河型转化影响因素及河型判别准则研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲积河道的自我调整是多因素相互作用的复杂响应过程,河型成因机理及转化判别研究是河床演变学及河流动力学的基本问题之一。目前,河型成因理论及转化判别准则研究中得到的众多成果,尚有待于采用数理逻辑建立统一的体系和定量表达式。
     本文选用基于正交曲线坐标系的平面二维水沙动力学模型作为研究河型转化控制因素的手段,对基于水动力学模型、泥沙输运模型以及河道崩岸模块的平面二维数值模型进行如下改进。1)考虑了植被对流动阻力的影响:在前人研究成果的基础上,引入植被压力源项,修正水流动量守恒方程;2)改进了泥沙输运模型:进一步考虑泥沙分选、河床粗化、弯道二次流及河床结构的影响,并根据近底床沙质量守恒方程提出简化床沙级配调整计算方法;3)完善了河道崩岸模块:在已有粘性土崩岸的基础上,针对河湾形态对崩岸的影响提出新的非粘性土崩岸模拟方法,并增加简化混合土体崩岸模块,使其能模拟边滩形成,提高了计算效率。
     利用本文改进的二维水沙数值模型,分别模拟了Yen弯道水槽泥沙冲淤试验、Seal水槽下游细化试验及Friedkin室内弯曲小河塑造试验。模拟结果与试验观测吻合良好,表明可以采用该模型作为定量研究河型转化影响因素的手段。以该模型为基础,通过数值试验,分别模拟地球自转的柯氏力、水力比降、流量以及边岸抗冲强度对概化河道演变过程的影响;定量得到不同控制因素对概化河道形成及河型转化的影响程度。对模拟结果进行归纳,总结出了影响河型转化的主要控制因素。
     根据所得到的河型转化主控因素,选取适当的控制变量与状态参量,基于尖点突变模式,推求得到了河道状态的平衡方程式,并绘制出了3维坐标下的平衡曲面图。依据该平衡方程,选取相应的临界状态参数,对控制参平面进行2维投影,得到了河型判别准则的表达式。从河道稳定性的控制变量与状态参数出发,推导得到河流稳定性判别指标的表达式。采用100多条中小型天然河流、室内小河试验以及概化河道的数值模拟进行验证,结果表明:基于尖点突变模式所建立的河型判别准则及河道状态判别指标,可判定河段所处河型及状态,并对其调整方向作出预测。研究成果对于河道整治工程有一定的参考价值。
Adjustments to alluvial channels involve a large number of variables whoseinterdependence is not always clear because the roles of a single variable cannot easilybe isolated. It is still a matter of debate and continues to attract close attention fromhydrologists, geomorphologists, and engineers. Based on different criteria, variousstudies have provided a great deal of information on the response of channelmorphology to controlling variables and classifications of natural rivers, although noneis particularly quantitative. With the rapid developments of numerical and mathematicsmethods in fluid mechanics, multiple-mathematics models have become important toolsfor hydraulic engineering and river dynamics research. The general purpose of thisstudy is to find out the main control factors of channel pattern transformation by usingan improved2D numerical model; and then based on the cusp catastrophic theory,establish a threshold to classify the channel patterns, to describe the stability of riverchannels, and to predict the transformation of channel patterns by selecting suitableparameters derived from the main control factors.
     This study adopts a hydrodynamic model to study the control factors on thetransformation of channel patterns. An imrpoved2-D depth-averaged model forhydrodynamic, sediment transport and river morphological adjustment is presented inthis paper, which is based on orthogonal curvilinear grid system. The hydrodynamicsubmodel takes into account the impact of vegetation with a vegetation stress term inthe flow momentum conservation equation. The sediment transport submodel considersnon-uniform sediment, bed surface armoring, impact of secondary flow on the directionof bed-load transport, and transverse slope of river bed; the grain size distribution issimulated according to the sediment mass conversation equation for bed surface. Basedon the original one for cohesive bank erosion, the bank failure submodel adds anon-cohesive bank erosion model considering the influence of river bend and a simplebank erosion model with mixture sediment, so that it is capable to simulate theevolution of sand bars with different bank material.
