苹果砧木根际耐低氧鉴定及耐性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧是线粒体电子传递链的末端受体,也是一些酶所必需的,是高等植物正常生理代谢和生长发育必不可少的条件。但土壤雨涝积水、灌溉不均和土壤质地紧实等均会造成土壤通气受阻,导致植物根际缺氧。苹果是重要的果树树种之一,会因季节性降雨不均、水肥管理不当而遭受根际低氧胁迫。本文以我国12种苹果砧木为试材,采用营养液水培低氧和淹水处理相结合的方法,研究了不同苹果根际低氧耐性的强弱,并从中选择差异较大的两中砧木,低氧耐性较强的砧木为平邑甜茶(Malus hupehensis Rehd.)和低氧敏感型砧木为变叶海棠(M. toringoides Hughes.)为试材,研究了不同耐性苹果砧木对低氧胁迫响应的差异机理。同时以耐性中等的八棱海棠(M. robusta Rehd.)为试材,研究了水杨酸(Salicylic acid,SA)对其耐低氧性的诱导作用,探讨了低氧胁迫及耐性诱导措施对苹果砧木生理机制的影响,旨在为苹果栽培与土壤管理提供指导和理论依据。主要结果如下:
     1.根际低氧胁迫下,所有供试苹果砧木植株的生长都受到了不同程度的抑制。低氧处理15 d后,苹果砧木幼苗新叶数、根长、株高、生物量较对照明显降低,各种类整株鲜重减少9%~41%,干重减少14%~40%。不同苹果砧木对低氧胁迫响应的敏感性明显不同。在低氧胁迫下,12种苹果砧木根系中可溶性蛋白质含量都降低,脯氨酸(Pro)大量积累,但不同苹果砧木降低或升高幅度有显著差异。
     2.用隶属函数、湿害指数及抗逆系数对12种苹果砧木根际低氧耐性进行综合评价,以9个根系生理指标和6个生长指标对不同砧木进行聚类。分析认为平邑甜茶、平顶海棠和卢氏红果为耐低氧砧木,新疆野苹果和变叶海棠为低氧敏感型砧木。
     3.低氧胁迫下,苹果砧木根系活性氧(ROS)积累,其超氧阴离子(O2 )产生速率和过氧化氢(H2O2)含量增加,细胞膜脂质过氧化加重,丙二醛(MDA)含量上升,从而使细胞膜受到伤害,耐性较弱的变叶海棠根系细胞膜受到的氧化伤害大于低氧耐性较强的平邑甜茶。
     4.苹果砧木根系的抗氧化防御系统能一定程度上减轻低氧胁迫所造成的膜伤害,其根系中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)酶活性增加,抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性前期有所提高而后期降低并低于对照,但平邑甜茶的抗氧化酶活性显著高于变叶海棠。抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量及抗坏血酸/脱氢抗坏血酸(AsA/DHA)和还原性谷胱甘肽/氧化性谷胱甘肽(GSH/GSSG)比值在胁迫早期增加而后逐渐减少,中期后期低于同期对照。表明低氧胁迫对植株的影响存在基因型差异,低氧耐性较弱的变叶海棠受到的伤害较重,平邑甜茶可通过提高抗氧化酶活性来增强其耐低氧能力,抵御低氧胁迫所造成的伤害。
     5.低氧胁迫显著抑制了八棱海棠幼苗生长,外源0.5 mmol?L-1SA可以改善低氧胁迫下八棱海棠幼苗植株的生长情况,显著地提高低氧胁迫下八棱海棠幼苗的鲜重和干重。表明外施0.5 mmol?L-1SA处理缓解了低氧胁迫对八棱海棠幼苗生长的抑制,对低氧胁迫下八棱海棠幼苗的伤害有显著的缓解效应。
     6.低氧胁迫下八棱海棠叶片MDA、O2、H2O2、GSH含量和抗氧化酶活性均高于对照,而AsA含量低于对照;外源SA明显抑制MDA和O2的积累,显著增强SOD、POD、APX和GR的活性。说明SA作为化学诱抗剂,可抑制低氧胁迫下苹果幼苗体内活ROS的产生,提高抗氧化酶的活性,降低膜脂过氧化水平,从而减轻低氧胁迫对植株的伤害。
Molecular oxygen is the terminal electron acceptor in the mitochondrial electron transport chain and is required by several enzymes, higher plants need oxygen for growth and metabolism. But frequently they experience oxygen deficiency in the root-zone mainly due to soil waterlogging、soil compaction and submergence. Apple is one of the most important fruit crops in the world; hypoxia stress in the root-zone is thought to be one of those important factors which restrict the development of apple. 12 apple rootstocks were treated with hydroponics hypoxia and waterlogging to study their root-zone hypoxia tolerance, hypoxia-tolerance apple rootstock Malus hupehensis Rehd and hypoxia-sensitive apple rootstock M.toringoides Hughes were selected as experimental materials to study physiological responses difference, and M.robusta Rehd was used to induce hypoxia-tolerance under hypoxia stress. The physiology and biochemical mechanism of hypoxia stress on apple rootstocks and salicylic acid (SA) was also discussed under hypoxia stress, all above provided the theoretic base and technical guideline for apple tree cultivation and soil management. The results as follows:
     1. Growth of all apple rootstocks was inhibited to various degrees under root-zone hypoxia stress. After 15 days hypoxia treatment,the number of new leaves, root length, plant height, plant biomass and content of soluble protein in roots under root-zone hypoxia stress obviously declined comparing with control, fresh weight decreased 9%~41% and dry weight decreased 14%~40%. The sensitivities of 12 apple rootstocks to hypoxia stress were obviously different,The content of soluble protein in roots under root-zone hypoxia stress obviously declined comparing with control, while proline(Pro) increased and variation percentage of the was significantly different.
