,冯毅.小麦黄化突变体光合作用及叶绿素荧光特性研究[J].西北植物学报,2006,26(10):2083-2087
    3.曹莉,王辉,孙道杰,冯毅,李学军,闵东红.小麦品系“西农1718”黄化突变体的主要农艺性状及细胞遗传学观察[J].麦类作物学报,2009,29(5):777-781
    4.曹莉,王辉,孙道杰,冯毅,李学军,闵东红.一个新的小麦黄化突变体的遗传研究[J].遗传,2008,30(12):1603-1607
    5.曹莉,王辉,孙道杰,闵东红,李学军,冯毅.小麦黄化突变体叶绿体结构研究[J].西北植物学报,2006,26(11):2227-2230
    6.杜永,潘启民,徐大勇,徐敏权.水稻白化苗性状的遗传分析[J].植物遗传资源科学,2002,3(1):20-22
    7.龚红兵,陈亮明,刁立平,盛生兰,林添资,杨图南,张荣铣,曹树青,翟虎渠,戴新宾,
    陆巍,许晓明.水稻叶绿素b减少突变体的遗传分析及其相关特性[J].中国农业科学,2001,34(6):686-689
    8.郭会君,靳文奎,赵林姝,赵世荣,赵洪兵,刘录祥.实践八号卫星飞行环境中不同因素对小麦的诱变效应[J].作物学报,2010,36(5):764-770
    9.郭士伟,张云华,金永庆,师素云,谭秀云,刘霭民.小白菜(Brassica chinensis L.)黄苗突变体的叶绿素荧光特性[J].作物学报,2003,29(6):958-960
    10.国艳梅,顾兴芳,张春震,方秀娟,张圣平,徐彩清.黄瓜叶色突变体遗传机制的研究[J].园艺学报,2003,30(4):409-412
    11.黄晓群.一份新的水稻黄化突变体的遗传分析及基因定位[黄晓群硕士学位论文].四川:四川大学,2006
    12.黄晓群,王平荣,赵海新,邓晓建.一个新的水稻叶绿素缺失突变基因的遗传分析和分子标记定位[J].中国水稻科学,2007,21(4):355-359
    13.季道藩,许馥华.棉花叶绿素缺失的细胞质遗传[J].遗传,1979,1(5):15-19
    14.贾银来.水稻白苗复绿性状的遗传及其在两系杂交稻中的应用[贾银来硕士学位论文].武汉:华中农业大学,2005
    15.靳文奎.空间环境不同因素对小麦的生物学效应研究[靳文奎硕士学位论文].北京:中国农业科学院,2008
    16.孔萌萌,余庆波,张慧,绮盛春,周根余,杨仲南.控制水稻叶绿体发育基因OsALB23的定位[J].植物生理与分子生物学学报,2006,32 (4):433-437
    17.来乐春,富昊伟,徐建良,陶献国,钱泉生.粳稻6108白叶突变性状的遗传分析及农艺性状表现[J].作物研究,2003,1:10-12
    18.李娜,储黄伟,文铁桥,张大兵.水稻白色中脉Oswm突变体的遗传分析与基因定位[J].上海农业学报,2007,23(1):1-4
    19.李丕皋,封如敏.小麦特异材料-返白系的初步研究.陕西省遗传学会.陕西省遗传学会论文汇编[C].1985,53-56
    20.林钰琼,刘松,傅亚萍,于永红,胡国成,斯华敏,孙宗修.T-DNA插入水稻突变体库的叶绿素和净光合速率变化[J].中国水稻科学,2003,17(4):369-372
    21.刘录祥,郭会君,赵林姝,李军辉,古佳玉,赵世荣,王晶.植物诱发突变技术育种研究现状与展望[J].核农学报,2009,23(6):1001-1007
    22.刘录祥,王晶,赵林姝,杨俊诚,郭会君,赵世荣,郑企成.作物空间诱变效应及其地面模拟研究进展[J].核农学报,2004,18(4):247-251
    23.刘录祥,郭会君,赵林姝,古佳玉,赵世荣.我国作物航天育种20年的基本成就与展望[J].核农学报,2007,21(6):589-592
    24.刘文真.三个水稻叶色突变体的鉴定与基因克隆[刘文真博士学位论文].浙江:浙江大学,2006
    25.吕典华,宗学凤,王三根,凌英华,桑贤春,何光华.两个水稻叶色突变体的光合特性研究[J].作物学报,2009,35(12):2304-2308
    26.马国荣,刘佑斌,盖钧镒.大豆细胞质遗传芽黄突变体的发现[J].作物学报,1994,20(3): 334-338
    27.蒲志刚,张志勇,郑家奎,向跃武,张志雄,蔡平钟,文春描.水稻空间诱变的遗传变异及突变体的AFLP分子标记[J].核农学报,2006,20(6):486-489
    28.祁鲁,刘晓,陈佳颖,林冬枝,董彦君,徐建龙.一个新的水稻温敏感叶色突变体基因定位分析[J].核农学报,2010,24(2):220-224
    29.钱前,朱旭东,曾大力,张小惠,严学强,熊振民.细胞质基因控制的新特异材料白绿苗的研究[J].中国种业,1996,4:11-12
    30.邵继荣.水稻温敏失绿突变体冷激应答的细胞与分子机理研究[邵继荣博士学位论文].四川:四川农业大学,2004
    31.沈圣泉,舒庆尧,包劲松,吴殿星,崔海瑞,夏英武.实用转绿型叶色标记不育系白丰A的应用研究[J].中国水稻科学,2004,18(1):34-38
    32.苏小静,汪沛洪.小麦突变体返白系返白机理的研究Ⅲ返白阶段叶绿体超微结构观察[J].西北农业大学学报,1990,18(2):73-76
    33.谭新星,许大全,汤泽生.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J].植物生理学报,1996,22(1):51-57
    34.汤泽生,代庆阳,苏学辉.南黄大麦叶细胞的亚显微结构[J].中国农业科学,1989,22(4):22-24
    35.汤泽生,王祖秀,胡千德,李友,刘安洪.黄化型大麦的系列研究Ⅲ南黄大麦生长发育的调查[J].南充师范学报,1988,9(4):267-274
