面向航空自动测试设备的动态计量方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空自动测试设备是完成飞机机载设备功能测试和故障诊断的专用设备,该设备的量值准确统一是机载设备性能稳定可靠的重要保证,对飞机飞行安全及战斗力生成具有重要军事意义。为确保该类设备量值准确、可靠和统一,本文对航空自动测试设备动态计量方法进行了深入研究。提出一种基于全系统理论和简化噪声结构的准白化计量模型,提高了传统黑匣子计量模型的辨识精度和收敛速度。针对航空自动测试设备技术特点,提出一种基于自主溯源的计量方法,提高了计量效率,节约了计量成本。通过研究计量系统软硬件实现技术,研制出计量系统软硬件平台,实现了该型航空自动测试设备的动态计量。针对动态测量不确定度评定问题,提出一种改进MCM的动态测量不确定度评定方法,提高了动态测量不确定度评定方法的准确度。针对航空自动测试设备的计量参数漂移问题,提出一种基于最小二乘向量机的计量参数漂移预测算法,实现了航空自动测试设备最佳计量周期的评估。最后针对研制的动态计量系统,进行了三种典型应用。
With the rapid development of aviation science and technology, aviationautomatic test equipment is used widely. It is integrated equipment which is able toachieve intelligent diagnosis for aircraft airborne equipment, and its accuracy,reliability will directly affect the quality of aircraft security. Therefore how to insureits accuracy and quantity transfer unified has become Research focus recently.Around the measuring methods of aviation automatic test equipment, experts andscholars at home and abroad have done a lot of research work, and formed a relativelycomplete set of measuring methods. Nowadays the high-speed evolution of modernscience and technology and the emergence of new measuring method lead to theincreasingly urgent need for improving the traditional measuring methods. Thosetraditional methods dominated by static metrology are based on black box model todevelop measuring system without analyzing the dynamic characteristic inside, so theresulting model always loses dynamic information within the system. Furthermore,the level of accuracy of the measuring system is reduced. In addition, the research ofmeasuring method against characteristics of aviation automatic test equipment is notdeep enough. In the system identification method and the metrological modelimprovements and some other aspects, there is some space to improve.
     This paper presents a dynamic measuring method oriented to aviation automatictest equipment. Being different from the traditional static measuring methods, it dealswith static black box model using quasi-whitening to establish quasi-whiteningmeasuring model based on whole-system theory. Based on characteristics of aviationautomatic test equipment the author has developed dynamic measuring system and itsaccuracy grading methods. Moreover the author has studied metering periodcalculation method depended on parameter drift forecast, and the best calibrationperiod is recommended. Combined with engineering application, the measuringsystem is processed with typical experimental and applied research. The mainresearch contents are as follows:
     (1) The measuring model based on special noise structure and whole-systemtheory.
     Because of the limitations of identification accuracy and convergence speed for traditional black box model, connecting characteristics of aviation automatic testequipment this paper makes that model transparent to build Quasi-whitening modelthat can characterize the dynamic characteristics of the various links in the systeminternal. This model has improved the identification accuracy of dynamiccharacteristic for the measurement system. According to the high purity of inputcalibration source for aviation automatic test equipment and good environment forelectromagnetic shielding during metering procedure, the maximum likelihoodestimated input noise model with additional noise is defined as a constant. The outputcan be approximated that it only has observation noise. This special noise modelsimplifies the identification algorithm and improves the convergence speed.Experiments show that this measuring model based on special noise structure andwhole-system theoretical Quasi-whitening model can improve traditional model fromidentification accuracy and convergence speed. This model also can apply to systemidentification under the above experimental conditions.
     (2) The study on embedded self-measuring method.
