碳源及金属离子掺杂等对磷酸铁锂性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,锂离子电池正极材料LiFePO4因具有资源丰富、价格便宜、热稳定性、循环性能较好、环境相容性及安全性能好等优点备受关注。但LiFePO4的电导率、Li+化学扩散系数均较低,振实密度不高成为其应用的主要障碍,而且制约了其在充放电过程中的比容量和倍率性能的发挥。通过在合成LiFePO4的原料中添加碳及掺杂离子、优化合成工艺及制备纳米颗粒等方法来改善其电化学性能是行之有效的方法。本文在前人研究的基础上,开展了以下工作:
     1.以FeC2O4-2H2O为铁源,乙炔黑、多孔碳、石墨,葡萄糖、蔗糖、淀粉,聚乙烯醇、酚醛树脂及环氧树脂为碳源,采用固相反应法制备LiFePO4/C复合材料,初步探讨了碳的结合方式对LiFePO4导电机制的影响。在九种碳源中,聚乙烯醇热解后合成的LiFePO4/C复合材料电导率高达5.76×10-2S·cm-1,其放电比容量,倍率性能及循环性能最佳,这可能与C(碳)网在LiFePO4颗粒的“面”包裹结构为其充放电过程中电子的运输提供了通道有关。
     2.以球形FePO4-2H2O为铁源,采用碳热还原法制备了LiFePO4正极材料,并对锂源、合成温度及碳含量对LiFePO4性能的影响进行了研究:锂源对于LiFePO4正极材料的形貌、电导率、振实密度及充放电比容量都有较大的影响,以LiOHH2O为原料合成的试样其倍率性能较好,试样在C/20、C/10、C/5及1.0C倍率下的放电比容量为142.56、122.39、84.50及65.56mAh-g-’;合成温度对试样的电子电导率影响不大,但对试样的微观结构影响较大,从而显著地影响试样的充放电特性,650℃为较为合适的合成温度;碳含量可以显著影响试样的电导率,过多的碳的加入对于试样电化学的提高作用不明显,其加入量的合理值在5wt.%。
     3.采用Mg2+、Cr3+及Ti4+为掺杂离子制备了一系列掺杂的LiFePO4试样,并对LiFePO4及其掺杂化合物进行了第一性原理计算研究:掺杂提高了材料的电导率,其数量级在~10-4S.cm-1,掺杂有利于提高材料的振实密度,提高材料的倍率放电性能。研究结果表明,在Fe位每单位LiFePO4分子式摩尔掺杂量为0.02atom的Ti试样的电化学性能最好,以1C倍率进行充、放电时,放电容量为98.74mAh.g-’,放电倍率增加到3.0C时,试样的放电容量为83.08mAh-g-’,其倍率性能较好。通过掺杂试样的电子结构分析,掺杂降低了LiFePO4的能隙值,有利于提高材料的电子电导率,而且高价离子掺杂可能在一定程度上提高其离子电导率。
     4.以FePO4/PANI前躯体为原料制备了纳米级的LiFePO4正极材料,并对LiFePO4进行了碳包覆和Ti掺杂改性研究:合成纳米材料缩短了固相反应中离子的扩散路径,有利于掺杂离子进入LiFePO4晶格,并增加了掺杂元素均匀分布的几率;Ti掺杂纳米级的LiFePO4/C试样在提高电子电导率数值上的作用不是很明显,但在一定程度上提高了离子扩散的速度;试样LiFe0.96Ti0.02PO4/C获得了良好的碳包覆结构,纳米级颗粒大小均匀,其结晶度高,晶粒尺寸小,电化学性能得到很大的改善,具有优异的平台性能和倍率性能,试样在C/10、C/2、1.0C、3.0C及5.0C倍率下的放电比容量为159.02、154.43、148.49、136.88及121.95mAh-g-’。
Recently, lithium iron phosphate cathode material has been paid more attention due to the advantages of rich resources, cheap price, thermal stability, excellent cycling performance, environmental compatibility as well as good security performance. But lithium iron phosphate suffers from poor electric conductivity, lower chemical diffusion coefficient and bad tap density, which are large obstacles to restrain its application, specific capacity and capability during charge and discharge process. Through adding carbon in the raw material during the synthesis process, doping ion, optimizing the synthetic process and preparation of nanometer particles are effective methods of to improve their electrochemical performance of LiFePO4. On the basis of previous studies, this paper carried out the following job:
     1.The LiFePO4/C composite materials were synthesized by solid-state reaction using Iron(Ⅱ) oxalate dehydrate as iron source and adding acetylene black, porous carbon, graphite, glucose, sucrose, starch, polyvinyl alcohol, phenol resin and epoxy resin as the carbon sources to discuss the influence of combination carbon way on conductive mechanism of lithium iron phosphate. During the nine carbon sources, the LiFePO4/C composite material prepared by paralysis of polyvinyl alcohol obtained high electric conductivity value with1.88×10-1S·cm-1and has the best performances of discharge capacity, capability as well as cycling properties. It may relate with transferring channels provide for electronic transport during in charging and discharging process because of the carbon network is face package structure in lithium iron phosphate.