     2. Based on subordinate function, adversity resistance coefficient, waterlogging index and cluster analysis of 9 physiological and 6 growing indexes, the hypoxia-tolerance of 12 apple rootstocks were comprehensively evaluated and revealed M.hupehensis Rehd, M. robusta Rehd and M. sieboldii Rehd held higher tolerance to root-zone hypoxia stress, while M. sieverii Roem and M.toringoides Hughes were sensitive to root-zone hypoxia stress.
     3. The reactive oxygen species (ROS) in roots of apple rootstock under hypoxia stress accumulated, the generation rate of superoxide radical (O2 ) and the content of hydrogen peroxide (H2O2) increased, the membrane lipid peroxidation was more serious, which leaded to more content of malonaldehyde (MDA), so the membrane was damaged. The oxidative damages to membrane in roots of M. toringoides Rehd were more serious than M. hupenensis Rehd.
     4. The anti-oxidative system could reduce the damages to membrane in roots of apple rootstock under hypoxia stress at some extent. The activities of peroxidse (POD), superoxide dismutase (SOD), catalase (CAT) increased during the stress; the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) increased in early period of stress, but decreased in later period until less than control, while the anti-oxidative enzyme activities of M. hupehensis Rehd increased rapidly. The contents of antioxidants such as ascorbic acid (AsA) and glutathione (GSH), the ratio of AsA and oxidative ascorbic acid (AsA/DHA), the ratio of GSH and oxidative glutathione (GSH/GSSG) also increased in early period, but gradually decreased later and were less than control in media and latter period of stress. The results suggested the effects of hypoxia stress on the plant were different from genotype; the damages to M.toringoides Hughes were more serious than M.hupehensis Rehd.and M. hupehensis Rehd could enhance their tolerant ability through increasing the activities of anti-oxidation enzymes.
     5. Exogenous 0.5 mmol?L-1 SA application could relieve the harm caused by hypoxia stress and result in improved growth of M. robusta Rehd, increased fresh and dry weight of M. robusta Rehd The results suggested treatment with 0.5 mmol?L-1SA mitigated the growth inhibitions in M. robusta Rehd.under root-zone hypoxia stress.
     6. Under root-zone hypoxia stress, the contents of MDA, O2 , H2O2 and GSH, and activities of antioxidant enzymes were higher than the control, however, the level of AsA were decreased. Exogenous SA significantly decreased the content of O2 , MDA and GSH, increased the activities of SOD, POD, APX and GR under hypoxia stress. It was proposed that exogenous SA as a chemical activator could induce resistance, reduce production of reactive oxygen species, raise the activities of anti-oxidative enzymes, and decrease the membrane lipid peroxidation; therefore it alleviated the damage degree of hypoxia stress of M. robusta Rehd.