    36.王新其,殷丽青,沈革志.2个水稻黄叶突变体的遗传初步分析[J].上海交通大学学报(农业科学版),2005,23(4):392-400
    37.魏慧敏,陈云伟,张年辉,赵云,杜林方.黄化油菜突变体Cr3529子叶类囊体膜光谱性质研究[J].西北植物学报,2005,25(2):250-255
    38.吴殿星,舒庆尧,夏英武,景晓阳.空间技术诱发的水稻变异及育种价值[J].核农学报,1999,13(3):175-178
    39.吴殿星,舒庆尧,夏英武,景晓阳,刘贵付.60Co-γ射线诱发的籼型温敏核不育水稻叶色突变系变异分析[J].作物学报,1999,25(1):64-69
    40.吴建.空间环境不同因素对拟南芥种子的生物遗传学效应[吴建硕士学位论文].北京:中国农业科学院,2009
    41.吴伟,刘鑫,舒小丽,舒庆尧,夏英武,吴殿星.携带白化转绿型叶色标记两系杂交水稻不育系NHR111S[J].核农学报,2006,20(2):103-105
    42.许静.拟南芥叶色突变体ch42-4及v1的基因定位与功能分析[许静硕士学位论文].上海:上海师范大学,2009
    43.徐培洲.非孟德尔遗传在EGSR水稻上的表现及叶绿素缺乏突变体W1色素缺乏机理的探讨[徐培洲博士学位论文].四川:四川农业大学,2006
    44.杨莉,郭蔼光,关旭.小麦突变体返白系返白阶段叶绿体超微结构变化研究[J].西北农业学报,,2003,12(4):64-67
    45.杨丽君,张伟,李建粤,张慧绮.水稻白化突变体遗传、超微结构及电泳分析[J].种子,2005,24(9):12-15
    46.杨宋蕊,刘录祥,赵林姝.低植酸作物研究现状与展望[J].植物遗传资源学报,2008,9(2):
    263-265
    47.余庆波,江华,米华玲,周根余,杨仲南.水稻白化突变体alb21生理特性和基因定位[J].上海师范大学学报(自然科学版),2005,34(1):70-75
    48.张力科,李志彬,刘海燕,李如海,陈满元,陈爱国,钱益亮,华泽田,高用明,朱华苓,黎志康.两个新的水稻叶色突变体形态结构与遗传定位研究[J].中国农业科学,2010,43(2):223-229
    49.赵海军,吴殿星,舒庆尧,沈圣泉,马传喜.携带白化转绿型叶色标记光敏核不育系玉兔S的选育及其特征特性[J].中国水稻科学,2004,18(6):515-521
    50.赵孔南,陈秋芳,王彩莲,徐刚,慎政.植物辐射遗传育种进展[M].北京,原子能出版社,1990
    51.赵丽哲,苏小静.小麦返白系返白阶段叶绿体膜光谱特性及色素蛋白复合体的变化[J].华北农学报,1996,11(2):62-66
    52.赵琦,唐崇钦,匡廷云.玉米突变体(zb/zb)的叶绿体光合特性[J].植物学报,1997,39(11): 1082-1084
    53.赵云,王茂林,李江,张义正.幼叶黄化油菜(Brassica napus L.)突变体Cr3529叶绿体超微结构观察[J].四川大学学报(自然科学版),2003,40(5):974-977
    54. Abe T, Matsuyama T, Sekido S, Yamaguchi I,Yoshida S, Kameya T. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation[J]. J Radiat Res, 2002, 43(Suppl): 157-161
    55. Allen K D, Duysen M E, Staehelin L A. Biogenesis of thylakoid membranes is controlled by lightintensity in the conditional chlorophyll b-deficient CD3 mutant of wheat[J]. The Journal of Cell Biology, 1988, 107: 907-919
    56. Amin P, Sy DA, Pilgrim ML, Parry D H, Nussaume L, Hoffman N E. Arabidopsis mutants lacking the 43-and 54-kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes[J]. Plant Physiol, 1999, 121: 61-70
    57. Asakura Y, Hirohashi T, Kikuchi S, Belcher S, Osborne E, Yano S, Terashima I, Barkan A, Nakai M. Maize mutant lacking chloroplast FtsY exhibit pleiotropic defects in the biogenesis of thylakoid membranes[J]. Plant Cell, 2004, 16: 201-214
    58. Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic deflects of sodium azide in rice[J]. Crop Science, 1980, 20: 663-668
    59. Babiychuk E, Muller F, Eubel, H P, Frentzen, M., Kushnir, S. Arabidopsis phosphatidylglycerolphosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function[J]. Plant J, 2003, 33: 899-909