     The extended2D numerical model is applied to the experiment on downstream finingby Seal, a180°bend with a constant radius under unsteady flow conditions, and toFriedkin’s laboratory meander channels. The results are in acceptable agreement with measurements, confirming the two dimensional model’s potential in predicting theformation of river meandering and improving understanding of patterning processes.After that, some numerical experiments are performed to disscuss the influence ofCoriolis force on river meandering, simulate different channel patterns with variousdifferent factors by the improved2D numerical model, and the dominant control factorson the transformation of alluvial channels are identified.
     According to the results of numerical experiments, equations of equilibrium state andthe transformation of channel patterns are established based on the model ofcusp-catastrophe surface by selecting suitable parameters. The stability of channelpatterns can be identified by such a model in a direct way with quantified index, whichis a cusp catastrophe surface in a translated three dimensional coordinate, and the2Dprojection of the cusp catastrophe surface can be used to classify alluvial channelpatterns, and discriminant functions are obtained from the model to distinguish thechannel patterns. Predictions based on this model are consistent with field observationsinvolving about100natural rivers of small or medium sizes. The results indicate thatthis method may be applied to study the regime of natural rivers and to assist decisionmaking in river engineering.
引文
[1] Ashmore, P. E. Channel morphology and bed load pulses in braided, gravel-bed streams.Geografiska Ann.,1991,73A:37-52.
    [2] Andrew D. Binns and Ana Maria Ferreira da Silva, M. On the Quantification of the BedDevelopment Time of Alluvial Meandering Streams. Journal of Hydraulic Engineering,2009, Vol.135:350-360.
    [3] Asahi Kazutake, Shimizu Yasuyuki, Nelson Jonathan. Development of numericalsimulation model of free meandering with natural cut-off. River, Coastal andEstuarine Morphodynamics: RCEM2011.
    [4] Abt S.R., Clary W.P., Thornton C.T. Sediment deposition and entrapment in vegetatedstreambeds. Journal of Irrigation and Drainage Engineering,1994, Vol.120, n.6:1098-1111.
    [5] Abad Jorge D., Gustavo C.Buscaglia and Marcelo H.Garcia.2D stream hydrodynamic,sediment transport and bed morphology model for engineering applications.Hydrological Processes,2008,22:1443-1359.
    [6] Andrews, E. D., D.C. Erman.Persistence in the size distribution of surficial bed materialduring an extreme snowmelt flood. Water Resources Research,1986,22(2):191-197.
    [7] Agarwal, V.C. Studies on the Characteristics of Meandering Streams. Ph.D Thesis, I.I.T.(formerly University of Roorkee), Roorkee,1983.
    [8] Acker, P., and Charlton F.G. Dimensional analysis of alluvial channels with specialreference to meander length.J.Hydraulic Res.,1964,8:287-316.
    [9] Arnol’d V.I.Dynamical Systems V: Bifurcation Theory and Catastrophe Theory.Springer-Verlag Berlin Heidelberg,1994.
    [10] BAI Yuchuan, HAN Qiwei, XU Haijue, XU Dong, YANG Yanhua, LIU Xiaoxie. Theoryand Applications of Nonlinear River Dynamics. River, Coastal and EstuarineMorphodynamics: RCEM2011.
    [11] Bennett, S.J., Pirim, T. and Barkdoll, B.D. Using simulated emergent vegetation to alterstream flow direction within a straight experimental channel. Geomorphology,2002,44:115-126.
    [12] Bathurst, J.C., Thorne, C.R.and Hey, R.D. Secondary flow from and shear stress at riverbends. J. Hydraulics Div., Am.Soc.Civil Eng.,1979,105:1277-1295.
    [13] Chitale, S.V. River channel patterns. J. Hyd. Div., Proc., Amer.Soc. Civil Engrs.,1970,Vol.96:201-222.