引文
[1] 王文泉,张福锁.高等植物厌氧适应的生理及分子机制[J].植物生理学通讯,2001,37(1):63~70.
    [2] Garnczarska M, Bednarski W. Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots [J]. Plant Physiology and Biochemistry, 2004, 42: 233~240.
    [3] 束怀瑞.果树栽培生理学[M].北京:农业出版社,1993,36~168.
    [4] Bailey-Serres J, and Chang R. Sensing and signaling in response to oxygen deprivation in plants and other organisms [J]. Annals of Botany, 2005, 96: 507~518.
    [5] Drew MC. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 223~250.
    [6] Bennicelli RP, Stepniewski W, Zakrzhevsky DA, et al. The effect of soil aeration on superoxide dismutase activity, malondialdehyde level, pigment content and stomata diffusive resistance in maize seedlings [J]. J Exp Bot, 1998,39(3): 203~211.
    [7] 张国荣,余立云.大麦湿害的研究进展[J].大麦科学,2000,4:7~9.
    [8] Guo SR, Tachibana S. Effect of dissolved O2 levels in a nutrent solution on the growth and mineral nutrition of tomato and cucumber seedlings [J]. Japan Soc Hort Sci, 1997, 66(2): 331~337.
    [9] 汪天,王素平,郭世荣,等.低氧胁迫下黄瓜幼苗根系多胺代谢的变化[J].园艺学报,2005,32(3):433~437.
    [10] Schaffer B, Andersen PC, Ploetz RC. Responses of fruit crops to flooding [J]. Hort.Rev. 1992, 13:257~313.
    [11] Schaffer B, Anderson PC. Handbook of Environmental Physiology of Fruit Crops [J], Volume II.Florida: CRC Press. 1994.
    [12] Daugherty CJ, Mathews SW, Musgrave ME. Structure changes in rapid-cycling Brassica Rapa selected for different waterlogging tolerance [J]. Can J Bot , 1994,72(9): 1322~1328.
    [13] Bragina TV, Drozdova LS, Alekhin VZ, et al. The rate of photosynthesis, respiration, and transpiration in young Maize lant under hypoxia [J]. Doklady Bio Sci,2001,380:482~485.
    [14] 李阳生,李绍清.涝渍胁迫对水稻发育后期的生理特征与产量的影响[J].武汉植物学研究,2000,18(2):117~122.
    [15] Demming A B. Photo protection and other responses of plants to high light stress [J].Ann Rev Plant Physiol Plant Mol Boil, 1992, 435:619~626.
    [16] 杜秀敏,殷文璇,越彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121~125.
    [17] Vantoai TT, Bolles CS. Postanoxic injury in soybean (Glycine max) seedlings [J].Plant Physiol, 1991, 97:588~592.
    [18] Bozena S, Malgorzata D, Anna MR. Factors affecting determination of superoxide anion generated by mitochondria from barley roots after anaerobiosis [J].Journal of Plant Physiology, 2004, 161:1339~1346.
    [19] Sophis B, Ulrich K, Gerd A. Re-aeration following hypoxia or anoxia leads to activation of theantioxidative defense system in roots of wheat seedlings [J]. Plant Physiol, 1998, 116:651-658.
    [20] 白团辉,马锋旺,李翠英,等.水杨酸对根际低氧胁迫下八棱海棠幼苗活性氧代谢的影响[J].园艺学报,2008,35(2):163~168.
    [21] Kang YY, Guo SR, Li J, et al. Effects of 2,4-epibrassinolide on antioxidant system in cucumber seedling roots under hypoxia stress[J]. Agricultural Sciences in China, 2007, 6(3): 281~289.
    [22] Bowler C, VanMontage M, Inze Q. Superoxide dismutase and stress tolerance [J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 83~116.
    [23] 晏斌,戴秋杰,刘晓忠,等.玉米叶片涝渍伤害过程中超氧自由基的积累[J],植物学报,1995,37(9):738~74.