    60. Hedtke B, Alawady A, Chen S, Bo¨rnke F, Grimm B. HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase[J]. Plant Mol Biol, 2007, 64: 733-742
    61. Brusslan J.A, Peterson M.P. Tetrapyrrole regulation of nuclear gene expression[J]. Photosyn.Res. 2002, 71: 185-194
    62. Chen X, Simth M D, Fitzpatrick L, Schnell D J. In vivo analysis of the role of at Tic20 in protein import into chloroplast[J]. Plant Cell, 2002, 14: 641-654
    63. Pontier D, Albrieux C, Joyard J, Lagrange T, Maryse A. Block. Knock-out of the Magnesium Protoporphyrin IX Methyltransferase Gene in Arabidopsis[J]. The Journal of Biological Chemistry, 2007, 282(4): 2297-2304
    64. Eichacker L A, Henry R. Function of a chloroplast SRP in thylakoid protein export[J]. Biochim Biophys Acta 2001, 1541: 120–134
    65. Ankele E, Kindgren P, Pesquet E, Strand A. In Vivo Visualization of Mg-ProtoporphyrinIX, a Coordinator of Photosynthetic Gene Expression in the Nucleus and the Chloroplast[J]. The Plant Cell, 2007, 19: 1964-1979
    66. Falbel T G, Meehl J B, Staehelin L A. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis[J]. Plant Physiol, 1996, 112: 821-832
    67. Gadjieva R, Axelsson E, Olsson U, Hansson M. Analysis of gun phenotype in barley magnesium chelatase and Mg-protoporphyrin IX monomethyl ester cyclase mutants[J]. Plant Physiol Biochem, 2005, 43(10-11): 901-908
    68. Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta, 1989, 990: 87-92
    69. Gutensohn M, Fan E, Frielingsdorf S, Hanner P, Hou B, Hust B, Kl?sgen RB. Toc, Tic, Tat et al.:structure and function of protein transport machineries in chloroplasts[J]. Journal of Plant Physiology, 2006, 163: 333–347
    70. Hutin C, Havaux M, Carde JP, Kloppstech K, Meiherhoff K, Hoffman N, Nussaume L. Double mutation cpSRP43/cpSRP54 is necessary to abolish the cpSRP pathway required for thylakoid targeting of the light-harvesting chlorophyll proteins[J]. Plant J, 2002, 29: 531-543
    71. INABA T, SCHNELL D J. Protein trafficking to plastids: one theme, many variations[J]. Biochem. J., 2008, 413: 15-18
    72. Ishikawa A, Okamoto H, Iwasaki Y, Asahi T. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis[J]. The Plant Journal, 2001, 27(2): 89-99
    73. Jarvis P, Dormann P, Peto C A, Lutes J, Benning C, Chory J. Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant[J]. Proc Natl Acad Sci USA, 2000, 97: 8175-8179
    74. Jarvis P, Li H M, Chen L J, Li H, Peto C A, Fankhauser C, Chory J. An Arabidopsis mutant defective in the plastid general protein import apparatus[J]. Science, 1998, 282(5386): 100-103
