猕猴桃实生苗对根际低氧胁迫的抗性评价及抗性生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧是线粒体电子传递链的末端受体,是高等植物正常生理代谢和生长发育必不可少的条件。但植物生长发育过程中经常会遭受土壤雨涝积水、灌溉不均和土壤质地紧实等因素,造成土壤通气受阻,氧气浓度降低,导致植物根际缺氧。猕猴桃属藤本类植物,原产于我国,是一类营养价值高、经济效益大的新兴广泛栽培的重要果树之一。但生产中,猕猴桃不耐涝,其砧木常因季节性降雨不均、水肥管理不当而缺氧遭受根际低氧胁迫。
     本文以10个猕猴桃种和品种的实生苗为试材,采用营养液水培通氮气低氧或淹水处理的方法,研究了猕猴桃根际耐低氧能力的种间差异,并从中选择差异较大的两种实生苗即:耐低氧的美味猕猴桃‘秦美’(Actinidia deliciosa)和低氧敏感的中华猕猴桃‘红阳’(Actinidia chinensis)为试材,研究了猕猴桃对低氧胁迫响应的种间差异机理,旨在为猕猴桃栽培与水肥管理和抗逆育种提供理论依据和指导。主要研究结果如下:
     1.根际低氧胁迫下,所有供试猕猴桃植株的生长都受到了不同程度的抑制。低氧处理11 d后,猕猴桃幼苗新生根长、株高、生物量、根系活力、叶片生长速度、叶绿素含量、叶绿素a/b均低于对照。猕猴桃叶、根MDA和RMP相对增加,而根内MDA含量增加幅度高于叶片。不同种猕猴桃各指标降低或升高的幅度不同,表明对低氧胁迫响应的敏感程度也不同。
     2.用隶属函数及聚类分析法,对10种猕猴桃耐低氧能力综合评价。结果表明10种供试猕猴桃耐低氧能力可以分为三个级别:一级为耐低氧型猕猴桃(‘海沃德’猕猴桃、‘秦美’猕猴桃、‘金香’猕猴桃、阔叶猕猴桃、‘华优’猕猴桃);二级为中等耐低氧型猕猴桃(‘西选’猕猴桃、毛花猕猴桃、金花猕猴桃、山梨猕猴桃);三级为不耐低氧(敏感)型猕猴桃(‘红阳’猕猴桃)。
     3.低氧胁迫下,猕猴桃幼苗生长受到抑制,植株鲜、干重均低于对照。抗性强的美味猕猴桃生长受影响相对较小,表现出一定的耐性。同时叶、根内源ABA含量增加。叶内IAA含量先升高后下降;根内IAA含量变化与叶类似。叶、根内GA3和ZR随胁迫时间延长而降低。根和叶内IAA/ABA、ZR/ ABA、GA3/ABA比值均呈现下降趋势。猕猴桃幼苗抗低氧能力与内源激素的平衡调节机制密切相关。
     4.低氧胁迫下,猕猴桃幼苗净光合速率明显受到抑制,上午10:00只出现一次小高峰,之后明显降低,13:00左右出现负值,表明叶片光和能力受到严重抑制;气孔导度随胁迫时间的延长明显降低;而蒸腾速率先升后降;胞间CO2浓度呈明显的W型,较对照显著增加。随胁迫天数的增加,叶片F0、F0′、qN、Hd逐渐升高;Fm、Fv、Fv/Fm、Fv/F0、Fv′/ Fm′、qP、Pc、ETR逐渐降低;Ex先升后降。PSⅡ吸收光能用于天线热耗散的百分率逐渐升高,用于光化学反应的能量百分率前3d内基本稳定,之后显著降低。而PSⅡ反应中心非光化学能量耗散百分率(Ex)则先升后降。表明胁迫前3d,猕猴桃PSⅡ吸收光能用于叶绿素荧光能量的分配没有受到影响。但5d后进入PSⅡ反应中心的能量减少,通过天线热耗散的能量增多,说明猕猴桃在遭受低氧胁迫时,幼苗叶片光化学效率明显降低,但一定程度上可通过非光化学猝灭耗散能量,来保护光合机构免遭破坏。
     5.随根际低氧胁迫时间的延长,美味和中华猕猴桃叶、根内SOD、POD和CAT活性前期增强后期降低,O_2~(·|-)、H_2O_2、MDA含量增加;RMP增大,耐低氧的美味猕猴桃活性氧增加速度明显低于中华猕猴桃,抗氧化酶活性增加幅度明显高于中华猕猴桃;相同胁迫下,同种猕猴桃叶和根内抗氧化酶活性最大值出现的时间和增加幅度不同。表明抗低氧能力强的猕猴桃有较强的抗氧化保护系统;叶和根对低氧胁迫的感受和适应机理不同。
     6.低氧胁迫下,猕猴桃幼苗根系无氧呼吸代谢增强。与对低氧敏感的中华猕猴桃相比,耐低氧能力较强的美味猕猴桃根内PDC、ADH、G-6PDH及乙醇含量的增加幅度较大;但LDH活性、乳酸、乙醛和丙酮酸含量的增加幅度较小。MDH含量在整个胁迫过程中均呈下降趋势。无氧呼吸代谢能力的差异可能是猕猴桃种间耐低氧能力差异的主要生理机制。
     7.根际低氧胁迫下,猕猴桃幼苗叶和根内大量营养元素N、P、K、Mg、Ca及微量元素Fe、Cu、Zn含量降低;而Mn含量增加。抗性强的幼苗叶、根内大量元素P、K、Ca吸收受到的影响明显低于抗性弱的猕猴桃,而N、Mg含量降低幅度无显著差异。说明P、K、Ca可能是引起两猕猴桃抗性差异的主导营养物质因素。Zn、Fe、Cu的吸收虽然也显著降低,但抗性弱的猕猴桃幼苗受到的影响相对较大。同时根际低氧胁迫下,猕猴桃幼苗对同种元素的吸收,叶与根之间还存在着显著的差异,根比叶降低幅度大的有P、K、Mg、Zn。叶降低幅度比根大的有Ca、Fe、Cu。Mn的吸收根的增幅高于叶。