    [14] Coulthard, T.J., Macklin, M.G., Kirkby, M. J. A cellular automaton fluvial and slopemodel of landscape evolution. In:Abrahart, R.J.(Ed.), Proceedings of the1stInternational Conference on Geocomputation, University of Leeds,17-19September,Leeds, UK,1996:168-185.
    [15] Coulthard, T.J., Van De Wiel, M.J. A cellular model of river meandering. Earth SurfaceProcesses and Landforms,2006,31:123-132.
    [16] Crosato A. Analysis and Modelling of River Meandering. PhD Thesis, Delft Universityof Technology. IOS Press: Amsterdam,251,2008.
    [17] Chen, D., Duan, J.G. Simulating Meandering Channel Evolution with an AnalyticalModel. J. Hydraul. Res.,2006,44(3),363–373.
    [18] Christian A. Braudrick, William E. Dietrich, Glen T. Leverich, and Leonard S.Sklar.Experimental evidence for the conditions necessary to sustain meandering incoarse-bedded rivers. Proc. Natl. Acad. Sci. USA.2009October6;106(40):16936–16941.
    [19] Doeschl-Wilson, A.B., Ashmore, P.E. Assessing a numerical cellular braided-streammodel with a physical model. Earth Surface Processes and Landforms,2005,30:519-540.
    [20] Darby, S. E., and Thorne, C. R. Numerical simulation of widening and bed deformationof straight sand-bed rivers I: Model development. Journal of HydraulicEngineering,ASCE,1996,122(4):184-193.
    [21] Darby, S.E., Alabyan, A.M., Van de Wiel, M.J. Numerical simulation of bank erosionand channel migration in meandering rivers. Water Resources Research,2002,38(9):1-21.
    [22] Duan, Jennifer G. Analytical approach to calculate rate of bank erosion.Journal ofHydraulic Engineering,1998,131,11:980-990.
    [23] Duan, Jennifer G.Numerical analysis of river channel processes with bank erosion.Journal of Hydraulic engineering,2001,127:702.
    [24] Duan, Jennifer G., Julien, Pierre Y. Numerical simulation of the inception of channelmeandering.Earth Surface Processes&Landforms,2005,30(7):1093-1110.
    [25] Duan, Jennifer G., Julien, Pierre Y. Numerical simulation of meandering evolution.Journal of Hydrology,2010,391:34-46.
    [26] De Vriend H. J. A mathematical model of steady flow in curved shallow channel. J.Hydr. Res., Delft, the Netherlands,1977, Vol.15, No.1:37-54.
    [27] Einstein, H.A and Banks, RB. Fluid resistance of composite roughness. Trans. Am.Geophys. Union,1950,31:603-610.
    [28] Einstein, H. A. The bedload function for sediment transport in open channel flows. Tech.Bull. No.1026, U.S. Dept. of Agriculture, Soil Conservation Service, Washington,D.C.1950.
    [29] Einstein, H. A., Shen, H. W. A study on meandering in straight alluvial channels.Journal of Geophysical Research,1964, Vol.69, NO.24:5239-5247.
    [30] Engelund, F. Flow and bed topography in channel bends. J.Hydraul. Div., ASCE,1974,100:1631-1648.
    [31] Fukuoka Shoji.Erosion processes of natural river bank.The1st InternationalSymposium on Hydraulic Measurement,1994:222-230.
    [32] Ferguson, R.I.Disturbed periodic model for river meanders.Earth Surface Processes,1975, Vol.1:71-88.
    [33] Friedkin J. A laboratory study of the meandering of alluvial rivers.US WaterwaysExperiment station: Vicksburg,1945.
    [34] Finnie J., Donnell B., Letter J., and Bernard R. S. Secondary flow correction fordepth-averaged flow calculations. J. Engrg. Mech., ASCE,1999, Vol.125, No.7:848-863.
    [35] Friend PF, Sinha R. Braiding and meandering parameters. In Braided Rivers, Best JL,Bristow CS (Eds). The Geological Society, London,1993:105-112.
    [36] Graf. WL. Applications of catastrophe theory in fluvial geomorphology. ModelingGeomorphologic Systems. Chichester: Wiley,1988:33-47.