     In engineering, almost all metrology for aviation automatic test equipment useexternal standard. It brings many problems, such as high expense, poor mobilityaccompanied by measurement of security and so on. This paper presents an embeddedself-measuring method. Though studying embedded measuring technology andconcerning the rich resources inside calibrated system, internal traceability chain isdesigned to trace autonomously until the highest level for internal traceability chain isformed. Some instruments which are not available to operate internal traceability tracefor external standard. This method improves measurable efficiency, meanwhile itreduces costs. For example, to a certain type of aviation test equipment in this paper, itwill need28sets of equipment, ten days in measuring and cost three million whencompletely adopt external measurement standards. However if we use embeddedself-metering method, it just need19sets of equipment, five days in measuring andabout one million in cost (equivalent to the cost of the embedded measurementtransformation) because it build two more hundreds of internal traceability andachieve the parameters of independent traceability. This method always suit to theother calibration of military automatic test equipment which in higher metering costs.
     (3) Dynamic measuring system oriented to aviation automatic test equipment.
     The master software and service software of automatic measurement have beendeveloped already which based on the programming technique with LabWindows/CVI、ATLAS and many other languages. The master software running onthe computer platforms of measurement system, responsible for initiating themeasurement request, receiving and processing the result of the test, service softwarerunning on the calibrated equipment of the computer platform, responsible forListening and implementation the measurement request, explaining measurement cooperation and controlling measurement process. Hardware interface adapter andsome of the metering module been designed, it combined various types of commonequipment and existing bus standards, developed dynamic measurement system ofaviation automatic test equipment. The system meets the design requirements, havingthe reconfigurable mechanical structure while can be used in other measuringequipment dynamic measurement which comply with the parameter range.
     (4) The evaluation method for uncertainty of dynamic measurement oriented toimproved MCM.
     The measurement uncertainty of the measuring system is the important part inmeasuring system while it is the main method to level the accuracy to the evaluationof measurement system. Analyzing error structure of common metering system,summarize the traditional GUM (Guide to the Expression of Uncertainty inMeasurement) and the method of MCM in assessment of dynamic measurementsystem has the shortage of high-dimensional wave and low accuracy. So this paperpurpose that change the MCM to quasi-random sequence so that improve the highdimensional uniformity of the high sample. The MCM method has equipped the fasterconvergence and higher accuracy of the assessment by test. At the same time, themethod can be used in other dynamic system or static measurement system to assessthe accuracy.
     (5) The study on parameter drift forecast and metering period calculationmethod oriented to aviation automatic test equipment.
     The parameter-drift-condition of automatic test equipment affects the equipmentreliability directly. It is always the basis to formulate the measurement cycle. Thispaper study the parameter drift forecast of the aviation automatic test equipment,proposing to improve the traditional forecasting methods base on the parameters ofthe least squares vector machines (LS_SVM) by increasing sparseness of training andthe robustness of training. Experiments show that the improved LS_SVM method hasthe higher prediction accuracy than traditional LS_SVM, and providing reliable datasource for calculate of best measurement cycle and it has the versatility especially tothe small sample space will has the better predict.
     (6) Application of dynamic measurement system
     Experimental and applied research on the dynamic measurement systemformulated three different experimental platforms respectively test AWACS servohydraulic test system, the aircraft engine vibration measurement system and themachine radio meter. The achievement has been successfully promoted in aviationmaintenance measurement system and acquire second prize of scientific andtechnological progress in the military at present.
     This paper developed aviation automatic test equipment dynamic measurement system, achieving the dynamic measurement of a certain type of the aviation testequipment by dynamic measurement technology of aviation consolidated automatictest equipment. At the same time, the method and the technology can be applied to theother dynamic measurement of the automatic test system which has the samestructural characteristics.
引文
[1]于劲松,李行善.下一代自动测试系统体系结构与关键技术[J].计算机测量与控制,2005,13(1):1-3.
    [2]张圮,颜树华编.计量测试前沿技术[M].长沙:国防科技大学出版社,2007.
    [3] Droste D.B,Allman B.Anatomy of the next generation of ate Autotestcon[C].IEEEAutotestcon2005:559-568.
    [4] Salopek P.R, AlbertJ C. Rugged general purpose mixed signal cots based testsystem for military use[C].IEEE Autotestcon2005:847-855.
    [5]高占宝,梁旭,李行善. ATE系统校准技术研究[J].电子测量与仪器学报,2005,19(2):1-5.
    [6]张列刚,张焕春.军用飞机通用A TS体系结构研究[J].计算机测量与控制,2005,13(4):346-348.