Molecular oxygen is the terminal electron acceptor in the mitochondrial electron transport chain and is also the prerequisite conditions that are required by higher plants during their growth and development. However, shortage of oxygen or anoxia is a common environmental challenge which plants have to face throughout their life.Floods and excess of rainfall are examples of nature conditions that lead to root hypoxia or anoxia.Low oxygen concentration can also be a normal attribute of a plant natural environment. The kiwifruit (Actinidia deliciosa) is a large, woody, deciduous vine that was native to the Yangtze Valley of China. Now it is widely planted as a burgeoning commercial planting fruit tree around the world because of its abundant nutrient value. Nevertheless, kiwifruit plants’rootstocks are very sensitive to water flooding or excess of rainfall, which can easily produce root-zone hypoxia stress and reducing conditions, which can damage the plants metabolism. Therefore, hypoxia stress is incidental to the kiwifruit plants during growing season.
     In this thesis, 10 kinds of kiwifruit seedlings were treated with hydroponics hypoxia or waterlogging to study their root-zone hypoxia tolerance. The experiment seedlings were subjected to hypoxia by ?ushing nutrient solution with N2 gas (99.99% N2) or waterlogging for 11days. The nutrient solution of control plants was continuously ?ushed with air under an air pump. Oxygen concentration in the vessels was monitored with an oxygen meter. Hypoxia-tolerance kiwifruit seedling‘Qinmei’(Actinidia deliciosa) and hypoxia-sensitive seedling‘Hongyang’(Actinidia chinensis) were selected as experimental materials to study their physiological response differences. The physiology and biochemical mechanism of hypoxia stress on the seedlings were discussed, all above provided the theoretic base and technical guideline for kiwifruit cultivation, soil management and resistive breeding. The results were as follows:
     1. Growth of all kiwifruit seedlings were inhibited to various degrees under root-zone hypoxia stress. After 11 days waterlogging hypoxia treatment,the max length of new root, plant height, plant biomass about leaves and roots, root activity, relative growth rate of leaves, content of chlorophyll and chlorophyll a/b in leaves under root-zone hypoxia stress obviously declined comparing with control. MDA content, relative conductance in the leaves and roots all increased in 16 kiwifruits. But MDA content and relative conductance in roots was much higher than those of leaves. The sensitivities of 10 kiwifruit seedlings to hypoxia stress were obviously different.