    75. Jarvis P, Robinson C. Mechanisms of protein import and routing in chloroplasts[J]. Current Biology, 2004, 14: 1064-1077
    76. Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G.. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J]. Plant Cell Physiol, 2003, 44(5): 463-472
    77. Klimyuk V I, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones J D, Hoffman N E, Nussaume L. A chromodomain protein encoded by the arabidopsis CAO gene is a plant- specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting[J]. Plant Cell, 1999, 11: 87-99
    78. Kubis S, Patel R, Combe J, Bedard J, Kovacheva S, Lilley K, Biehl A, Leister D, Rios G, Koncz C, Jarvis P. Functional specializiation amongst the Arabidopsis Tos 159 family of chloroplast protein import receptors[J]. Plant Cell, 2004, 16: 2059-2077
    79. Kumar A M, Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis thaliana[J]. Plant Physiol, 2000, 122: 49-55
    80. Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling[J]. Science, 2003, 299: 902-906
    81. Lee S, Jung K H, An G, Chung Y Y. Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system[J]. Plant Mol Biol, 2004, 54(5): 755-765
    82. Leister, D. Chloroplast research in the genomic age[J]. Trends Genet, 2003, 19, 47-56
    83. Lopez-Juez E, Jarvis R P, Takeuchi A, Page A M, Chory J. New Arabidopsis cue mutants suggest a close connection between plastid and phytochrome regulation of nuclear gene expression[J]. Plant Physiol, 1998, 118: 803-815
    84. Melvin D E. Genetic Analysis of Two Recessive mutation in Oenothera hookeri[J]. The Journal of Heredity, 1973, 64: 257-259
    85. Millerd A, McWilliam R. Studies on a maize mutant sensitive to low temperature I.influence of temperature and light on the production of chloroplast pigments[J]. Plant Physiol, 1968, 43(12): 1967-1972
    86. Mochizuki N, Brusslan J A, Larkin R, Nagatani A, Chory J. Arabidopsis genomes uncoupled 5(GUN5)mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction[J]. Proc Natl Acad Sci USA, 2001, 98(4): 2053-2058
    87. Mori H, Cline K. Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways[J]. Biochim Biophys Acta, 2001, 1541:80-90
    88. Motohashi R, Nagata N, Ito T, Takahashi S, Hobo T, Shinozaki K. An essential role of a TatC homologue of a delta ph-dependent protein transporter in thylakoid membrane formation during chloroplast development in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2001, 98(18): 10499-10504.