    [37] Gilmore R. Catastrophe Theory for Scientists and Engineers. Dover, New York, NY,USA,1993.
    [38] Howard, Alan D. Thomas R.Knutson.Sufficient conditions for river meandering: Asimulation approach.Water Resources Research,1984, Vol.20:1659-1667.
    [39] Hans-Henrik Stolum. River meandering as a self-organization process. Science,1996,Vol.271:1710-1712.
    [40] Hasegawa, K. Bank-erosion discharge based on a non-equilibrium theory. Proc. JSCE,Tokyo,1981,316:37-50(in Japanese).
    [41] Hicken, E.J. Vegetation and river channel dynamics. Can. Geographer,1984, XXVIII(2):111-126.
    [42] Hickin, E.J. A newly identified process of point bar formation in natural streams,Am.J.Sci.,1969,267:999-1010.
    [43] Henley S. Catastrophe theory models in geology. Mathematical Geology,1976, Vol.8,No.6:649-655.
    [44] Ikeda S, Izumi N. Width and depth of self-formed straight gravel rivers with bankvegetation.Water Resources Research,1990, Vol.26:2353-2364.
    [45] Ikeda Syunsuke, Parker, G. Kenji Sawai. Bend theory of river meanders. Part1: Lineardevelopment. Journal of Fluid Mechanics,1981,112.
    [46] Ikeda Hiroshi. Sedimentary controls on channel migration and origin of point bars insand-bedded meandering rivers. Water Resources Monograph,1989, Vol.12:51-68.
    [47] Juha J rvel. Effect of submerged flexible vegetation on flow structure and resistance.Journal of Hydrology,2005, Vol.307:233–241
    [48] Jagers, H.R.A. A comparison of prediction methods for medium-term planform changesin braided rivers. Proc.2nd IAHR Symposium on River, Coastal and EstuarineMorphodynamics (RCEM),10-14Sept. Obihiro, Japan,2001:713-722.
    [49] Jagers, H.R.A. Predicting planform changes using neural networks. Proc.6th Int. Conf.HydroInformatics2004,21-24June, Singapore, Eds. S.-Y. Liong, K.-K Phoon&Babovic, World Scientific Publishing, Singapore,2004:1369-1376.
    [50] Johannesson, H., and Parker, G. Linear theory of river meanders, River Meandering,Water Resour. Monogr., edited by S. Ikeda and G. Parker.,1989,vol.12:181-213, AGU,Washington, D.C.
    [51] Jang, C-L.and Shimizu, Y. Numerical analysis of braided rivers and alluvial fan deltas.Engineering Applications of Computational Fluid Mechanicsm,2009, No.1:390-395.
    [52] Kuang Hong Wei.Physical and numerical modeling study of meandering in fluvialRivers.PHD thesis, UK, Cardiff University,2011.
    [53] Kim Hyungsuk, Ichiro Kimura, Yasuyuki Shimizu. Numerical simulation of channelmeandering processes. River, Coastal and Estuarine Morphodynamics: RCEM2011.
    [54] Kovacs, A. E. Time development of straight self-formed channels in non-cohesivematerial, M.S. thesis, University of Minnesota,1992.
    [55] Kovacs A, Parker G. A new vectorial bedload formulation and its application to the timeevolution of straight river channels. Journal of Fluid Mechanics,1994,267:153-183.
    [56] Kurabayashi H, Shimizu and Fujita. Numerical calculation of bed deformation inmultiple and braided bar stream. J. Hydrosci. Hydraul. Eng.,2002, Vol.20:127-136.
    [57] Knighton David. Fluvial Forms and Processes.John Wiley&Sons, Inc. New York,1984.
    [58] Kouwen, N., Fathi-Maghadam, M. Nonrigid, nonsubmerged, vegetative roughness onfloodplains. Journal of Hydraulic Engineering,1997,123(1):51-57.
    [59] Kouwen, N., Fathi-Moghadam, M. Friction factors for coniferous trees along rivers.Journal of Hydraulic Engineering,2000,126(10):732-740.