     2. Cathode material lithium iron phosphate were synthesized by carbon reduction method using spherical ferric phosphate dehydrate as iron source and the lithium source synthesis temperature and carbon content on the influence of lithium iron phosphate properties are studied.The morphology, electronic conductivity, tapping density and charge discharge capacity has more influence by lithium sources. The samples prepared by lithium hydroxide has the good rate performance with the discharge capacity of142.56,122.39,65.56,84.50mAh·g-1at the current of C/20, C/10, C/5and1.0C rate. The synthesis temperature greatly influenced on the microstructure of samples and has little effect on the electric conductivity, thus the sample's charge and discharge characteristics significantly affects by microstructure and electronic conductivity. The650degree centigrade was the reasonable temperature.The value of electric conductivity about lithium iron phosphate is not proportional relations with the content of carbon. An excess of adding of carbon will not always benefit for the electrochemical of samples and the suitable amount of addition was the five percentages in weight.
     3. A series of doping lithium iron phosphate samples were synthesized by magnesium, titanium and chromium as the doping elements. Lithium iron phosphate and its doping compounds were studied by the first principle calculation. The results indicate that the electric conductivity of the material was improved significantly with the order of magnitude in10-4S·cm-1. Doping improves the tapping density and discharging rate capability of the materials. The sample doped0.02atom titanium per mole Fe sites has the best electrochemical properties especially the rate capability of which the discharging capacity was98.74mAh·g-1at the current of1.0C rate and83.08mAh·g-1at the current of3.0C rate. Doping reduces energy band gap of lithium iron phosphate and enhances the electric conductivity of the materials by analysis of the electronic structure of the sample. The high valence ion doping has certain degree boost the ion conductivity.
     4. The nanometer scale lithium iron phosphate cathode material was synthesized modifying by carbon coating and titanium doping with FePO4/PANI precursor as raw materials. Synthesizing nanometer materials shortens the ion diffusion pathway during solid phase reaction, has the advantage of doping ion enters the lattice of lithium iron phosphate and increases the even distribution probability of doping element. The nanometer LiFePO4/C composite doped by titanium has little effect on the electric conductivity, but in certain degree increased the ion diffusion velocity. Sample LiFeo.96Tio.o2P04/C abtained the excellent cabon coating struture and the nanometer particle size uniform with high crystalline degree and tiny grain size. The electrochemical properties has been increased significantly and has the outstanding platform performance and rate capability, with the discharging capacity159.02,154.43,148.49,136.88and121.95mAh·g-1at the current of C/10,C/2,1.0C3.0C and5.0C rate, respectively.
引文
[1]Yang H X, Ai X P. Modeling and Prediction for Discharge Life time of Battery Systems using Hybrid Evolutionary Algorithms. Computers & Chemistry,2002,25(3):251-259
    [2]Broussely M. Lithium batteries R&D activities in Europe. Journal of Power Sources,1999,81-82:137-139
    [3]Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews,2004,104(10):4303-4417
    [4]吴宇平,戴晓兵,马军旗等.锂离子电池---应用与实践.北京:化工出版社出版,2004,14-15
    [5]Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries. Journal of Power Sources,2003,114(2):228-236
    [6]Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0 less than x less than equivalent to 1):a new cathode material for batteries of high energy density. Materials Research Bulletin,1980,15(6):783-789
    [7]Yoon W S, Kim K B. Synthesis of LiCoO2 using acrylic acid and its electrochemical properties for Li secondary batteries. Journal of Power sources,1999,81-82:517-523
    [8]Ohzuku T, Ueda A, Nagayama N, et al. Comparative study on LiCoO2, LiCo1/2Ni1/2O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochimica Acta,1993,38(9):1159-1167
    [9]Garcia B, Farcy J, Pereira J P. Electrochemical properties of low temperature crystallized LiCoO2. Journal of the Electrochemical Society, 1997,144(4):1179-1184
    [10]Li G, Yang Z X, Yang W S. Effect of FePO4 coating on electrochemical and safety performance LiCoO2 as cathode material for Li-ion batteries. Journal of Power Sources 2008,183 (2):741-748
    [11]Lua C Z, Chen J M, Cho Y D, et al. Electrochemical performance of cathodes by surface modification using lanthanum aluminum garnet. Journal of Power Sources 2008,184 (2):392-401
