南苕溪青山湖流域水污染特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南苕溪是太湖的源头水系,其水质状况对杭嘉湖平原居民饮用水安全和太湖流域的治理有重要意义。污染物总量控制和非点源污染防治是环境领域的研究重点。目前的研究集中在西苕溪流域,有关南苕溪流域水环境质量的报道少见。本试验以南苕溪青山湖流域为研究对象,利用改进的模糊层次分析法进行水质评价;选取其中污染严重的锦溪下游锦城段,利用物量平衡法对河道点源污染进行水环境容量测算;同时,利用输出系数法对该段集水区面源污染进行污染负荷估算。以上试验研究的主要结论如下:
     1)论文克服以往的模糊层次分析法低估污染的严重性和不能评价劣Ⅴ类水质的缺点,建立了一个改进的模糊层次分析模型;以流域实测水质资料为依据,应用该模型对南苕溪青山湖流域的水质及其时空变化进行了评价。改进的模糊层次分析法以各级水质标准上、下限的中间值为限值,来计算隶属度。这样就可以得到六个隶属函数,更符合研究问题的要求。评价结果表明:TN是主要的污染物,它的权重达到0.487;各断面水功能区超标严重,总体达标率仅为18.75%,属富营养化河流。
     2)针对南苕溪支流锦溪的污染现状,选其下游城镇区锦城段进行水环境容量研究。将研究区划分成不同的河段,应用物量平衡关系推算水环境容量模型。选取NH3-N和COD为评价指标,反推出最枯月NH3-N和COD的降解系数,利用配线法和水文比拟法求出典型水文年,再结合临安市水文特征,将各典型年份划分出不同水文期,分析各河段环境容量。计算结果表明,控制上游来水的NH3-N总量是锦溪水质改善的基础,枯水期至少要削减19.84 kg·d~(-1),平水期至少要削减36.50 kg·d~(-1)才能满足水功能区要求。同时,还要提高沿岸截污力度和点源排放达标率。
     3)在锦溪下游城镇区锦城段集水区,进行了4种土地利用类型、3种降雨强度的野外模拟降雨实验,综合分析了产流产污规律。结果表明,对于同种用地类型,随着降雨强度的增加,各污染指标初始冲刷浓度和平均浓度总体是增加的;同种降雨强度条件下,林地、农田、草地的TN、TP大于公路,COD均相差不大,仅在大雨强条件下,公路的COD大于其它三类用地;从各污染物含量来看,产污过程主要污染是氮污染。
     4)集水区内不同土地利用类型的UPLRs计算表明,除NH3-N外,公路的UPLRs都最高,TN、TP、COD值分别高达53.38 kg·hm~(-2)·a~(-1),9.19 kg·hm~(-2)·a~(-1),745.53 kg·hm~(-2)·a~(-1)。农田的UPLRs中NH3-N最高,TN、TP、COD分别为43.81 kg·hm~(-2)·a~(-1),8.80 kg·hm~(-2)·a~(-1),500.55 kg·hm~(-2)·a~(-1),仅次于公路。草地的UPLRs均最小,TN、NH3-N、TP、COD值分别为30.28 kg·hm~(-2)·a~(-1),13.62 kg·hm~(-2)·a~(-1),5.49 kg·hm~(-2)·a~(-1),213.65 kg·hm~(-2)·a~(-1)。总的来说,UPLRs的顺序为:公路﹥农田﹥林地﹥草地。
South Tiaoxi River, located in Lin’an city, Zhejiang province, is the headwater of Tai Lake. Watershed of Tiaoxi River covers Tai Lake region including Hang-Jia-Hu plain, therefore water quality condition of this River basin imposes direct effects on the residents’health living in this region, and water pollution control to the headwater is of great importance to preventing Tai Lake from contamination. Total pollutant control and non-point source pollution control are the focus of environmental research in the field. The current study has focused on Xi Tiaoxi basin, while the South Tiaoxi River reported rare. Taking South Tiaoxi River as the research object, this study selected South Tiaoxi River Qingshan Lake basin, used an improved fuzzy analytic hierarchy process (FAHP) for water quality assessment. According to the severe pollution of Jinxi River, small watershed of Jinxi River Jincheng segment was selected, material balance method used to calculate water environmental capacity of point source pollution in the river, and used export coefficient method to estimate non-point source pollution loads. The main results are as follows:
     1) An improved FAHP was established to meet the practical water quality sitiuation and the severity of pollution up to the inferiorⅤwater quality. The improved FAHP took the intermediate value of the upper and lower limits of water quality standards as limited value to compute the degree of membership. In the way, six membership functions were obtained. The eveluation results showed that the major pollutant was nitrogen whose weight coefficient reached 0.487. Each section of water functional areas has exceeded standard seriously. The overall standard-reaching rate was 18.75%. It is a eutrophic River.