    [24] 魏和平,利容干.淹水对玉米不定根形态结构和ATP酶活性的影响[J]. 植物生态学报,2000,24(3):293~297.
    [25] 潘瑞炽,董愚得.植物生理学(第三版) [M].北京:高等教育出版社,1995:119~124.
    [26] Biemelt S, Hejirezaei MR, Melzer M, et al. Sucrose syntheses activity does not restrict glycol sis in roots of transgenic potato plants under hypoxia conditions[J].1999, 210:4~49.
    [27] Sacha MM, Subbaiah CC, Saab IN. Anaerobic gene expression and flooding tolerance in maize[J].J Exp Bot, 1996, 47:1~15.
    [28] Guo SR, Nada K, Katoh H, et al. Differences between tomato (Lycopersicon e sculentum Mill.) and cucumber (Cucumis sativusL.) in ethanol, lactate and maltase metabolisms and cell sap pH of roots under hypoxia [J]. J Japan Soc Hort Sci, 1999, 68(1): 152~159.
    [29] Germain V, Raymond P, Ricard B. Different expression of two lactate dehydrogenates genes in response to oxygen deficit [J]. Plant Mol Biol, 1997, 35:711~721.
    [30] Roberts J. K, Callis J, Jardetzky O, et al. Mechanism of cytoplasm PH regulation in hypoxic maize root tips and its role in survival under hypoxia[J]. Proceedings of the national academy of science.1984b,81:3379~3383.
    [31] Vartapetian BB, Andreeva IN, Generozova IP, et al.Functional electron microscopy in studies of plant response and adaptation to anaerobic stress[J]. Ann Bot, 2003, 91:155~172.
    [32] Dat J F, Capelli N, Folzer H, Bourgeade P, Badot P. Sensing and signaling during plant flooding [J]. Plant Physiology and Biochemistry, 2004, 42: 273~282.
    [33] Sarkar R K, Das A. Changes in antioxidative enzymes and antioxidants in relation to flooding tolerance in rice [J]. Journal of Plant Biology, 2000, 27(3): 307~311.
    [34] Kawase M, Whitmoger R E .Aerenchyma development in waterlogged plants[J] .American Journal of Bo tan y, 1980,67 (1):18~22.
    [35] 汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983,(3):24~29.
    [36] Buchanan.BB, Gruissem W, Jones RL. Biochemistry and Molecular biology of Plants [M],2000,1179~1180.
    [37] Drew M C, Saglio P H, Pradet A. Large acetylated energy charge and ATP/ADP ratios in aer echymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxy gen transport[J].Plants,1985,165(1):51~58.
    [38] 封克,司江英,汪晓丽,等.不同水分条件下水稻根解剖结构的比较分析[J].植物营养与肥料学报,2006,12(3):346~351.
    [39] 米海莉,许兴,李树华,等.干旱胁迫下牛心朴子幼苗相对含水量、质膜透性及保护酶活性变化[J].西北植物学报,2003,23(11):1871~1876.
    [40] 石进校,刘应迪,陈军,等.土壤涝渍胁迫对淫羊藿叶片膜脂过氧化和SOD活性的影响.生命科学研究[J],2002,6(4) :29~31.
    [41] 杨暹,陈晓燕,杨运英.涝害逆境对菜心的菜薹形成与细胞保护系统的影响[J].中国蔬菜,2000,2:7~10.
    [42] Yan B., Dai Q., Liu X., Wang Z. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves [J]. Plant Soil, 1996, 179:261-268.
    [43] 利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002,53~70.
    [44] Kennedy R A, Rumpho M E, Fox T C. Anaerobic metabolism in plants [J]. Plant Physiol 1992 , 100:1- 6.
    [45] F reeling M, Bennett DC. Maize Adhl. Annual Review of genetics[M], 1985, 19:297~323.
    [46] Fukao T, Bailey-Serres J. Hypoxia responses in plants—a balancing act? [J], Trends in Plant Science 2004,9: 449~456.
    [47] Ratcliffe RG .In vivo NMR studies of the metabolic response of plant tissues to anoxia [J]. A nnals of Botany,1997,79(Supp1A):39~48.