    [12]Yang W D, Hsieh C Y, Chuang H J, et al. Preparation and characterization of nanometric-sized LiCoO2 cathode materials for lithium batteries by a novel sol-gel method.Ceramics International 2010,36 (1):135-140
    [13]Seungsuk O, Joong K L, Dongim B, et al. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. Journal of Power Sources,2004,132(1-2):249-255
    [14]Shin Y H, Koo S M, Kim D S, et al. Continuous hydrothermal synthesis of HT-LiCoO2 in supercritical water. The Journal of Supercritical Fluids.2009,50 (3):250-256
    [15]Barker J, Pynenburg R, Koksbang R, et al. An electrochemical investigation into the lithium insertion properties of LixCoO2.Electrochimica Acta,1996,41(15): 2481-2488
    [16]Kim H S, Ko T K, Na B K, et al. Electrochemical properties of LiMxCo1-xO2 [M Mg, Zr] prepared by sol-gel process. Journal of Power Sources,2004,138 (1-2):232-239
    [17]Kim H J, Jeong Y U, Lee J H, et al. Crystal structures, electrical conductivities and electrochemical properties of LiCo1-xMgxO2 (0≤x≤0.11) Journal of Power Sources,2006,159(1):233-236
    [18]Lala S M, Montoro L A, Lemos V, et al. The negative and positive structural effects of Ga doping in the electrochemical performance of LiCoO2. Electrochimica Acta,2005,51(1):7-13
    [19]Gopukumar S., Jeong Y, Kim K B. Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ionics, 2003,159 (3-4):223-232
    [20]Madhavi S, Subba Rao G. V., Chowdari B. V. R., et al. Effect of Cr dopant on the cathodic behavior of LiCoO2. Electrochimica Acta,2002,48, (3):219-226
    [21]Valanarasu S, Chandramohan R. Improvement of the cycle life of LiCoO2 powder by Sr doping. Journal of Alloys and Compounds,2010,494(1-2): 434-438
    [22]Ghosh P, Mahanty S, Basu R N. Lanthanum-doped LiCoO2 cathode with high rate capability. Electrochimica Acta,2009,54(5):1654-1661
    [23]Shi S Q, Ouyang CY, Lei M S, et al. Effect of Mg-doping on the structural and electronic properties of LiCoO2 A first-principles investigation. Journal of Power Sources,2007.171(2):908-912
    [24]Mladenov M, Stoyanova R, Zhecheva E, et al. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes. Electrochemistry Communications,2001,3(8):410-416
    [25]Ganesan M, Sundararajan S, Dhananjeyan M.V.T, et al. Synthesis and characterization of tetravalent titanium (Ti4+) substituted LiCoCO2 for lithium-ion batteries. Materials Science and Engineering B.2006,131 (1-3):203-209
    [26]Oh S, Lee J K, Byun D, et al. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries Journal of Power Sources,2004,132 (1-2):249-255
    [27]Iriyama Y, Kurita H, Yamada I, et al. Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode. Journal Power Sources,2004,137(1):111-116
    [28]Zhao H, Gao L, Qiu W, et al. Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating. Journal Power Sources,2004, 132(1-2):195-200
    [29]Kuo Fey G T, Lu C Z, Kumar T P, et al. TiO2 coating for long-cycling LiCoO2: A comparison of coating procedure. Surface & Coatings Technology.2005,199 (1):22-31
    [30]Chen J M, Cho Y D, Hsiao C L, et al. Electrochemical studies on LiCoO2 surface coated with Y3Al5O12 for lithium-ion cells.Journal of Power Sources, 2009,189(1):279-287
    [31]Kosova N V, Devyatkina E T. Comparative study of LiCoO2 surface modified with different oxides. Journal of Power Sources,2007,174, (2):959-964
    [32]Lee J W, Park S M, Kim H J. Enhanced cycleability of LiCoO2 coated with vanadium oxides. Journal of Power Sources,2009,188(2):583-587
    [33]Sun Y K, Cho S W, Myung S T, et al. Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2. Electrochimica Acta,2007,53(2): 1013-1019
    [34]Yi, T F, Shu J, Yue C B, et al. Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery.Materials Research Bulletin, 2010,45(4,):456-459
    [35]Wang H, Zhang W D, Zhu L Y, et al. Effect of LiFePO4 coating on electrochemical performance of LiCoO2 at high temperature. Solid State Ionics,2007,178(1-2):131-136
    [36]Lecerrf A., Broussely M, Gabano J P, Eur.Patent, No.0345707, US Patent, No.4982280, Docter,12,1989
    [37]Choi Y M, Pyun S 1, Moon S I, et al. A study of the electrochemical lithium intercalation behavior of porous LiNiO2 electrodes prepared by solid-state reaction and sol-gel methods.Journal of Power Sources,1998,72 (1):83-90
    [38]Kim B H, Kim J H, Kwon I H, et al. Electrochemical properties of LiNiO2 cathode material synthesized by the emulsion method. Ceramics International, 2007,33(5):837-841
    [39]Wang G X, Zhong S, Bradhurst D H, et al. Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries. Journal of Power Sources,1998,76(2):141-146
    [40]Sun Y Z, Wan P Y, Pan J Q, et al. Low temperature synthesis of layered LiNiO2 cathode material in air atmosphere by ion exchange reaction.Solid State Ionics, 2006,177, Issues (13-14):1173-1177
    [41]Zhou Y K, Huang J, Shenand C M, et al. Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties. Materials Science and Engineering A,2002,335(1-2):260-267