     2) According to the pollution situation about Jinxi River, a tributary of South Tiaoxi River, this article went on studying water environmental capacity of Jincheng segment. Divided research area into several parts, equilibrium relationship w deduced water environmental capacity model. NH3-N and COD were selected as evaluation indexes to analysis its environmental capacity. Typical hydrological years were calculated by fitting curve method and hydrological analogy method. Combining with hydrological characteristics of Lin’an city, typical hydrological years were divided into different hydrographic periods. Then, water environmental capacity was analyzed. The calculating results showed that improving water quality of Jinxi River was based on controlling ammonia nitrogen’s total amount from upland water. In dry season and normal season, the total amount of ammonia nitrogen,which were whittled at least 19.84 kg·d~(-1) and 36.50 kg·d~(-1) that can meet water functional requirements, respectively. Meanwhile, coastal sewage interception strength and standard-reaching rate of point source emission should be improved.
     3) Experiments of artificial simulated rainfall were conducted in Jinxi River Jincheng segment. Three kinds of rainfall intensities were designed in experiments to analyze effects of four types of land using in runoff and sewage yield. The results showed that for the same land using types, with in rainfall intensity increasing, the concentration of the first flush and average concentration were increase in overall. Under the same rainfall intensity, different land using types were compared. For the concentration of TN and TP, woodland, farmland and grassland were higher than road. And for COD, each land using types had little difference. Only under heavy rainfall intensity, road was higher than the other three land using types. From the view of pollutant content, the process of main pollutant yield was nitrogen.
     4) The UPLRs calculations of different land using types showed that, in addition to NH3-N, UPLRs of road were the highest, which values of TN, TP and COD reached 53.38 kg·hm~(-2)·a~(-1),9.19 kg·hm~(-2)·a~(-1),745.53 kg·hm~(-2)·a~(-1), respectively. UPLRs of NH3-N was the highest in farmland, which values of TN, TP and COD reached 43.81 kg·hm~(-2)·a~(-1),8.80 kg·hm~(-2)·a~(-1),500.55 kg·hm~(-2)·a~(-1), respectively, next to road. UPLRs of grassland were the minimun, which values of TN, NH3-N, TP and COD were 30.28 kg·hm~(-2)·a~(-1),13.62 kg·hm~(-2)·a~(-1),5.49 kg·hm~(-2)·a~(-1), 213.65 kg·hm~(-2)·a~(-1), respectively. Conclusively, the order of UPLRs were road>farmland>woodland>grassland.
引文
[1]万咸涛.水环境质量评价综述[J].水资源研究,2005,26(4):32–37.
    [2]李如忠.水质评价理论模式研究进展及趋势分析[J].合肥工业大学学报,2005,28(4):369–373.
    [3]刘征,刘洋.水污染指数评价方法与应用分析[J].南水北调与水利科技,2005,3(4):35–37.
    [4]国家环境保护总局,国家质量监督检验检疫总局.地表水环境质量标准GB3838-2002[S].北京:中国环境科学出版社,2002.
    [5]黄东亮.我国饮用水源水质评价的新方法[J].水文,2001,21(增刊):62–64.
    [6] SIMONE DE ROSEMOND, DENNIS C. DURO. Comparative analysis of regional water quality in Canada using the Water Quality Index[J]. Environ Monit Assess, 2009, 156: 223–240.
    [7]李祚泳.环境质量综合指数的余分指数合成法[J].中国环境科学,1997,17(6):554–556.
    [8]徐祖信.我国河流综合水质标识指数评价方法研究[J].同济大学学报,2005,33(4):482–488.
    [9]李凡修,陈武,梅平.浅层地下水环境质量评价的综合指数模型[J].地下水,2004,26(1):36–37.
    [10]王文强.综合指数法在地下水水质评价中的应用[J].水利科技与经济,2008,14(1):54–55.