    [60] Koch, F.G.and Flokstra, C. Bed level computations for curved alluvial channels,Proceedings of the XIXth Congress of the IAHR, New Delhi, India,1981:357-364.
    [61] Klaassen, G.J., Mosselman, E. and Bruè hl, H. On the prediction of planform changesof braided sand-bed rivers.In: Advances in Hydroscience and Engineering (Ed. ByS.S.Y. Wang), Proc. Int. Conf. Hydrosci. Eng.,1993:134-146.
    [62] Khan H.R. Laboratory Studies of Alluvial River Channel Patterns. Ph. D. Dissertation,Dept. of Civil Engineering, Colorado State University, Fort Collins, CO.,1971.
    [63] Karim M. Fazle, Forrest M. Holly, Jr., M.Armoring and sorting simulation in alluvialrivers.Journal of Hydraulic Engineering,1986,112(8):705-715.
    [64] Kubicek, M., Marek, M.Computational Methods in Bifurcation Theory and DissipativeStructures.Springer-Verlag New York Inc.,1983:40-42.
    [65] Lien,H.C.,Hsieh,T.Y.,Yang,J.C.,and Yeh,K.C.Bend flow simulation using2Ddepth-averaged model.J.Hydraul.Eng.,1999,125(10),1097-1108.
    [66] Lancaster, Stephen T., Bras, Rafael L. A simple model of river meandering and itscomparison to natural channels. Hydrol. Process,2002,16:1-26.
    [67] Leopold L B, Wolman M G. River Channel Patterns: Braided, Meandering and Straight.USGS Professional Paper282B,1957.
    [68] Lopez F, Garcia M. Open-channel flow through simulated vegetation: Suspendedsediment transport modeling. Water Resources Research,1998, Vol.34:2341-2352.
    [69] Lewin, J. Initiation of Bed Forms and Meanders in Coarse Grained Sediment. Geo. Soc.of America, Bull.1976, Vol.87:281-285.
    [70] Motta Davide, Jorge D. Abad, Eddy J. Langendoen, Marcelo H. GARCIA. Floodplainheterogeneity and meander migration. River, Coastal and Estuarine Morphodynamics:RCEM2011.
    [71] Murray, A.B., Paola, C. A cellular model of braided rivers.Nature,1994,371:54-57.
    [72] Murray, A.B., Paola, C. Modelling the effect of vegetation on channel pattern in bedloadrivers. Earth Surface Processes and Landforms,2003,28:131-143.
    [73] Mosselman E. Morphological modeling of rivers with erodible banks. HydrologicalProcesses,1998,12(8):1357-1370.
    [74] Millar, R.G. Influence of bank vegetation on alluvial channel patterns. Water ResourcesReasearch,2000,36(4):1109-1118.
    [75] Marion, A., Fraccarollo, L. Experimental investigation of mobile armoring development:Water Resources Research,1997, v.33:1447-1453.
    [76] Marcelo H.Garcia. Sedimentation Engineering.ASCE,2008.
    [77] Nagata, N., Hosoda, T., and Muramoto, Y. Numerical analysis of river channelprocesses with bank erosion. Journal of Hydraulic Engineering,2000,126:243-252.
    [78] Nicholas AP, Smith GHS. Numerical simulation of three-dimensional flow hydraulics ina braided channel. Hydrologic Processes,1999,13:913-929.
    [79] Osman A M, Thorne C R. Riverbank stability analysis, I: Theory. Journal of HydraulicEngineering,1988,114(2):134-150.
    [80] Olsen N R B.3D CFD modeling of a self-forming meandering channel.Journal ofHydraulic Engineering,2003,114(2):134-150.
    [81] Odgaard, A.J. Tranverse bed slope in alluvial channel bends. J.Hydraul.Div. ASCE,1981,107:1677-1694.
    [82] Pittaluga, M.Bolla, Nobile, G., Seminara, G.A nonlinear model for rivermeandering.Water Resource Research,2009, Vol.45.