    [7] Burden J, Curry P, A Roby D, Love F. Introduction to the next generation automatictest system (NGATS)[C].IEEE Autotestcon2005,Sept.2005:16-19.
    [8] DEPARTMENT OF DEFENSE STANDARD PRACTICE USA., MILITARYSTANDARD: CALIBRATION SYSTEM REQUIREMENTS (01AUG1988)[S/S BY ISO-10012-1&ANSI-Z540-1].
    [9]道格拉斯拉尔森、安夫尼里、凯洛奎欧东、若企特雷吉苏曼,自动测试设备的系统性能有效性的校准方法:日本,1761886,1[P],2006-04-19。
    [10]泰拉丁公司,自动测试设备的校准:美国,200680011020,2[p],2006年03月01日.http://zhuanli.baidu.com/pages/sipo/20068001/10/801ae466fe249302006f7409b3ef206b_0.html.
    [11]Martin Rowe,美国海军的设备校准工作[EB/OL],[2007-12-08].http://www.ednchina.com/ART_32838_27_0_OA_f5726ad2.HTM
    [12]孙中泉,李涛,张华锋.军用自动测试系统计量保障方法研究[J].国外电子测量技术,2009,28(3):31-34.
    [13]费业泰,陈晓怀,李书富.精密测试及仪器的误差修正[J],1996,16(4-5):2-5.
    [14]方中祥,微凉,金卯.国内外先进航空测控技术发展现状—访谈整理.航空制造技术[J],2008(9):44-46
    [15] DudleyR A,RidlerNM. Internet calibration direct to national measurementstandards for automatic network analyzers[C]. IEEE Instrumentation andMeasurement Technology Conference.2001:255-258.
    [16]林洪桦.动态测试数据处理[M].北京理工大学出版社.北京,1995.
    [17] B.A.格拉诺夫斯基.动态测量[M].北京:计量出版社,1989.
    [18] Aristov E M,Granovsky V A et al. Metrological aspects of the dynamic measurement[R]. IMEKO,Vlll:5-34.
    [19] Colin Clark. The Practice of dynamic Pressure measurement[J], Measurement&Control.1989,22:298-301.
    [20] Lmore D E,Watkins W B Pratt,whitney. Dynamic gas temperature measurementsystem.ISA Transaetions.1985,24(2):73-82.
    [21]靳书元.对发展动态计量测试技术的一点看法[J].计测技术,1988,增刊:1-3.
    [22]梁恺.兰利研究中心用的动态压力校准系统[J].计测技术,1989.(2):38-40.
    [23]张训文,孙金锋,方继明,杨帆.压电式压力传感器动态校准技术研究[J].仪器仪表学报,2009,30(6):824-826
    [24]李新娥,祖静,徐鹏.火炮膛压测试中动态校准装置本体的强度分析[J].机械设计与研究,2010,26(6):118-121
    [25]王卿,祖静,张瑜.基于数据融合的微型电子测压器动态校准方法[J],火炮发射与控制学报,2010,4:51-54
    [26]梁志国,朱济杰.用周期倍差法评价数据采集系统的传递函数[J].计量学报,Vol.20,No.3,1999,227-233
    [27]Togami,T.C.,Baker,W.E.,and Forrestal,M.J.A Split Hopkinson Bar Technique toEvaluate the Performance of accelerometers.ASME J.1996,353-356
    [28]Togami,T.C.,Brown,F.A.,Forrestal,M.J.,and Baker,W.E.Performance evaluationof Accelerometers to200,000G.ASME J.Appl.1998,266-268
    [29]黄俊钦,顾建雄。高g值加速度计和压电式力传感器的动态校准[J].计量学报,Vol.22,No.4,2001,300-304
    [30]P.T.Ireland,T.V.Jones.The response time of a surface thermometer employingencapsulated thermo-chromic liquid rystals,J.Phys.E:Sci.Instrum,1987,20:1159
    [31]Erhard Schreck.Calibration of micron-size thermocouples for measurements ofsurface temperature,Review of Scientific Instruments,1993,64(1):218-220
    [32]P.Castellini,G.L.Rossi.Dynamic characterization of temperature sensors bylaser excitation,Review of Scientific Instruments,1996,67(7):2595-2601