    [11]陈仁杰,钱海雷,袁东,等.改良综合指数法及其在上海市水源水质评价中的应用[J].环境科学学报,2010,30(2):431–437.
    [12]张涛,张宁红,司蔚.河流水质评价方法研究—以太湖流域为例[J].三峡环境与生态,2010,3(3):5–7.
    [13]冯旭.渭河关中段水体污染评价及水质演变规律研究[D].陕西:西北农林科技大学,2010.
    [14] ZHU L, HU H. Fuzzy Complex Index in Water Quality Assessment of Municipalities [J]. Journal of Water Resource and Protection, 2010, 2: 809–813.
    [15]马玉杰,郑西来,李永霞,等.地下水质量模糊综合评判法的改进与应用[J].中国矿业大学学报,2009,38(5):745–750.
    [16]门宝辉,梁川.基于变异系数权重的水质评价属性识别模型[J].哈尔滨工业大学学报,2005,37(10):1373–1375.
    [17]刘燕,吴文玲,胡安焱.基于熵权的属性识别水质评价模型[J].人民黄河,2005,27(7):18–19,27.
    [18]金菊良,黄慧梅,魏一鸣.基于组合权重的水质评价模型[J].水力发电学报,2004,23(3):13–19.
    [19]田景环,邱林,柴福鑫.模糊识别在水质综合评价中的应用[J].环境科学学报,2005,25(7):950–953.
    [20]刘昕,刘开第,李春杰,等.水质评价中的指标权重与隶属度转换算法[J].兰州理工大学学报,2009,35(1):63–66.
    [21]潘理黎,黄小华,严国奇,等.地表水模糊综合评价中隶属度的图算方法[J].安全与环境学报,2004,6(4):11–13.
    [22]张欣莉,丁晶,李祚泳,等.投影寻踪新算法在水质评价模型中的应用[J].中国环境科学,2000,20(2):187–189.
    [23] ZHANG Y, GUO F, MENG W, et al. Water quality assessment and source identification of Daliao River basin using multivariate statistical methods[J]. Environ Monit Assess, 2009, 152: 105–121.
    [24] MEMET VAROL, BULENT SEN. Assessment of surface water quality using multivariate statistical techniques: a case study of Behrimaz Stream, Turkey [J]. Environ Monit Assess, 2009, 159: 543–553.
    [25]王学军,马廷.应用遥感技术监测和评价太湖水质状况[J].环境科学,2000,21:65–68.
    [26] JING B, GU H F. Analysis for GIS and Model Integration in the Groundwater Quality Assessment on Watershed [J]. Resources and Environment in the Yangtze Basin, 2009, 18(3): 248–253.
    [27]曹芳平,皱峥嵘.基于GIS技术的河流水质评价系统的设计与实现[J].测绘科学,2009,34(1):192–193.
    [28]王卫平.九龙江流域水环境容量变化模拟及污染物总量控制措施研究[D].厦门大学,2007,4.
    [29]梁博,王晓燕.我国水环境污染物总量控制研究的现状与展望[J].首都师范大学学报(自然科学版),2005,26(1):93–98.
    [30] US EPA. Protocol of developing nutrient TMDLs[R]. Office of Water 4503F Washington D C 20460, EPA 841-B-99-007, 1999.
    [31] LEON P,GEORGES Z. Time-consistent Shapley value allocation of pollution cost reduction [J]. Journal of Economic Dynamics Control, 2003, 27: 381–398.
    [32] ERIC J.JOKELA, PHILIP M.DORHGERTYB, TIMOTHY A.MARTINA. Production dynamics of intensively managed loblolly pine stands in the southern United States: a synthesis of seven long-term experiments [J]. Forest Ecology and Management, 2004, 192: 117–130.
    [33] XING L T, WU Q, YE CH H, et al. Groundwater environmental capacity and its evaluation index [J]. Environ Monit Assess, 2010, 169: 217–227.
    [34]张永良.水环境容量基本概念的发展[J].环境科学研究,1992,5(3):59–61.
    [35]刘培哲.水环境容量研究的理论和实践[C].环境科学论文集,北京:中国环境科学出版社,2000:8–20.
    [36]于雷,吴舜泽,徐毅.我国水环境容量研究应用回顾及展望[J].环境保护,2007,03B:46–48,57.
    [37]中华人民共和国环境保护部.2008中国环境状况公报[R].2009.