    [42]Song M Y, Lee R. Synthesis by sol-gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery. Journal of Power Sources,2002,111(1):97-103
    [43]Sathiyamoorthi R, Shakkthivel P, Ramalakshmi S, et al. Influence of Mg doping on the performance of LiNiO2 matrix ceramic nanoparticles in high-voltage lithium-ion cells. Journal of Power Sources,2007,171(2):922-927
    [44]Zhong S W, Zhao Y J, Lian F, et al. Characteristics and electrochemical performance of cathode material Co-coated LiNiO2 for Li-ion batteries.Transactions of Nonferrous Metals Society of China,2006,16(1): 137-141
    [45]Nishida Y, Nakane K, Satoh T, Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary batteries. Journal of Power Sources,1997,68(2):561-564
    [46]Zhang L Q, Muta T. Noguchi Hi, et al. Peculiar electrochemical behaviors of (1 x) LiNiO2-xLi2TiO3 cathode materials prepared by spray drying. Journal of Power Sources,2003,117(1-2):137-142
    [47]Yu A., Subba Rao G V, Chowdari B V R.Synthesis and properties of LiGaxMgyNi1-x-yO2 as cathode material for lithium ion batteries. Solid State Ionics,2000,135, (1-4):131-135
    [48]Park HR. Electrochemical properties of LiNiO2 and LiNiO2 substituted with Ga, Al and/or Ti. Journal of Industrial and Engineering Chemistry,2010, 16(5):698-702
    [49]Kim J, Kim B, Baik Y H, et al. Effect of (Al, Mg) substitution in LiNiO2 electrode for lithium batteries.Journal of Power Sources,15(1):641-645
    [50]Chowdari B V R, Subba Rao G V, Chow S Y. Cathodic behavior of (Co, Ti, Mg)-doped LiNiO2 Solid State Ionics,2001,140 (1-2):55-62
    [51]Myung S T, Komaba S, Kumagai N. Synthetic optimization of orthorhombic LiMnO2 by emulsion-drying method and cycling behavior as cathode material for Li-ion battery.Solid State Ionics,2002,150, (3-4):199-205
    [52]Jang Y I, W. Moorehead D, Chiang Y M. Synthesis of the monoclinic and orthorhombic phases of LiMnO2 in oxidizing atmosphere.Solid State Ionics, 2002,149,(3-4):201-207
    [53]Kim J M, Chung H T. Electrochemical characteristics of orthorhombic LiMnO2 with different degrees of stacking faults. Journal of Power Sources,2003,115(1): 125-130
    [54]Myung S T, Komaba S, Kurihara K, et al. Hydrothermal phase formation of orthorhombic LiMnO2 and its derivatives as lithium intercalation compounds. Solid State Ionics,2006,177(7-8):733-739
    [55]Huang Z F, Zhang H Z, Wang C Z, et al. First-principles investigation on extraction of lithium ion from monoclinic LiMnO2. Solid State Sciences,2009, 11(1):271-274
    [56]Tu J P, Wu H M, Yang Y Z, et al. Spray-drying technology for the synthesis of nanosized LiMn2O4 cathode material. Materials Letters,2007,61(3):864-867
    [57]Hwang B J, Santhanam R, Liu D G. Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. Journal of Power Sources, 2001,97-98:443-446
    [58]Li X F, Xu Y L. Spinel LiMn2O4 active material with high capacity retention. Applied Surface Science,2007,253(2):8592-8596
    [59]Arumugam D, Paruthimal G. Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries. Electrochimica Acta,2010,55(28):8709-8716
    [60]Li X F, Xu Y L, Wang C L. Suppression of Jahn-Teller distortion of spinel LiMn2O4 cathode Journal of Alloys and Compounds,2009,479(1-2):310-313
    [61]Amatucci G G, Blyr A, Sigala C, et al. Surface treatments of Li1+xMn2-xO2 spinels for improved elevated temperature performance. Solid State Ionics,1997, 104(1-2):13-25
    [62]Takahashi Y, Kijima N, Akimoto J. Crystal growth and structural properties of the spinel-type Li1+xMn2-xO2 (x=0.10,0.14). Solid State Ionics,2006,177(7-8): 691-695
    [63]Gao Y, Dahn J R. Correlation between the growth of the 3.3 V discharge plateau and capacity fading in Li1+xMn2-xO2 materials.Solid State Ionics,1996,84(1-2): 33-40
    [64]Moon H S, Park J W. Improvement of cyclability of LiMn2O4 thin films by transition-metal substitution. Journal of Power Sources,2003,119-121:717-720
    [65]He X M, Li J J, Cai Y, et al. Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries.Journal of Power Sources,2005,150: 216-222
    [66]Lee J F, Tsai Y W, Santhanam R, et al. Local structure transformation of nano-sized Al-doped LiMn2O4 sintered at different temperatures. Journal of Power Sources,2003,119-121:721-726
    [67]Wan C Y, Nuli Y N, Zhuang J H, et al. Synthesis of spinel LiMn2O4 using direct solid state reaction. Materials Letters,2002,56(3):357-363
    [68]Hwang B J, Santhanam R, Liu D G. Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. Journal of Power Sources, 2001,97-98:443-446
    [69]Jiang C H, Dou S X, Liu H K, et al. Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. Journal of Power Sources,2007,17(1): 410-415
    [70]Yan H W, Huang X J, Chen L Q. Microwave synthesis of LiMn2O4 cathode material. Journal of Power Sources,1999,81-82:647-650.