    [83] Parker, G.On the cause and charachteristic scales of meandering and braidedrivers.Journal of Fluid Mechanics,1976,76:457-480.
    [84] Parker G, Andrews E D. On the time development of meander bends. Journal of FluidMechanics,1986,162:139-156.
    [85] Parker, G. Selective sorting and abrasion of river gravel. I: Theory. Journal of HydraulicEngineering,1991, Vol.117, No.2:131-149.
    [86] Proffitt, G.J. and Sutherland, A. J.Transport of nonuniform sediment. J. Hydr.Res.,IAHR,1983, Vol.21, No.1:33-43.
    [87] Quraishy, M.S. The meandering of alluvial rivers.Sind Univ.Res.J.1973,7:95-152.
    [88] Rouve M., Pasche E. Over bank flow with vegetative roughened flood plains. Journal ofHydraulic Engineering, ASCE,1986, Vol.111, n.9:1262-1278.
    [89] Richards, K.S. Rivers: Form and Process in Alluvial Channels. London, Methuen,1982.
    [90] Richard J.Chorley, Antony J.Dunn, Robert P.Beckinsale. The History of the Study ofLandforms or the Development of Geomorphology.Cromwell Press, Trowbridge, UK,1931.
    [91] Ruther N, Olsen N R B. Modeling free-forming meander evolution in a laboratorychannel using three-dimensional computational fluid dynamics. Geomorphology,2007,89:308-319.
    [92] Rust, B.R. A Classification of alluvial channel systems, in fluvial sediment-logy.ed.byA.D.Miall, Memoir No.5.Cannadian soc.Petroleum geologisis,1978:187-198.
    [93] Smith, D., McLean, S.R.A model of flow in meandering streams.Water ResourceReseaech,1984, Vlo.20,1301-1315.
    [94] Seminara, G., Zolezzi, G., Tubino, M. and Zardi, D.Downstream and upstream influencein river meandering.Part2.Planimetric development.J.Fluid Mech.,2001, Vol.438,213-230.
    [95] Schumm, S.A. patterns of alluvial rivers. Annual Review of Earth and PlanetarySciences,1985,13:5-27.
    [96] Sun Tao, Paul Meakin, Torstein J ssang, Klaus Schwarz. A simulation model formeandering rivers. Water Resources Research,1996, Vol.32, No.9:2937.
    [97] Schuurman Filip, Kleinhans Maarten. Self-formed braided bar pattern in a numericalmodel. River, Coastal and Estuarine Morphodynamics: RCEM2011.
    [98] Shields Jr. F. D, Cooper C. M. Principles for woody vegetation in river restoration:Problem and Opportunities. Proc. of the International Symposium on RiverRestoration, Tokyo, Japan,1998:43-52.
    [99] Shields A.Anwedung der aehnlichkeitmechanik und der turbulenzforschung auf diegeschiebebewegung.Mitt Preuss, Versuchsanst, Wasserbau schiffbau,1936,26.
    [100] Scott C. James, Craig A. Jones, Matthew D. Grace, Jesse D. Roberts. Advances insediment transport modelling. Journal of Hydraulic Research,2010, Vol.48:754-763.
    [101] Seal, R., Paola, C., Parker, G., Southard, J. B., and Wilcock, P. R. Experiments ondownstream fining of gravel I: Narrow-channel runs. Journal of HydraulicEngineering-ASCE,1997, Vol.123, No.10:874-884.
    [102] Stephanie K. Davidson, Richard D. Hey. Regime equations for natural meanderingcobble and gravel bed rivers. Journal of Hydraulic Engineering,2011,2.
    [103] Steawart.I. The Seven Elementary Catastrophes. New Scientist,1975:20.
    [104] Simon, A., Curini, A.,Darby, S. E., and Langendon, E. J.Stream bank mechanics andthe role of bank and near-bank processes in incised chan-nels, in Incised RiverChannels, edited by S. E. Darby and A. Simon, John Wiley, New York,1999:123-152.
    [105] Shen, H.W. Keynote Examination of Present Knowledge of River Meandering. RiverMeandering–Proc.of the Conference Rivers-83, ASCE, New York, USA,1983:1008-1013.