    [33]B.Serio,Ph.Nika,J.P.Prenel.Static and dynamic calibration of thin–filmthermocouples by means of a laser modulation technique,Review of ScientificInstruments,2000,71(11):4306~4313
    [34]张广军,黄俊钦.温度传感器动态重复性、线性度与性能改进的研究,仪器仪表学报,1997,18(2):92-95
    [35]张广军,黄俊钦.温度传感器激光负阶跃现场动态校准系统,测控技术,1997,16(1):35-37
    [36]Xu Qiang.Dynamic calibration of a fine–wire thermocouple using a rocketplume:assessment of the procedure,Meas.Sci.Technol.,2003,14(8):1381-1386
    [37]赵时安,廖理.1700℃热校准风洞,航空计测技术,2000,20(4):58-61
    [38]Hanchang Zhou,Deheng Pan.A Dynamic Calibration System for Transient SurfaceTemperature Transducers.Hamamatsu:Proceedings IEEE IMTC/94,1994,273-276
    [39]Lieguo Liang,Hanchang Zhou.A Method of using pulse laser to calibrate transientsurface temperature detectors,Proceding of Photonic s96China SPIE,1996,258-260
    [40]蓝金辉,周汉昌,潘德恒.激光在瞬态表面温度传感器的动态校准系统中的应用,兵工学报,1998,19(1):38-41
    [41]梁列国,周汉昌,潘德恒.瞬态表面温度传感器的校准技术研究,兵工学报,2001,22(2):263-265
    [42]郝晓剑.瞬态表面高温测量与动态校准技术研究[D].太原:中北大学,2005.
    [43]A.Sachenko, V.Kochan, V.Turchenko. Error Compensation in an Intelligent SensingInstrumentation System. Proceedings of the IEEE Instrumentation and MeasurementTechnology Conference IMTC/2001, Budapest, Hungary, May21-23,2001,pp:869-875
    [44]S. V. Strelov, T. V. Shaloshnikova. Approach to optimization of metrologicalsupport for self-testing automatic measurement systems. MeasurementTechniques[J].1996,Vol.39,No.12, pp:13-15.
    [45]Vladimir Sobolev, Eric Tsvetkov. Metrological automatic support in intelligentmeasurement systems. Procedding of the XIV IMEKO World Congress, Tampere,1-6June1997.pp:139-144.
    [46]雷敏.动态测试系统的建模及动态补偿研究[D].南京:南京理工大学,1997.
    [47]黄俊钦.静动态数学模型的实用建模方法[M].北京:机械工业出版社,1998.
    [48]雷敏,王志中,等.薄膜热电偶的动态特性及动态补偿研究[J].计量学报,1999,,2(3):182-186
    [49]马勤弟,雷敏,等.薄膜热电偶的动态校准及辨识建模[J].仪器仪表学报,1999,20(3):300-302
    [50]李红斌.高压动态校准的数据融合及建模方法[D].南京:南京理工大学,2002.
    [51]杜亮.数字示波器动态校准技术[J].计测技术,2008,28:90-93
    [52]邹红,胡永乐,邢园丁,等.基于动态校准数据的压杆测试系统动态特性校正技术[J].爆炸与冲击,2011,31(2):210-214
    [53]Solomon Max. Ensuring System Traceability to International Standards [C].Proceedings of the International Test Conference,1994:471-480.
    [54]高占宝,梁旭,李行善. ATE系统校准技术研究[J].电子测量与仪器学报,2005,19(2):1-5.
    [55]高运征,万晓冬,杨春英,等.基于LabWindows/CVI的机载ATE自动计量系统研究[J].计量技术,2008,7:47-50.
    [56] Lee Qiongwei,Fei Xiaojun. Research on system-level automatic metrology systemfor aircraft integrated automatic test equipment[C].//20078th InternationalConference on Electronic Measurement and Instruments, ICEMI, p:190-193.
    [57] Lee Qiongwei,Li Aijun, Li Xiaohui. Research on built-in metrology system foraircraft integrated automatic test equipment[C].//IEEE201110th InternationalConference on Electronic Measurement and Instruments, ICEMI2011,v2, p340-343.