    [71]Liao PY, Duh J G, Sheen S R. Microstructure and electrochemical performance of LiNi0.6Co0.4-xMnxO2 cathode materials. Journal of Power Sources,2005, 143(1-2):212-218
    [72]Hernandez A, Fabela S, Torres-Gonzalez L C, et al. Preparation and electrochemical behavior of sol-gel LiNi0.3Co0.70-xMxO2 (M=Mn, Al). Ceramics International,2008,34(1):225-229
    [73]Liu Z L, Yu A, Lee J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. Journal of Power Sources, 1999,81-82:416-419
    [74]Lu C H, Shen B J. Electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders prepared from microwave-hydrothermally derived precursors Journal of Alloys and Compounds,2010,497(1-2):159-165
    [75]He Y S, Pei L, Liao X Z, et al. Synthesis of LiNi1/3Co1/3Mni/3O2-zFz cathode material from oxalate precursors for lithium ion battery. Journal of Fluorine Chemistry,2007,128(2):139-143
    [76]Wang L Q, Jiao L F, Yuan H T, et al. Synthesis and electrochemical properties of Mo-doped Li[Ni]/3Mn1/3Co1/3]O2 cathode materials for Li-ion battery. Journal of Power Sources,2006,162(2):1367-1372
    [77]Chang H Y, Sheu C L, Cheng S Y, et al. Synthesis of Li1.1Ni1/3Co1/3Mn1/3O2 cathode material using spray-microwave method Journal of Power Sources, 2007,174(2):985-989
    [78]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of Electrochemmical Society,1997,144(4):1188-1194
    [79]Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of Electrochemmical Society, 1997,144(5):1609-1613
    [80]Gover R K B, Burns P, Bryan A, et al. LiVPO4F:A new active material for safe lithium-ion batteries. Solid State Ionics,2006,177(26-32):2635-2638
    [81]Saidi M Y, Barker J, Huang H, et al. Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochemical and Solid-state Letters,2002,5(7):A149-A151
    [82]Fu Peng, Zhao Yanming, An Xiao ming, et al. Structure and electrochemical properties of nanocarbon-coated Li3V2(PO4)3 prepared by sol-gel method. Electrochimica Acta,2007,52(16):5281-5285
    [83]Ren M M, Zhou Z, Gao X P, et al. Core-shell Li3V2(PO4)3/C composites as cathode materials for lithium-ion batteries. Journal of Physics Chemical C,2008, 112(14):5689-5693
    [84]Tang A P, Wang X Y, Liu Z M. Electrochemical behavior of Li3V2(PO4)3/C composite cathode material for lithium-ion batteries. Materials Letters,2008, 62(10-11):1646-1648
    [85]Huan H, Shieh-Chieh Y, Tracy K, et al. Nanostructure composites:A high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Advance Materials,2004 (14):1525-1528
    [86]Chen Yinghua, Zhao Yanming, An Xiaoning, et al. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochimica Acta,2009,54(24): 5844-5850
    [87]PAN A Q, Liu J, Zhang J G, et al. Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochemistry Communications 2010,12(12):1674-1677
    [88]Rui X H, Jin Y, Feng X Y, et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. Journal of Power Sources,2011,196(4):2109-2114
    [89]Belkouch J, Monceaux L, Bordes E, et al. Comparative structural study of mixed metals pyrophosphates. Materials Research Bulletin,1995,30(2):149-160
    [90]Azmi B M. Ishihara T, Nishiguchi H, et al. LiVOPO4 as a new cathode material for Li-ion rechargeable battery. Journal of Power Sources,2005,146(1-2): 525-528
    [91]Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite. Journal of Power Sources,2001,97-98:503-507.
    [92]Kang H C, Jun D K, Jin B, et al. Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling. Journal of Power Sources,2008,179 (1): 340-346
    [93]Zhang S S, Allen J L, Xu K, et al. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes. Journal of Power Sources,2005,147(1-2):234-240
    [94]Wang L, Huang Y D, Jiang R R, et al. Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating. Electrochimica Acta,2007,52(24):6778-6783
    [95]Cheng F Q, Wan W, Tan Z, et al. High power performance of nano-LiFePO4/C cathode material synthesized via lauric acid-assisted reaction. Electrochimica Acta,2011,56(8):2999-3005
    [96]Chang H H, Chang C C, Wu H C, et al. Kinetic study on low-temperature synthesis of LiFePO4 via solid-state reaction. Journal of Power Sources,2006, 158(1):550-556
    [97]Kim C W, Lee M H, Jeong W T, et al. Synthesis of olivine LiFePO4 cathode materials by mechanical alloying using iron(III) raw material. Journal of Power Sources,2005,146(1-2):534-538
    [98]Shin H C, Cho W Il, Jang H. Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochimica Acta.2006,52(4):1472-1476
    [99]Yamada A, Hosoya M, Chung S C, et al. Olivine-type cathodes:Achievements and problems. Journal of Power Sources,2003,119-121:232-238
    [100]Kim J K, Cheruvally G, Ahn J H, et al. Electrochemical properties of carbon-coated LiFePO4 synthesized by a modified mechanical activation process.Journal of Physics and Chemistry of Solids,2008,69(10):2371-2377
    [101]Barker J, Saidi M Y, Swoyer J L. Lithium iron(Ⅱ)phosphor-olivines prepared by a novel carbothermal reduction method, Electrochemical and Solid-state Letters,2003,6(3):A53-A55
    [102]Ravet N, Gauthier M, Zaghib K, et al. Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chemistry of Materials,2007,19(10):2595-2602
    [103]Zhu B Q, Li X H, Wang Z X., et al. Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction. Materials Chemistry and Physics, 2006,98 (2/3):373-376
    [104]Saidi M M, Huang H. Alkali-iron-cobalt phosphates and related electrode active material, U. S.Pat. No.7422823 (2008).