    [48] Bohnert HJ, Nelson DE, Jensen RG. Adaptions to environmental stress [J].The plant cel1, 1995, 7:1099~1111.
    [49] Bohnert H J, Jensen RG.Stratigies for engineering water-stress tolerance in plants [J], Trend in Biontechnology,1996,14:89~97.
    [50] 张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993,34~136.
    [51] 王忠.植物生理学[M].中国农业出版社,2003,125~136.
    [52] 陈大清,董登峰,李亚南,等.小麦抗涝的基因型差异对逆境胁迫的比较生理学效应.湖北农学院学报[J],1998,18(4) :295~298.
    [53] 陈龙,李季平,杨光宇,等.灌浆期涝渍胁迫对小麦生理生化特性的影响[J].河南农业科学,2002,6:8~9.
    [54] 王义强,谷文众,姚水攀,等.淹水胁迫下银杏主要生化指标的变化[J].中南林学院学报,2005,25(4):78~81.
    [55] Gomes ARS, Kozlowski TT, Phydiological and growth responses to flooding of seedlings of Heves brasiliensis[J].Biotropic,1988,20(4): 286~293.
    [56] Keeley J E.Population differentiation along a flood frequencygradient: phydiological adaption to flooding in Nyssa sylvatica [J]. Ecological Monongraphs.1979,49(1):89~108.
    [57] Terazawa K, Ikuzawa K, Effects of flooding on lesf dynamies and other seedling responses in flood-tolerant Alnus japonica and flood-tolerant Betula platyphylla var.japomical[J].Tree Physiology,1994,14(3):251~261.
    [58] Raskini E,Hamnn A.Salicylic acid:a natural inducer of heat production[J].Science,1987,23(7):1601~1602.
    [59] 张士功,高吉寅,宋景芝.水杨酸和阿斯匹林对盐胁迫下小麦种子萌发的作用[J].植物生理学通讯,1999,35:29~32.
    [60] 姜晶,张宪政.水分亏缺下乙酰水杨酸清除小麦幼苗中O2 的研究(简报) [J].植物生理学通讯,2000,36:33~34.
    [61] Janda TG, Szalai IT, Padi E. HydroPonic treatment with salicylic acid decrease of effects of chillinginjury in maize (Zea Mays. L) Plants [J]. Planta, 1999, 208: 175~480.
    [62] Senaratna T, Touched D, Bunn E. Asetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants [J]. Plant Growth Reg, 2000, 30:157~161.
    [63] Shah J. The salicylic acid loop in plant defense [J]. Current Opin Plant Biol, 2003, 6:365~371.
    [64] 许明丽,孙晓艳,文江祁.水杨酸对水分胁迫下小麦幼苗叶片膜损伤的保护作用[J].植物生理学通讯,2000,36:35~36.
    [65] 宋士清,郭世荣,尚庆茂,等.外源SA对盐胁迫下黄瓜幼苗的生理效应[J].园艺学报,2006,33(1):68~72.
    [66] Lopez-Delgado H, Dat JF, Foyer CH, et al.Induction of thermo-tolerance in potato microplants by acetylsalicylic acid and H202 [J].Exp Bot, 1998 ,49(321):713~720.
    [67] Dat JF, Lopez DH, Foyer CH, et al. Parallel changes in H2O2 and catalyses during thermo-tolerance induced by salicylic acid or heat acclimation in mustard seedlings [J]. Plant Physiol, 1998,116 : 1351~1357.
    [68] 孙艳,王鹏.水杨酸对黄瓜幼苗抗高温胁迫能力的影响[J].西北植物学报,2003,23(11):2011~2013.
    [69] 许耀照,郁继华,张国斌,等.水杨酸对黄瓜种子萌发的高温耐性诱导[J].甘肃农业大学学报,2004,(6):290~294.
    [70] 韩涛,李丽萍,葛兴.外源水杨酸对桃果实采后生理的影响[J].园艺学报,2000,27(5):367~368.
    [71] Mishra A, Choudhuri MA, Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice [J]. Biologia Plantrum, 1999, 42 : 409~415.