    [58] Mao Hong-yu, Li Qiong-wei,Hu Zhuo-lin, Li Xiao-hui. Research on precision modelof dynamic metrology system for IATE[C].//Proceedings of IEEE InternationalConference on Electronic Measurement&Instruments2009. P:16-19.
    [59]毛宏宇,杨光,王文良,等.综合自动测试设备动态计量方法[J].吉林大学学报(工学版),2010,40(1):119-122.
    [60]祖先锋.军用自动测试系统及其不确定度评定关键技术研究[D].国防科技大学,长沙,2007.
    [61]王大珩等.关于呈送〈面向21世纪社会和经济可持续发展的需求,加快建设我国现代化计量体系的建议〉的报告[R].中国工程院,北京,2001.
    [62]杨林劝,张元照.动态计量在航天技术中的应用.宇航计测技术[J],1993,12(4):74-79.
    [63]黄俊钦.动态计量与测试的主要问题及进展.宇航计测技术[J],1985,5:5-15.
    [64]闫宇华.GJB5109-2004,装备计量保障通用要求—检测和校准[S].北京:总装备部军标出版发行部,2004.
    [65]中国计量科学研究院.测量不确定度规范及测量不确定度评定参考[M].北京:中国计量出版社,1996.
    [66]刘智敏.不确定度及其实践[M].北京:中国标准出版社,2000.
    [67]刘智敏,陈坤尧,翁怀真,等.测量不确定度手册[M].北京:中国计量出版社,1997.
    [68]毛宏宇,杨红生,胡卓林等.综合自动测试设备动态计量全系统模型研究[J].计量学报,2010,,31(3):241-244.
    [69]赵志刚,赵伟,黄松岭.多维测量结果不确定度评价方法初探[J].清华大学学报(自然科学版),2007,47(10):1557-1561.
    [70]龚蓬.动态测量误差修正灰色建模理论与应用技术研究[D].合肥:合肥工业大学,1999.
    [71]谢少锋.测量系统分析与动态不确定度及其应用研究[D].合肥:合肥工业大学,2003.
    [72]程真英.动态测量误差的贝叶斯建模预报及不确定度研究[D].合肥:合肥工业大学,2004.
    [73]付继华,孟浩,王中宇.基于灰色理论的动态测量系统非统计建模方法[J].仪器仪表学报,2008,29(6):1245-1249
    [74] Aleksandar Timcenko,Peter Allen. Modeling dynamic uncertainty in robotmotions[C].IEEE International Conference on Robotics and Automation,1993.
    [75] Braganza D,Dixon,W.E.,Dawson D.M.,et al.Tracking control for robotmanipulators with kinematic and dynamic uncertainty[C].Proceedings of the44thIEEE Conference on Decision and Control,and the European Control Conference5293-5297.
    [76] Elster C,Link A. Uncertainty evaluation for dynamic measurements modeled bya linear time-invariant system[J].Metrologia,2008,45(4):464-473.
    [77] Elster C.,Link A.,Bruns T. Analysis of dynamic measurements and determinationof time-dependent measurement uncertainty using a second-order model[J].Measurement Science and Technology.2007,18(12):3682-3687.
    [78] Engle,R.Models of dynamic uncertainty in univariate and multivariatesystems[C].Proceedings,Twenty-First International Conference on MachineLearning,2004.
    [79]黄俊钦.测试系统动力学[M].国防工业出版社,北京,1996.
    [80]黄俊钦著.静、动态数学模型的实用建模方法[M].机械工业出版社,北京,1988.
    [81]于连栋.动态测量系统现代建模理论研究[D].合肥:合肥工业大学,2003.
    [82]纪明霞,杨春英.基于VXI-GPIB混合总线的机载ATE计量校准系统的设计[J].国外电子测量技术,2005,125(7):37-40.
    [83]卢钧,黄旅,杨枉.基于LXI总线的ATE综合自动计量系统的研究与设计[J].仪表技术,2007,(11):7-11.
    [84]彭刚锋,蒋雄,崔强,张阳.机载计算机ATE计量校准软件的研究与设计[J].航空计算技术,2008,38(3):101-104.