    [105]Saidi M M, Huang H. Synthesis of metal phosphates U.S.Pat. No.7060238B2 (2008).
    [106]Higuchi M, Katayama K, Azuma Y, et al. Synthesis of LiFePO4 cathode material by microwave processing. Journal of Power Sources,2003,119-121:258-261.
    [107]Beninati S, Damen L, Mastragostino M. MW-assisted synthesis of LiFePO4 for high power applications.Journal of Power Sources,2008,180(2):875-879
    [108]Yang S, Zavalij P Y,Whittingham M S. Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochemistry Communications,2001,3(9):505-508
    [109]Dokko K, Koizumi S, Sharaishi K, et al. Electrochemical properties of LiFePO4 prepared via hydrothermal route. Journal of Power Sources,2007,165(2): 656-659
    [110]Chen J J, Vacchio M J, Wang S J, et al.The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications Solid State Ionics,2008,178(31-32):1676-1693
    [111]Jin B, Gu H B. Preparation and characterization of LiFePO4 cathode materials by hydrothermal method.Solid State Ionics,2008,178(37-38):1907-1914
    [112]Hu Y Q, Doeff M M, Kostecki R, et al. Electrochemical performance of Sol-Gel synthesized LiFePO4 in lithium batteries. Journal of Electrochemmical Society,2004,151(8):A1279-A1285.
    [113]Dominko R., Bele M, Gaberscek M.et al. Porous olivine composites synthesized by sol-gel technique Journal of Power Sources,2006,153(2):274-280
    [114]Daiwon C Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. Journal of Power Sources,2007,163(2): 1064-1069
    [115]Kim J K, Choi J W, Chauhan G S,et al. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. Electrochimica Acta,2008,53(28):8258-8264
    [116]Yang M R, Ke W H, Wu S H. Preparation of LiFePO4 powders by co-precipitation. Journal of Power Sources,2005,146(1-2):539-543
    [117]Arnold G, Hemmer R, Strobele S. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. Journal of Power Sources,2003,119-121:247-251
    [118]Cho T H, Chung H T. Synthesis of olivine-type LiFePO4 by emulsion-drying method. Journal of Power Sources,2004,133(2):272-276
    [119]Myung S T, Komaba Si, Hirosaki N, et al. Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochimica Acta,2004,49(24):4213-4222
    [120]Konarova M, Taniguchi I. Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling.Journal of Power Sources,2009,194(2):1029-1035
    [121]Palomares V, Goni A, Muro I G, et al. New freeze-drying method for LiFePO4 synthesis.Journal of Power Sources,2007,171(2):879-885
    [122]Cho T H, Chung H T. Synthesis of olivine-type LiFePO4 by emulsion-drying method. Journal of Power Sources,2004,133(2):272-276
    [123]Ni J F, Zhou H H, Chen J T, et al. Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles. Materials Letters,2007,61(4-5): 1260-1264
    [124]Yu F, Zhang J J, Yang Y F, et al. Preparation and characterization of mesoporousLiFePO4/C microsphere by spray drying assisted template method. Journal of Power Sources,2009,189(1):794-797
    [125]Cao Y L, Yu L H, Li T, et al. Synthesis and electrochemical characterization of carbon-coated nanocrystalline LiFePO4 prepared by polyacrylates-pyrolysis route. Journal of Power Sources,2007,172(2):913-918
    [126]Andersson A S, Thomas J O.The source of first-cycle capacity loss in LiFePO4. Journal of Power Sources,2001,97-98:498-502.
    [127]刘立君.锂离子电池正极材料研究[中国科学院物理所博士论文].北京:中国科学院物理所,2003.