    89. Nott A, Jung H S, Koussevitzky S, Chory J. Plastid-to-Nucleus Retrograde Signaling[J]. Annu. Rev. Plant Biol., 2006, 57: 739-759
    90. Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a Vinyl Reductase Gene for Chlorophyll Synthesis in Arabidopsis thaliana and Implications for the Evolution of Prochlorococcus Species[J]. Plant Cell, 2005, 17: 233-240
    91. Oki S, Gu X, Kofoid K D, Liang G H. A light-intensity sensitive chlorophyll mutant in sorghum[J]. Hereditas, 1997, 126: 239-245
    92. Soldatova O, Apchelimov A, Radukina N, Ezhova T, Shestakov S, Ziemann V, Hedtke B, Grimm B. An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis[J]. Mol Gen Genomics. 2005, 273(4): 311-318
    93. Oster U, Tanaka R, Tanaka A, Rudiger W. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana[J]. Plant J, 2000, 21(3): 305-310
    94. Ray D T, McCreight J D. Yellow-tip: A cytoplasmically inherited trait in melon (Cucumis mlo L.)[J]. The Journal of Heredity, 1996, 87(3): 245-247
    95. Robert M L, Jose M A, Joseph R E, Joanne C. GUN4, a Regulator of Chlorophyll Synthesis and Intracellular Signaling[J]. Science. 2003, 299(5608): 902-906
    96. Roy LM, Barkan A. A SecY homologue is required for the elaboration of the chloroplast thylakoid membrane and for normal chloroplast gene expression[J]. J Cell Biol,1998, 141(2): 385-395
    97. Schleiff E, Klo¨sgen R B. Without a little help from‘‘my’’friends: direct insertion of proteins into chloroplast membranes[J]? Biochim Biophys Acta, 2001, 1541(1-2): 22-33
    98. Shoemaker R C. Characterization of a cytoplasmically inherited yellow foliar mutant (Cyt-Y3) in soybean[J]. Thero Appl Genet, 1985, 69: 279-284
    99. Somerville C R. Analysis of photosynthesis with mutants of higher plants and algae[J]. Ann.Rev.Plant Physiol, 1986, 37: 467-507
    100. Strand A, Asami T, Alonso J, Ecker J R, Chory J. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX[J]. Nature, 2003, 421: 79-83
    101. Susek R E, Ausubel F M, Chory J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development[J]. Cell, 1993, 74: 787-799
    102. Inaba T, Schnell D J. Protein trafficking to plastids: one theme, many variations[J]. Biochem. J, 2008, 413(1): 15-28
    103. TomokoA, Ktomoki M, Shigeko S, Isamu Y, Shigo Y, Toshiaki K. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation[J]. J. Radlat. Res, 2002, 43: 157- 161
    104. Walker CJ, Willows RD. Mechanism and regulation of Mgchelatase[J]. Biochem J, 1997, 327: 321-333
    105. Walles B. The Homozygous and Heterozygous Effects of an Aurea Mutation on Plastid Development in Spruce(Picea abies L.)[J]. Studia Forestalia Suecica, 1967, 60: 1-20
    106. Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P,Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A Chlorophyll-Deficient Rice Mutant with Impaired Chlorophyllide Esterification in Chlorophyll Biosynthesis[J]. Plant Physiol, 2007, 145: 29-40
    107. Xu C, Hartel H, Wada M, Hagio M, Yu B, Eakin C, Benning C. The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerolphos-phate synthase with impaired activity[J]. Plant Physiol, 2002, 129: 594-604
    108. Yaronskaya E, Ziemann V, Walter G, Averina N, Borner T, Grimm B. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians[J]. Plant J, 2003, 35(4): 512-522
    109. Yu B, Benning C. Anionic lipids are required for chloroplast structure and function in Arabidopsis[J]. Plant J, 2003, 36: 762-770
    110. Zhang H T, Li J J, Yoo J H, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Mol Biol, 2006, 62: 325-337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700