    [106] Thornes, J.B. Structural instability and ephemeral channel behavior. Zeitschrift fürGeomorphologie Supplement band,1981,26:233-244.
    [107] Thorne, C.R.Effects of vegetation on riverbank erosion and stability in vegetation anderosin, edited by Thornes, J.B., John Wiley, New York,1990:125-144.
    [108] Thorne, S.D., Furbish, D.J. Influences of course bank rough-ness on flow within asharply curved river bend. Geomorphology,1995,12:241-257.
    [109] Takebayashi, H. and Okabe, T. Numerical modeling of braided streams in unsteadyflow.Water Mangement,2009, Vol.162:189-198.
    [110] Toro-Escobar Carlos M., Chris Paola, Parker G., Wilcock, Peter R., and Southard,John B. Experiments on Downstream Fining of Gravel II: Wide and Experiments onDownstream Fining of Gravel. Sandy Runs. Journal of Hydraulic Engineering Mar2000, Vol.126, No.3:198-208.
    [111] Talmon, A.M., Struiksma, N., Van Mierlo, M.C.L.M. Laboratory measurements of thedirection of sediment transport on transverse alluvial-bed slopes. Journal of HydraulicResearch,1995, Vol.33,4:495-517.
    [112] Van Rijn, L.C.Sediment transport, part II: Suspended load transport. J. Hydraul. Eng.,1984(b),110(11):1613-1641.
    [113] Van Rijn, L.C. Sediment Transport by Currents and Waves. Report H461, TechnicalReport, Delft Hydraulics,1989.
    [114] Van Rijn, L. C. Principles of sediment transport in rivers estuaries and coastalseas.Aqua Publications, The Netherlands,1993.
    [115] Varshney D V, Garde R J. Shear distribution in bend in rectangular channels. Journalof the Hydraulics Division, ASCE,1975,101(8):1053-1066.
    [116] Vanoni V.A., ed.Sedimentation engineering.ASCE Task Committee for the Preparationof the manual on sedimentation of the sedimentation committee of the HydrualicsDivision,1975.
    [117] Van den Berg J H. Prediction of alluvial channel pattern of perennial rivers.Geomorphology,1995,12:259.
    [118] Warburton, J., Davies, T. R. H. Variability of bedload transport and channelmorphology in a braided river hydraulic model. Earth Surf. Processes Landforms,1994,19:403-421.
    [119] Wilcock, P. R. Methods for estimating the critical shear stress of individual fractionsin mixed-size sediment. Water Resour. Res.,1988,24(7):1127-1135.
    [120] WU WEIMING, WANG S.Y., and JIA YAFEI. Nonuniform sediment transport inalluvial rivers. Journal of Hydraulic Research,2000, Vol.38(6):427-434.
    [121] Wang Sui-ji, Ni Jin-ren. Straight river: Its formation and speciality. Journal ofGeographical Sciences,2002, Volume12, No.1:72-80.
    [122] Yen, C. L., and Lee, K. T. Bed topography and sediment sorting in channel bend withunsteady flow. Journal of Hydraulic Engineering,1995,121(8):591-599.
    [123] Zimmerman C, Kennedy JF. Transverse bed slopes in curved alluvial streams. Journalof the Hydraulics Division,1978,104(HY1):33-48.
    [124] Zolezzi, G., Seminara, G. Downstream and upstream influence in river meandering.Part1. General theory and application to overdeepening. J.Fluid Mech.,2001,438:183-211.
    [125]杜梦.含沙量变化对游荡型河流河型转化影响的数值模拟研究[硕士学位论文].北京:清华大学,2011.
    [126]方宗岱.河型分析及其在河道整治上的应用.水利学报,1964,(1):1-12.
    [127]谷艳昌,王士军.水库大坝结构失稳突发事件预警阈值研究.水利学报,2009,10:1467-1472.
    [128]黄金池,万兆惠.黄河下游河床平面变形模拟研究.水利学报,1999,(2).