    [85]牟建华,等.基于PXI总线的自动检定系统[J].计算机测量与控制,2006,(6):12-17.
    [86]高占宝,吕俊芳,吕箭星. VXI总线仪器自动计量校准系统的研究[J].新技术新仪器,2002,22(4):20-24.
    [87]高运征,万晓冬,杨春英,尤海鹏.基于LabWindows/CVI的机载ATE自动计量系统研究[J].计量技术,2008,(7):47-50.
    [88]刘智敏,刘风.现代不确定度方法与应用[M].北京:中国计量出版社,1997.
    [89] ISO/TS14253-2GPS-Inspection by measurement of work pieces and measuringequipment[R],1999.
    [90] ISO、IEC、BIPM、IFCC、IUPAC、IUPAP、OIML Guide to the Expression of Uncertaintyin Measurement[R],1995.
    [91] Evaluation of measurement data-Supplement1to the Guide to the expressionof uncertainty in measurement-Propagation of distributions using a MonteCarlo method,OIML[R],1-101,2007.
    [92]于连栋.动态测量系统现代建模理论研究[D].合肥:合肥工业大学,2003.
    [93]许祯英.动态测量系统误差溯源与精度损失诊断的理论与方法研究[D].合肥:合肥工业大学,2003.
    [94]马修水.三坐标测量机动态误差源分析、建模与修正技术研究[D].合肥:合肥工业大学,2005.
    [95]薄晓静.基于贝叶斯理论的不确定度评定方法研究[D].合肥:合肥工业大学,2005.
    [96]陈奕钦.测量不确定度93国际指南应用实例[M].北京:中国计量出版社,1998.
    [97]李慎安.测量不确定度百问[M].北京:中国计量出版社,2009.
    [98]王中宇.测量误差与不确定度评定[M].北京:科学出版社,2008.
    [99]叶德培.测量不确定度理解评定与应用[M].北京:中国计量出版社,2007.
    [100]李金海.误差理论与测量不确定度评定[M].北京:中国计量出版社,2003.
    [101]钱绍圣.测量不确定度[M].北京:清华大学出版社,2002.
    [102] Aleksandar Timcenko,Peter Allen.Modeling dynamic uncertainty in robotmotions[C].IEEE International Conference on Robotics and Automation,1993.
    [103] Braganza D.,Dixon,W.E.,Dawson D.M.,et al. Tracking control for robotmanipulators with kinematic and dynamic uncertainty[C]. Proceedings of the44thIEEE Conference on Decision and Control,and the European Control Conference5293-5297.
    [104] Elster C,Link A. Uncertainty evaluation for dynamic measurements modeled bya lineartime-invariant system[J].Metrologia,2008,45(4):464-473.
    [105] Elster C., Link A., Bruns T. Analysis of dynamic measurements anddetermination of time-dependent measurement uncertainty using a second-ordermodel [J]. Measurement Science and Technology.2007,18(12):3682-3687.
    [106] Engle, R.Models of dynamic uncertainty in univariate and multivariatesystems[C]. Proceedings, Twenty-First International Conference on MachineLearning,2004.
    [107]谢少锋,陈晓怀,张勇斌.测量系统不确定度分析及其动态性研究[J].计量学报,2002,23(3):237-240.
    [108]林洪桦,动态测量不确定度A类评定[J].宇航计测技术,1996,16(4,5):24-28.
    [109] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML. Guide to the expression ofuncertainty in measurement (GUM).Switzerland: ISO,1995.
    [110]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985.
    [111]朱本仁.蒙特卡罗方法引论[M].济南:山东大学出版社,1987.
    [112] Luca Mari,Dario Petri.Propagating Uncertainty Through Discrete Time DynamicSystems[C].//Proceedings of the2006IEEE International Workshop on AdvancedMethods for Uncertainty Estimation in Measurement(AMUEM2006),20-21April2006:23-26.
    [113] Locci N,Muscas C,Peretto L,Sasdelli R.A numerical approach to the evaluationof uncertainty in nonconventional measurements on power systems[C]. IEEETransactions on Instrumentation and Measurement,Aug.2002:734-739.