    [128]Wang D Y, Wu X D, Wang Z X, et al. Cracking causing cyclic instability of LiFePO4 cathode material. Journal of Power Sources,2005,140(1):125-128
    [129]Delacourt C, Poizot P, Marie J, et al. The existence of a temperature-driven solid solution in LixFePO4 for 0≤x≤1.Nature Materials.2005,4(3):254-260
    [130]Yamada A, Komaba S, Nishimura, et al.Room-temperature miscibility gap in LixFePO4.Nature Materials,2006,6(6):357-360
    [131]Demlmas C, Maccario M, Crogueneec L, et al. Lithum deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Materials,2008, 7(8):665-671
    [132]Laffont L, Delacourt C, Gibot P, et al.Study of the LiFePO4/FePO4 two-phase system by High Resolution Electron Energy Loss Spectroscopy. Chemistry of Materials,2006,18(23):5520-5529
    [133]Gibot P, Cabanas M C, Laffont L,et al.Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 Materials. Nature Materials, 2008,7(9):741-747
    [134]韩绍昌,薄红志,陈晗,等LiFePO4合成工艺的优化,湖南大学学报(自然科学版),2006,33(4):94-96
    [135]Gao F, Tang Z Y, Xue J J. Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method. Electrochimica Acta,2007,53(4):1939-1944
    [136]Liu J, Liu F K, Yang G L, et al.The preparation of conductive nano-LiFePO4/PAS and its electrochemical performance. Electrochimica Acta,2010, 55(3):1067-1071
    [137]Prosini P P, Zane D, Pasquali M. Improved electrochemical performances of a LiFePO4-based composite cathode. Electrochimica Acta,2001,46(23): 3517-3523
    [138]Shin H C, Cho W I, Jang H. Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. Journal of Power Sources,2006,159(2):1383-1388
    [139]Thorat I V, Mathur V, Harb J N, et al.Performance of carbon-fiber-containing LiFePO4 cathodes for high-power applications. Journal of Power Sources,2006, 162(1):673-678
    [140]Yan F. The preparation and electrochemical performances of LiFePO4-multiwalled nanotubes composite cathode materials for lithium ion batteries.Materials Chemistry and Physics,2010,121 (1-2):302-307
    [141]Wang L, Wang H B, Liu Z H, et al. A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics,2010,181 (37-38):1685-1689
    [142]Dong Y Z, Zhao Y M, Chen Y H, et al. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries. Materials Chemistry and Physics 2009,115(1):245-250
    [143]Ravet N,Chouinard Y, Magnan J F,et al. Electroactivity of natural and synthetic triphylite. Journal of Power Sources,2011,97-98:503-507
    [144]Ruan Y L, Tang Z Y, Huang B M.Effect of carbon content on electrochemical properties of LiFePO4/C composite cathode. Chinese Joural of Chemical English,2005,13(5):686-690
    [145]Spong A D, Vitins G, Owen J R.A solution-precursor synthesis of carbon-coated LiFePO4 for li-ion cells. Journal of Electrochemmical Society,2005,152(12): A2376-A2382
    [146]Chung H T, Jang S K, Ryu H W, et al. Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite.Solid State Communication, 2004,131(8):549-554
    [147]Hu G R, Zhang X L, Peng Z D, et al.Synthesis and characterization of LiFePO4/C composite used as lithium storage electrodes. Transacations of Nonferrous Metals Society of China,2004.14(2):237-240
    [148]Mi C H, Zhao X B, Cao G S, et al.In situ synthesis and properties of carbon-coated LiFePO4 as li-ion battery cathodes. Journal of Electrochemmical Society,2005,152(3):A483-A487
    [149]Yun N J, Ha H W, Jeong K H, et al. Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor. Journal of Power Sources,2006,160(2): 1361-1368
    [150]Zhou X W, Zhan D, Cong C J, et al.Synthesis and electrochemical properties of LiFePO4/C cathode material. Journal of Materials Science,2005,10(9-10): 2577-2578.
    [151]Gaberscek M, Dominko R, Bele M, et al.Porous, carbon-decorated LiFePO4 prepared by sol-gel method based on citric acid. Solid State Ionics,2005, 176(19-22):1801-1805
    [152]Fey G T K, Lu T L. Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route. Journal of Power Sources,2008,178 (2):807-814.
    [153]Fey G T K, Lu T L, Wu F Y, et al. Carboxylic acid-assisted solid-state synthesis of LiFePO4/C composites and their electrochemical properties as cathode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2008,12(7-8):825-833.
    [154]Cho Y D, Fey G T K, Kao H M. Physical and electrochemical properties of La-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Journal of Solid State Electrochemistry,2008,12 (7-8):815-823.
    [155]Chen J M, Hsu C H, Liu Y R, et al. High-powder LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries. Journal of Power Sources,2008,184 (2):498-502.
    [156]Cho Y D, Fey G T K, Kao H M.The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. Journal of Power Sources,2009, 189 (1):256-262.
    [157]Lu C Z, Fey G T K, Kao H M. Study of LiFePO4 cathode materials coated with high surface area carbon. Journal of Power Sources,2009,189 (1):155-162.
    [158]Fey G T K, Chen Y G, Kao H M. Electrochemical properties of LiFePO4 prepared via ball-milling. Journal of Power Sources,2009,189 (1):240-247.
    [159]Croce F, Epifanio A D, Hassoun J, et al. A novel noncept for the synthesis of an improved LiFePO4 lithium battery bathode. Electrochemical and Solid-State Letters,2002,5(3):A47-A50
    [160]Park K S, Son J T, Chung H T, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Communications, 2004,129:311-314
    [161]Wang G X, Yang L, Chen Y, et al. An investigation of polypyrrole-LiFeP04 composite cathode materials for lithium-ion batteries. Electrochimica Acta, 2005,50(24):4649-4654.
    [162]Huang Y H, Park K S, Goodenough J B.Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole. Journal of Electrochemmical Society, 2006,153(12):A2282-A2286.