    [38]鲍琨,逄勇,孙瀚.基于控制断面水质达标的水环境容量计算方法研究——以殷村港为例[J].资源科学,2011,33(2):249–252.
    [39]幕妍.牡丹江市地表水环境容量测算及其未来发展趋势的研究[D].吉林大学,2009.
    [40]周孝德,郭瑾珑,程文,等.水环境容量计算方法研究[J].西安理工大学学报,1999,15(3):1–6.
    [41]郑英铭,高建群.潮汐河流水环境容量的研究[J].环境科学,1990,11(3):63–69.
    [42]李开明,陈铣成.东莞运河水环境容量优化研究[J].环境科学研究,1991,4(5):13–16.
    [43]王素娜,吕军,王世界,等.曹娥江上游支流水环境容量的研究[J].农机化研究,2006,(9):198–200,203.
    [44]宿俊英,秦佩英,刘树坤,等.太湖水环境容量的研究[J].水利学报,1992,(11):22–36.
    [45]孙卫红,姚国金,逢勇.基于不均匀系数的水环境容量计算方法探讨[J].水资源保护,2006(2):25–26.
    [46]戴本林,杨立中,贺玉龙,等.四川省茶坪河水环境容量及总量控制[J].湖泊科学,2008,20(1):39–44.
    [47]蒲迅赤,赵文谦.纳污河道水环境自净容量的精确计算方法[J].四川大学学报,2001,33(1).1–4.
    [48]阎非,苏保林,贾海峰.基于排污口权重的一维河流水环境容量计算[J].水资源保护,2006,22(2):16–18.
    [49]喻良,刘遂庆,王牧阳.基于水环境模型的水环境容量计算的研究[J].河南科学,2006,24(6):874–876.
    [50]张俊,宗莲,王成见,等.大沽河干流青岛段水环境容量研究[J].青岛海洋大学学报,2003,33(5):665–668.
    [51]郑孝宇,褚君达,朱维斌.河网非稳态水环境容量研究[J].水科学进展,1997,8(1):25–31.
    [52]陈振洪.双向流模型在赶潮河段水环境容量计算中的应用探讨[J].福建师范福清分校学报,2005(2):5–8.
    [53]胡国华,赵沛伦,王任翔.黄河孟津—花园口河段水环境容量研究[J].水资源保护,2002,1:26–28.
    [54]叶桂忠,刘俊.漓江桂林市区段水环境容量研究[J].水资源保护,2003,19(3):10-12,15.
    [55]车武,刘燕,李俊奇.北京城区面源污染特征及其控制对策[J].北京建筑工程学院学报,2002,18(4):5–9.
    [56]洪华生,张玉珍,曹文志.九龙江五川流域农业非点源污染研究[M].科学出版社,2007.
    [57]王晓峰,王晓燕.国外降雨径流污染过程及控制管理研究进展[J].首都师范大学学报(自然科学版),2002,23(1):91–96,101.
    [58]朱松,方沛南,蓝雪春.降雨径流污染研究综述[J].中国农学通报,2009,25(12):240–245.
    [59] US EPA. Natural water quality inventory[R]. Office of Water, Washington DC. http://www.epa.gov/owow/305b/2004report/.
    [60]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [61]左海军.农田氮素淋溶损失影响因素及防治对策研究[J].环境污染与防治,2008,30(12):83–89.
    [62]徐明岗.土壤磷扩散规律及其能量特征的研究.II.施肥量及水肥温相互作用对磷扩散的影响[J].土壤学报,1998,35(1):55–65.
    [63] DELETIC A B, MAKSIMOVIC C T. Evaluation of water quality factors in storm runoff from paved areas [J]. J of Envir Engrg ASCE, 1998, 124(9):869–879.
    [64]王库,吴文英,陈郁青,等.福州城市地表径流的非点源污染特征[J].闽江学院学报,2009,30(2):55–65.
    [65]马琨,王兆骞,陈欣,等.不同雨强条件下红壤坡地养分流失特征研究[J].水土保持学报,2002,16(3):16–19.
    [66]张赫斯,张丽萍,朱晓梅,等.红壤坡地降雨产流产沙动态过程模拟试验研究[J].生态环境学报,2010,19(5):1210–1214.
    [67]孙达,张妙仙,吴希媛,等.野外人工模拟降雨条件下荒草坡产流产污试验研究[J].水土保持通报,2008,28(3):121–123.