    [114]陈晓怀等.基于蒙特卡罗方法的测量不确定度合成[J].仪器仪表学报,2005,26(s8):8:759~761.
    [115]赵宇,陈松涛,钱健.Monte.Carlo法在测量不确定度评定中的应用[J].仪器仪表学报,2004,25(4):501-504.
    [116] H.Niederreiter. Random Number Generation and Quasi Monte Carlo Methods [J].SIAM, Philadelphia,1992.
    [117] Guiyuan Lei. Adaptive Random Search in Quasi-Monte Carlo Methods for GlobalOptimization[J].Computers and Mathematics with Applications,2002(43):747-754.
    [118] D. W. Braudaway. Uncertainty Specification for Data AcquisitionDevices[C].IEEE Transactions on Instrumentation and Measurement,2006:74-78.
    [119] Zu Xianfeng,Pan MengchuIl,Luo Feilu.Signal-oriented On-station CalibrationSystem for Missile Weapon Testing Equipments[C].8th International Conferenceon Electronic Measurement&Instruments(ICEMI2007,Xi An),V01.I:129-133.
    [120] Annan Jiang,Luelun Sun,Jiao Zhang.Integrated Intelligent Feedback Analysisfor the Construction of Large Cavern Group[C].The Sixth World Congress onIntelligent Control and Automation,WCICA2006,21-23June2006:8774---8778.
    [121] G.Iuculano,L.Nielsen,A.Zanobini l,G.Pellegrini.The Principle of MaximumEntropy Applied in the Evaluation of the Measurement Uncertainty[C].Proceedingsof the2006IEEE International Workshop on Advanced Methods for UncertaintyEstimation in Measurement(AMUEM2006),20-21April2006:14-17.
    [122] Panfilo,G.Tavdlla,P.Nunzi,E.Carbone,P.Petri.Optimal Calibration IntervalDetermination Techniques:the Example of a Rubidium Frequency Standard[C].Instrumentation and Measurement Technology Conference,2005,IMT005.Proceedingsof the IEEE,16-19May2005:477-482.
    [123] Stuckman,B.E.Perttunen,C.D.Usher,J.S.McLaughlin,B.A.Stochastic modelingof calibration drift in electrical meters[C].Instrumentation and MeasurementTechnology Conference,1991.IMTC.91.8th IEEE,14-16May1991:530~536.
    [124] Nunzi,E.Panfilo,G.Tavella,P.Carbone,P.Petri,D.Stochastic and reactivemethods for the determination of optimal calibration intervals[C].Instrumentation and measurement,IEEE Transactions on, Aug.2005:1565-1569.
    [125] Shen Jia-jie, Yang Jian-wei, He Ling. Discusses Between the CheckingStability of Measurement Standard and Verification of Measurement Standard [J],Metrology and Testing Technology,2009,36(10):6-8.
    [126] Wang Xu-hui, Huang Sheng-guo, Cao Li, Shi Ding-hao, Shu Ping. LS-SVM basedonline trend prediction of gas path parameters of aero engine[J]. Journal ofJilin University (Engineering and Technology Edition),2008,38(1):239-244
    [127] Wang Ge-Li, Yang Pei-Cai, Mao Yu-Qing. On the application of non-stationarytime series prediction based on the SVM method[J]. ACTA PHYSICA SINIC,2008,57(2):714-718.
    [128] Li Li-juan. The study of Modeling Algorithm Based on LS-SVM and PredietiveControl Algorithm [D].2008.12
    [129] YE Wei-dong, Zhang Jin-sheng. Assessment the computer healthy by usinganalytical hierarchy process [J].Microcomputer Message,2009,25(7):216-220.
    [130] Mao Hong-yu, YANG Guang,YANG Hong-sheng,HU Zhuo-lin. Prediction Control forATE Metrology Parameters Based on Improved LS-SVM[C].20103rd InternationalConference on Computer and Electrical Engineering (ICCEE). November16-18,2010,Chengdu, China.