    [129]黄国鲜.弯曲和分叉河道水沙输运及其演变的三维数值模拟研究[博士学位论文].北京:清华大学,2006.
    [130]刘亚莲,周翠英.坝坡失稳的突变分析与判据研究.水电能源科学,2010,5.
    [131]假冬冬,邵学军,王虹,等.考虑河岸变形的三维水沙数值模拟研究.水科学进展,2009,3:311-317.
    [132]李保如.自然河工模型试验.水利水电科学研究院研究论文集第二集,1963(10):45-82.
    [133]李祚泳,郭淳,汪嘉杨,等.突变模型势函数的一般表示式及用于富营养化评价.水科学进展,2010,21(1):101-106.
    [134]李国英.黄河河势演变中科氏力的作用.水利学报,2007,12:1409-1413.
    [135]倪晋仁,张仁.河型成因的各种理论及其间关系.地理学报,1991,(3):366-372.
    [136]齐璞.冲积河型形成条件的探讨.泥沙研究,2002,(3):39-43.
    [137]钱宁.冲积河流稳定性指标的商榷.地理学报,1958,24(2):128-142.
    [138]钱宁.关于河流分类及成因问题的讨论.地理学报,1985,(3), Vol.40, No.1:1-9.
    [139]钱宁,张仁,周志德.河床演变学.北京:科学出版社,1987.
    [140]史传文,吴保生,马吉明.冲积河流河型的成因及分类与判别计算方法研究.水力发电学报,2007,10:107-110.
    [141]宋立松.分析潮汐河口稳定性的突变模型.水利学报,2001,9:10-15.
    [142]沈永明,吴修广,郑永红.曲线坐标下平面二维水流计算的代数应力湍流模型.水利学报,2005,4:1-11.
    [143]邵学军,王兴奎.河流动力学概论.北京:清华大学出版社,2005.
    [144]韦直林,谢鉴衡,傅国岩,尹小玲.黄河下游河床变形长期预测数学模型的研究.武汉水利电力大学学报.1997,12:1-5.
    [145]许炯心.河型对含沙量空间变异的响应及其临界现象.中国科学(D辑),1997,(6):548-553.
    [146]夏军强,王光谦,吴保生.平面二维河床纵向与横向变形数学模型.中国科学E辑,2004,14:165-174.
    [147]徐国宾,练继建.应用耗散结构理论分析河型转化.水动力学研究与进展,2004,5:316-320.
    [148]杨具瑞,方铎,何文社,等.推移质输沙的非线性研究.水科学进展,2003,14(1):36-40.
    [149]尹学良.弯曲性河流形成原因及造床试验初步研究.地理学报,1965,12:287-303.
    [150]余文畴,卢金友.长江河道演变与治理.中国水利水电出版社,2005.
    [151]张俊勇,陈立,王家生.河型研究综述.泥沙研究,2005,4:76-80.
    [152]张俊勇.陈立.入流角对河道曲流形成的影响.水利水运工程学报,2003,(1):63-66.
    [153]张俊勇陈立吴华林张福然.水系形成与发展的元胞自动机模型研究.水科学进展,2007,5:695-700.
    [154]周志德.20世纪的河床演变学.中国水利水电科学研究院学报,2003,3.
    [155]钟德钰,张红武.考虑环流横向输沙及河岸变形的平面二维扩展数学模型.水利学报,2004,7:1-9.
    [156]周刚,王虹,邵学军,等.河型转化机理及其数值模拟—Ⅰ.模型建立.水科学进展,2010,2:145-152.
    [157]周刚.河型转化机理及其数值模拟研究[博士学位论文].北京:清华大学,2009.
    [158]张红武,赵连军,曹丰生.游荡河型成因及其河型转化问题的研究.人民黄河,1996,(10):11-15.
    [159]张红武,江恩惠,白咏梅,等.黄河高含沙洪水模型的相似率.郑州:河南科学技术出版社,1994.
    [160]张红武,张俊华,江恩惠等.工程泥沙研究与实践.郑州:黄河水利出版社.1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700