    [68]石德坤.模拟降雨条件下坡地氮流失特征研究[J].水土保持通报,2009,29(5):98–101.
    [69]罗春燕,涂仕华,庞良玉,等.降雨强度对紫色土坡耕地养分流失的影响[J].水土保持学报,2009,23(4):24–27.
    [70]康玲玲,朱小勇,王云璋,等.不同雨强条件下黄土性土壤养分流失规律研究[J].土壤学报,1999,36(4):536–543.
    [71]张亚丽,李怀恩,杨素勤,等.模拟降雨条件下黄土坡地土壤溶质迁移特征试验研究[J].水土保持学报,2009,23(4):113–117.
    [72]张继宗,雷秋良,左强,等.模拟降雨条件下太湖地区稻田氮素径流流失特征[J].湖北农业科学,2009,48(11):2688–2692.
    [73]梁涛,王浩,章申,等.西苕溪流域不同土地类型下磷素随暴雨径流的迁移特征[J].环境科学,2003,24(2):35–40.
    [74]王昕皓,非点源污染负荷计算的单元坡面模型法[J].中国环境科学,1985,15(5):62–67.
    [75]李怀恩,沈冰,沈晋.暴雨径流污染负荷计算的响应函数模型[J].中国环境科学,1997,17(1):15–18.
    [76]李怀恩.估算非点源污染负荷的平均浓度及其应用[J].环境科学学报,2000,20(4):397–400.
    [77]蔡明,李怀恩,庄咏涛.改进的输出系数法在流域非点源污染负荷估算中的应用[J].水利学报,2004,7:40–45.
    [78] JOHNES P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modeling approach [J]. Journal of Hydrology, 1996 ,183:323–349.
    [79]王波,张天柱.辽河流域非点源污染负荷估算[J].重庆环境科学,2003,25(12):132–133.
    [80]龙天渝,梁常德,李继承,等.基于SIURP模型和输出系数法的三峡库区非点源氮磷负荷预测[J].环境科学学报,2008,28(3):574–581.
    [81]丁晓雯,沈珍瑶,刘瑞民.长江上游非点源氮素负荷时空变化特征研究[J].农业环境科学学报,2007,26(3):836–841.
    [82]刘瑞民,沈珍瑶,丁晓雯,等.应用输出系数模型估算长江上游非点源污染负荷[J].农业环境科学学报,2008,27(2):677–682.
    [83]沈珍瑶,刘瑞民,叶闽,等.长江上游非点源污染特征及其变化规律[M].北京:科学出版社,2008.
    [84]国家统计局,国家环境保护总局.2008中国环境统计年鉴[M].中国统计出版社,2008:19.
    [85]张红举,陈方.太湖流域面源污染现状及控制途径[J].水资源保护,2010,26(3):87–90.
    [86]太湖流域水环境综合治理总体方案,2008.
    [87]陈英旭,史惠祥,徐向阳,等.太湖流域苕溪面源污染河流综合整治技术集成与示范工程研究进展[C].河流主题“面源污染控制技术”研讨会论文集.杭州,2010,1–11.
    [88]于兴修,杨桂山.典型流域土地利用/覆被变化及对水质的影响——以太湖上游浙江西苕溪流域为例[J].长江流域资源与环境,2005,12(3):211–217.
    [89]于兴修,杨桂山,欧维新.非点源污染对太湖上游西苕溪流域水环境的影响[J].湖泊科学,2003,15(1):49–55.
    [90]李兆富,杨桂山,李恒鹏.西苕溪典型小流域土地利用对氮素输出的影响[J].中国环境科学,2005,25(6):678–681.
    [91]李丽娇,薛丽娟,张奇.基于SWAT的西苕溪流域降雨—径流关系及水量平衡分析[J].水土保持通报,2008,28(5):81-85.
    [92]陈月,席北斗,何连生,等.QUAL2K模拟在西苕溪干流梅溪段水质模拟中的应用[J].环境工程学报,2008,2(7):1000–1003.
    [93]落国富.青山水库提高汛限水位可行性研究[D].浙江大学,2010,7.
    [94]徐涌,叶正钱,姜培坤,等.太湖源林区水系源头水质时空变异与原因探析[J].浙江林学院学报,2009,26(5):607–612.
    [95]薛巧英.水环境质量评价方法的比较分析[J].环境保护科学,2004,30(124):64–67.