    [163]Chung S Y, Bloking J T, Chiang Y M.Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials,2002,1(2):123-128
    [164]Ravet N, Abouimrane A, Armand M.From our readers:On the electronic conductivity of phospho-olivines as lithium storage electrodes. Nature Materials,2003,2(10):702-703
    [165]Herle P S, Ellis B, Coombs N, et al.Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials,2004,3(3):147-152
    [166]Delacourt C, Wurm C, Laffont L, et al.Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4 composites. Solid State Ionics,2006, 177(3-4):333-341
    [167]Chung S Y, Chiang Y M. Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochemical and Solid-state Letters,2003,6(12): A278-A281
    [168]施思齐.锂离子电池正极材料的第一性原理研究:[中国科学院物理所博士论文].北京:中国科学院物理所,2004
    [169]Ou X Q, Liang G C, Liang J S, et al. LiFePO4 doped with magnesium prepared by hydrothermal reaction in glucose solution. Chinese Chemical Letters,2008, 19(3):345-349
    [170]Liu H, Cao Q, Fu LJ, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications,2006,8(10): 1553-1557
    [171]Shenouda A Y, Liu H K. Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. Journal of Alloys and Compounds,2009,477(1-2):498-503
    [172]Hu G R, Gao X G, Peng Z D, et al. Influence of Ti4+ doping on electrochemical properties of LiFePO4/C cathode material for lithium-ion batteries.Transactions of Nonferrous Metals Society of China,2007,17(2):296-300
    [173]Zhang W K, Hu Y, Tao X Y, et al. Synthesis of spherical LiFePO4/C via Ni doping. Journal of Physics and Chemistry of Solids.2010,71(9):1196-1200
    [174]Sun C S, Zhou Z, Xu Z G, et al. Improved high-rate charge/discharge performance of LiFePO4/C via V doping. Journal of Power Sources,2009,193, (2):841-845
    [175]Hua N, Wang C Y, Kang X Y, et al. Studies of V doping for the LiFePO4-based Li Ion batteries. Journal of Alloys and Compounds,2010,503(1):204-208
    [176]Li C F, Hua N, Wang C Y, et al. Effect of Mn2+ -doping in LiFePO4 and the low temperature electrochemical performances. Journal of Alloys and Compounds, 2011,509(5):1897-1900
    [177]Yin X G, Huang K L, Liu S Q, et al. Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Journal of Power Sources,2010,195(13):4308-4312
    [178]Shin H C, Park S B, Jang H, et al. Rate performance and structural change of Cr-doped LiFePO4/C during cycling. Electrochimica Acta,2008,53(27): 7946-7951
    [179]Shi S Q, Liu L, Ouyang C Y, et al.Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Physical Review B,2003,68(19):No.195108
    [180]Ouyang C Y, Wang D Y, Shi S Q, et al.First Principles Study on NaxLi1-xFePO4 as Cathode Material for Rechargeable Lithium Batteries. Chinese Physics Letters,2006,23(1):61-64.
    [181]Oh S W, Myung S T, Oh S M, et al. Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries Electrochimica Acta,2010,55, (3):1193-1199
    [182]Chang Z R, Lv H J, Tang H W, et al. Synthesis and performance of high tap density LiFePO4/C cathode materials doped with copper ions. Journal of Alloys and Compounds,2010,501(1):14-17
    [183]Zhong M E, Zhou Z T. Preparation of high tap density LiFePO4/C composite cathode materials by carbothermal reduction method using two kinds of Fe3+ precursors. Materials Chemistry and Physics,2010,119(3):428-431
    [184]薄红志LiFePO4的固相混合法合成及电化学性能研究:[湖南大学硕士论文].长沙:湖南大学,2006
    [185]于文志.锂离子电池正极材料LiFePO4的金属离子掺杂改性研究:[湖南大学硕士论文].长沙:湖南大学,2007
    [186]陈晗.新型锂离子电池正极材料LiFePO4的合成及改性研究:[湖南大学博士论文].长沙:湖南大学,2007
    [187]刘芳凌.稀土离子掺杂LiFePO4/C正极材料的合成及其电化学性能的研究:[湖南大学硕士论文].长沙:湖南大学,2009
    [188]Nakamura T, Sakumioto K, Seki S, Kobayashi Y, et al. Apparent diffusion constant and electrochemical reaction in LiFel-chi Mn chi PO4 olivine cathode. Joural of the Electrochemical Society,2007,154(12):A1118-A1123
    [189]刘吉平,孙洪强.碳纳米材料[M],北京:科学出版社,2004,116-122
    [190]白莹,吴锋,吴川.新型锂离子电池正极材料LiMPO4(M=Fe, Mn)的谱学和电化学研究[J].光散射学报,2004,15(4):231-235.
    [191]Inagaki M, Shiraishi M, Nakamizo M, et al. Evaluation of graphitization degree of carbon materials. Carbon (Japanese),1984, No.118:165-175
    [192]谭平恒,李峰,成会明.碳材料的拉曼光谱[M].北京:化学工业出版,2007,18-35
    [193]Wang D Y, Li H, Wang Z X, et al. New solid-state synthesis routine and mechanism for LiFePO4 using LiF as lithium precursor. Journal of Solid State Chemistry,2004,177(12):4582-4587
    [194]王德宇.锂离子电池磷酸盐正极材料的制备与改性研究:[中国科学院物理所博士论文].北京:中国科学院物理所,2005
    [195]Chen Z, Dahn J R, Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. Joural of the Electrochemical Society,2002,149(9):A1184-A1189
    [196]Wagemaker M, Ellis B L,Lucetzenkirchen-hecht D,et al.Proof of supervalent doping in olivine LiFePO4. Chemistry of Materials,2008,20(20):6313-6315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700