    [72] Freeman JL, Gareia D, Kim DG, et al. Constitutively elevated salicylic acid signals Glutathione-mediated niekel tolerance inthlaspi niekel hyperaccumulators [J].Plant Physiol, 2005, 137: 1082~1091.
    [73] Metwally A., Finkemeier I, Georgi M, et al. Salicylic acid alleviates the cadmium toxicity in barley seedlings [J]. Plant Physiol, 2003, 132: 272~281.
    [74] Rasin I. Role of salicylic acid in plants [J].Ann Rev Plant Physiol Mol Biol, 1992, 43:439~463.
    [75] Prasad TK, Anderson MP, Martin BA. Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide [J].Plant Cell, 1994, 6:65~74.
    [76] Schreck R, Rieber P, Bauerle PA .Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-KB transcription factor and HIV-1[J].EMBOJ,1991, 10:2247~2258.
    [77] 中国农业科学院果树所.果树种质资源目录(第二集)[M].北京:中国农业出版社,1998,26~88.
    [78] 任庆棉,刘悍中,刘立军.几种野生苹果的抗寒性评价[J].北方果树[J],1998(4):23~26.
    [79] 刘悍中,任庆棉,刘立军.苹果砧木资源抗腐烂病研究与评价.果树科学[J],1990( 2):65~70.
    [80] 叶乃好,翟衡,杜中军,等.水分胁迫条件下10种苹果砧木抗旱性评价[J].果树学报,2004,21(5):395~398.
    [81] 翟衡,杜中军,罗新书.苹果砧木耐盐性鉴定.山东农业大学学报[J].1999,30(3).
    [82] 杨洪强, 接玉玲, 黄天栋,等.尿素、BA和羊粪对苹果幼树新根的诱导与调控[J].中国农业科学, 2001,34(1):1~4.
    [83] Narayanan S, Ruma D, Gitika B, et al. Antioxidant activities of seabuckthorn (Hippophae rhamnoides) during hypoxia induced oxidative stress in glial cells [J]. Molecular and Cellular Biochemistry, 2005, 278: 9~14.
    [84] Zaidi PH, Rafique S, Singh NN. Response of maize (Zea mays L.) genotypes to excess soil moisture stress: morpho-physiological effects and basis of tolerance [J]. European Journal of Agronomy, 2003, 19: 383~399.
    [85] Szal B, Drozd M, Rychter A M. Factors affecting determination of superoxide anion generated by mitochondria from barley roots after anaerobiosis[J]. Journal of Plant Physiology, 2004, 161: 1339~1346.
    [86] 高俊凤.植物生理学试验技术[M].西安:世界图书出版社,2000,159~198.
    [87] Bradford M M. A rapid and sensitive method for quantities of microgram of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248~254.
    [88] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,164~194.
    [89] 王爱国,罗广华.植物的超氧化物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,(6): 55~57.
    [90] 陈义强,邓祖湖,郭春芳,等.甘蔗常用亲本及其衍生品种的抗旱性评价[J].中国农业科学,2007,40(6):1108~1117.
    [91] 马雅琴,翁跃进.引进春小麦种质耐盐性的鉴定评价[J].作物学报,2005,31(1):58~64.
    [92] 王军,周美学,许如根,等.大麦耐湿性鉴定指标和评价方法研究[J].中国农业科学,2007,40(10): 2145~2152.
    [93] 张卫星,赵致,朱德峰,等.水分和N胁迫下玉米杂交种的抗逆性及综合评价[J].干旱地区农业研究,2005,23(5):17~24.
    [94] 魏永胜,梁宗锁,山仑,等.利用隶属函数值法评价苜蓿抗旱性[J].草业科学,2005,22(6):33~36.
    [95] Yoshiba Y, Kiyosue T, Nakashima K, et al. Regulation of levels of proline as osmolyte in plants under water stress [J]. Plant and Cell Physiology, l997, 38(10): 1095~1102.
    [96] 李贵全,张海燕,季兰,等.不同大豆品种抗旱性综合评价[J].应用生态学报,2006, l7(12): 2408~2412.
    [97] ?pik H. Respiration in Higher Plants [M]. Great Britain: The Camelot press, 1980, 42~46.