    [131] Wang Xu-hui, Huang Sheng-guo, Cao Li, Shi Ding-hao, Shu Ping. LS-SVM basedonline trend prediction of gas path parameters of aero engine[J]. Journal ofJilin University (Engineering and Technology Edition),2008,38(1):239-244
    [132] Wang Ge-Li, Yang Pei-Cai, Mao Yu-Qing. On the application of non-stationarytime series prediction based on the SVM method[J]. ACTA PHYSICA SINIC,2008,57(2):714-718.
    [133]李丽娟.最小二乘支持向量机建模及预测控制算法研究[D].杭州:浙江大学,2008.12.
    [134] Nunzi,E.Panfilo,G.Tavella,P.Carbone,P.Petri,D.Stochastic and reactivemethods for the determination of optimal calibration intervals.Instrumentationand Measurement,IEEE Transactions on,Aug.2005:1565-1569
    [135]毛宏宇,杨红生,杨光等.最小二乘向量机在自动测试设备计量参数稳定性评估中的应用[J].吉林大学学报(工学版),2011,41(2):393-397.
    [136] SUYKENS J A K,VANDWALLE J. DE MOOR B. Optimal control by least squares supportvector machines[J].Neural Networks,2001,14(1):23-35.
    [137] SUYKENS J A K, VANDWALLE J. Multielass least squares support vectormachines[C].International Joint Conference on Neural Networkd.vol2.Washington,USA: Institute of Electrical and Electronics Engineers Inc.,1999:900-903.
    [138] SUYKENS J A K,LUKASL,VANDWALLE J. Sparse approximation using least squaressupport vector machines[C].Proceeding of IEEE International symposium onCircults and Systems. Geneva,Swizeriand: Institute of Electrical andElectronics Engineers Ine.,2000.
    [139] SUYKENS J A K. Nonlinear modeling and support vector machines[C].IEEEInstrumentation and Measurement Technology Conference. Budapest,Hungary:Institute of Electrical and Electronics Engineers Ine.,2001:287-295.
    [140]贾嵘,王小宇,蔡振华,等.最小二乘支持向量机回归的hht在水轮发电机组故障诊断中的应用[J].中国电机工程学报,2006,26(22):128-133.
    [141]杨奎河,单甘霖,赵玲玲.最小二乘支持向量机在故障诊断中的应用[J].计算机科学,2007,34(l):289-291.
    [142]杨奎河,单甘霖,赵玲玲.基于最小二乘支持向量机的汽轮机故障诊断[J].控制与决策,2007,22(7):778-782.
    [143]彭文季,罗兴,郭鹏程.基于最小二乘支持向量机和信息融合技术的水电机组振动故障诊断[J].中国电机工程学报,2007,27(23):86-92.
    [144]王华秋,刘全利,王越.基于鲁棒最小二乘支持向量机的电机振动故障诊断[J].中国电机工程学报,2007,27(30):97-102.
    [145]王树青.先进控制技术及应用[M].北京:化学工业出版社,2001.
    [146]席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [147] Kuo-Huang Lin,Bin-Da Liu.A gray system modeling approach to the predictionof calibration intervals.Instrumentation and Measurement[C].IEEE Transactionson,Feb.2005:297-304.
    [148] De Capua,C.De Falco,S.Liccardo,A.Morello,R.A virtual instrument forestimation of optimal calibration intervals by a decision reliabilityapproach[C].2005IEEE Symposium on Virtual Environments, Human—ComputerInterfaces and Measurement systems,July18,2005:16-20.
    [149]王化祥编著.仪表可靠性基础[M].天津:天津大学出版社,1994.
    [150]骆红云等.Weibull分析及工程应用[J].机械与电子技术,2006(5):74-76
    [151]赵海清,刘瑞元.在定数截尾样本下三参数威布尔分布的矩估计方程[J].大学数学,2002,21(l):49-52.
    [152]王伟.广义指数分布及其加速寿命试验的统计推断[D].上海:上海师范大学,2010.
    [153] Nadarajah S, Gupta A.K. On the Moments of the Exponentiated WeibullDistribution [J]. Communications in Statistics-Theory and Methods.2005(34):253-256.
    [154]胡乃斌.自动测试设备通用校准技术研究[D].哈尔滨工业大学,哈尔滨,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700