    [96]陆卫军,张涛.几种河流水质评价方法的比较分析[J].环境科学与管理,2009,34(6):174–176.
    [97] MENG L H, CHEN Y N, LI W H, et al. Fuzzy comprehensive evaluation model for water resources carrying capacity in Tarim River basin[J]. Chin Geogra Sci, 2009, 19(1): 089–095.
    [98] ZHANG Y, FAN C H, DIAO Z,et al. Evaluation of water quality in Er-longshan reservoir by fuzzy model[J]. Interdiscip Sci Comput Life Sci, 2009, (1): 30–39.
    [99] BHUPINDER S, SUDHIR D, SANDEEP J, et al. Use of fuzzy synthetic evaluation for assessment of groundwater quality for drinking usage:a case study of southern haryana,India[J]. Environ Geol, 2008, 54: 249–255.
    [100]褚克坚,华祖林,田红.一种改进的水环境质量模糊层次综合评价模型[J].中国科技论文在线,2009,4(5):379–386.
    [101]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [102]王萍萍.泉州饮用水源地水质指数评价法应用[J].环境与可持续发展,2008,(2):48–51.
    [103]徐祖信.我国河流单因子水质标识指数评价方法研究[J].同济大学学报,2005,33(3):321–325.
    [104]邓勃,秦建候,李隆弟.水环境质量模糊综合评价中的一些问题探讨[J].环境科学学报,1990,10(2):258–262.
    [105]潘峰,付强,梁川.基于层次分析法的模糊综合评价在水环境质量评价中的应用[J].东北水利水电,2003,21(8):22–24.
    [106]朱雷,陈威.模糊综合指数法在水质评价中的应用[J].武汉理工大学学报,2001,23(8):61–65.
    [107]任珺,陶玲,郭彦英.国内外饮用水水质标准的综合评价[J].中国环境监测,2007,23(6):20–24.
    [108]张文鸽,李会安,蔡大应.水环境质量评价的模糊综合评判方法[J].华北水利水电学院学报,2004,25(4):70–73.
    [109] LI Y X, QIU R ZH, YANG ZH F, et al. Parameter determination to calculate water environmental capacity in Zhangweinan Canal Sub-basin in China[J]. Journal of Environmental Sciences, 2010, 22(6): 904–907.
    [110]薛巧英,刘建明.水污染综合指数评价方法与应用分析[J].环境工程,2004,22(1):64–66.
    [111]张婷,刘静玲,王雪梅.白洋淀水质时空变化及影响因子评价与分析[J].环境科学学报,2010,30(2):261–267.
    [112]杨诗芳,毛裕定.浙江省近50年气温变化及四季划分[J].浙江气象,2007,29(4):1–6.
    [113]陈丁江,吕军,金树权,等.曹娥江上游水环境容量的估算和分配研究[J].农机化研究,2007(9):197–201.
    [114]董慧峪,强志民,李庭刚,等.南苕溪支流锦溪水质时空变化特征分析[C].河流主题“面源污染控制技术”研讨会论文集.杭州,2010,134–141.
    [115]白咏梅,关庆国,刘惠群.水文比拟法在无资料中小河流洪水预报中的应用[J].水利科技与经济,2010,16(2):196–197.
    [116]成都科技大学,华东水利学院,武汉水利水电学院.工程水文及水利计算[M].北京:水利出版社,1981,73–78.
    [117]国家环境保护总局,国家质量监督检验检疫总局.污水综合排放标准(GB8978-1996)[S].1998-01-01.
    [118]倪含斌.煤炭开发过程中矿区水土流失动态模拟研究[D].浙江大学,2009,19–22.
    [119]朱晓梅.红壤丘陵区土壤水蚀过程的产沙动态模拟试验研究——以浙江省兰溪水土保持综合试验站为研究背景[D].浙江大学,2008:25–28.
    [120]吴希媛,张丽萍,倪含斌,等.青山湖流域不同地表覆盖降雨径流中氮磷流失过程研究[J].水土保持学报,22(1):56–59.
    [121]史培军,袁艺,陈晋.深圳市土地利用变化对流域径流的影响[J].生态学报,2001,21(7):1041–1050.
    [122]秦莉俐,陈云霞,许有鹏.城镇化对径流的长期影响研究[J].南京大学学报(自然科学),2005,41(3):279–285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700