    [98] 李育农.苹果属植物种质资源研究[M.北京:中国农业出版社,2001,225~246.
    [99] Geigenberger, P. Response of plant metabolism to too little oxygen [J]. Curr. Opin. Plant Biol, 2003, 6:247~256.
    [100] Blokhina OB, Virolainen E, Fagerstedt KV, et al.Antioxidant status of anoxia-tolerant and intolerant plant species under anoxia and reaeration[J]. Physiology Plantarum, 2000, 109: 396~403.
    [101] 胡晓辉,郭世荣,李璟,等.低氧胁迫对黄瓜幼苗根系无氧呼吸酶和抗氧化酶活性的影响[J].武汉植物学研究,2005,23(4):337~341.
    [102] Monk L S, Fagerstedt K V, Crawford R M M. Superoxide dismutase as anaerobic polypeptide. A key factor in recovery from oxygen deprivation in Iris pseudacorus [J]. Plant Physiology, 1987, 85: 1016~1020.
    [103] Kampfenkel K, Van Montagu M, Inzè D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue [J]. Analytical Biochemistry, 1995, 225:165~167.
    [104] Griffith OW.Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J].Analytical Biochemistry, 1980, 106:207~212.
    [105] Nakano Y, Asada K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J].Plant Cell Physiology, 1981, 22:867~880.
    [106] 高洪波,郭世荣,张铁军,等.营养液低氧胁迫对网纹甜瓜幼苗生长和生理代谢影响[J].沈阳农业大学学报,2006,37(3):368~372.
    [107] 蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学报,1996,22(2):144~150.
    [108] Queiroz CGS, Alonso A , Mares-Guia M , et al. Chilling-induces changes in membrane fluidity and antioxidant enzyme activities in Coffea arabiga L. roots[J]. Biol Plant, 1998, 41:403~413.
    [109] Bowler CC, Montagu V, Inzé D. Superoxide dismutase and stress tolerance [J]. Ann Rev Plant Physiol Plant Mol Biol, 1992, 43:83~116.
    [110] Davey MW, Van Montagu M, Inzé D, et al. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing[J]. Journal of the Science of Food and Agriculture, 2000, 80: 825~860.
    [111] Liebler DC, Kling DS, Reed DJ. Antioxidant protection of phospholipid bilayers by a-tocopherol. Control of a-tocopherol status and lipid peroxidation by ascorbic acid and glutathione [J]. J Biol Chem., 1986, 261: 12114~1211.
    [112] 宋凤斌,戴俊英.水分胁迫对玉米叶片活性氧消除酶类活性的影响[J].吉林农业大学学报,1995,17(3):9~15.
    [113] Ushimaru T, Kanematsu S, Kata Yama M. Antioxidative enzymes in seedlings of Nelumbonucifera germinated under water [J]. Physiologia Plantanum, 2001, 112, 39~46.
    [114] 周国贤,郭世荣,王素平.外源多胺对低氧胁迫下黄瓜幼苗光合特性和膜脂过氧化的影响[J].植物学通报,2006,23(4):341~347.
    [115] Prochazkova D, Sairam RK, Srivastava GC, et al.Oxidative stress and antioxidant activity as the basis of senescence in maize leaves[J].Plant Science,2001.161:765~771.
    [116] Jyoti S. The salicylic acid loop in plant defense[J].Current Opinion in Plant Biology, 2003, 6:365~371.
    [117] 刘高峰,杨洪强,张 伟,等.水杨酸对湖北海棠活性氧代谢及超微弱发光的影响[J].园艺学报,2006,33(1):118~121.
    [118] 李国婧,周 燮.水杨酸与植物抗非生物胁迫[J].植物学通报,2001,18(3):295~302.
    [119] Agarwal S, Sairam RK, Srivastava GC, et al. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings[J]. Plant Science, 2005, 169:559~570.
    [120] 孙卫红,王伟青,孟庆伟.植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性[J].植物生理学通讯,2005,41(2):143~147.
    [121] Valpuesta V, Botella MA. Biosynthesis of L-ascorbic acid in plants: New pathways for an old antioxidant [J]. Trends Plant Science, 2004, 9:573~577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700