     2. With the method of subordinate function and cluster analysis, the adversity resistance coefficient (including 6 physiological and 5 growing indexes) of 10 kiwifruit seedlings, were comprehensively evaluated in order to appraise their hypoxia-tolerance abilities. According to the results,‘Hayward’,‘Qinmei’,‘Jinxiang’,‘Kuoye’,‘Huayou’kiwifruit seedlings held higher tolerance to root-zone hypoxia stress, while‘Hongyang’kiwifruit seedlings was sensitive to root-zone hypoxia stress.The others including‘Xixuan’,‘Maohua’,‘Jinhua’,‘Shanli’kiwifruit seedlings kept moderate resistant intensity to root-zone hypoxia stress.
     3. Under root-zone hypoxia stress, the fresh and dry weights of seedlings treated under hypoxia were less than those of control. Effects of hypoxia stress on A. deliciosa were much slighter than on A. chinensis, which made A. deliciosa perform a better resistance. The ABA contents in A. deliciosa, A. chinensis leaves and roots were enhanced obviously. The IAA contents in A. deliciosa, A. chinensis leaves were raised to the maximum on the 7th day, then reduced but still higher than those of control. Same tendencies happened in the roots of both species, but the peak appeared on the 5th day and differed from that of the leaves. The GA3 and ZR contents in A. deliciosa, A. chinensis leaves and roots were decreased. The ratios of IAA/ABA, ZR/ABA and GA3/ABA were also studied and the results of them decreased, which showed that kiwifruit seedlings were obviously inhibited from growing under hypoxia and the resistant ability had an intimate relationship with endogenous hormones.
     4. Under Under waterlogging stress, daily net photosynthetic variation rate in leaves of A. deliciosa kiwifruit seedlings was restrained. Compared with control, only one peak was observed at 10:00 and then reduced evidently. At about 13:00, the quantitative data of Pn presented less than zero, which showed the leaves’capability of photosynthesis was destroyed badly and could not keep the capability of photosynthesis.The stomatal conductance was reduced, too.Transpiration rate of kiwifruit seedlings raised to the maximum at 10:00, then reduced but lower than that of control in daily time. Intercellular CO2 rate in daily time presented a‘W’shape and raised evidently. With the prolonged waterlogging stress, F0、F0′、qN、Hd of the leaves raised gradually and the Fm、Fv、Fv/Fm、Fv/F0、Fv′/ Fm′、qP、Pc、ETR dropped evidently. Ex raised firstly and then reduced evidently. The percentages of the antenna heat dissipation raised. The percentages of the photochemistry kept stably in the first 3 days and after 5 days, decreased.
     5. Under hypoxia stress, the activities of SOD, POD, and CAT were all stimulated and increased greatly in leaves and roots. The raise rate and activity peaks of SOD, POD, CAT in leaves and roots of A. deliciosa were higher than those of A. chinensis. The contents of H_2O_2, O_2~(·|-) , MDA, RMP in leaves and roots under hypoxia stress increased significantly. However, the increase ratio and peak contents of H_2O_2, O_2~(·|-) , MDA in leaves and roots of A. deliciosa were much lower than those of A. chinensis. On the tendency and peak time of SOD, POD, CAT, H_2O_2, O_2~(·|-) , MDA, there were also striking differences between them. So, much resistant kiwifruit species had advantageous anti-active oxygen systems, which could scavenge free radicals effectively to avoid injuring the membrane lipid. When facing hypoxic stress, leaves and roots had also different responses and adjusting mechanisms.
     6. The results showed that root-zone hypoxia accelerated the anaerobic respiration of kiwifruit seedlings’roots. Under root-zone hypoxia stress, the increment of LDH activity and aldehyde, lactate, pyruvate contents were lesser in A. deliciosa seedlings roots than in A. chinensis, but conversely, the increment of PDC, ADH, G-6-PDH activities and alcohol content in A. deliciosa seedlings roots were higher than those of A. chinensis. It was concluded that the acceleration of alcohol fermentation were in favor of the enhancement of root-zone hypoxia tolerance of kiwifruit seedlings’roots. In all process of the stress, MDH activities reduced at all times, which showed that it was not the key enzyme to adjust the resistance.
     7. Under root-zone hypoxia stress, macronutrients contents N, P, K, Mg, Ca and micronutrients contents Fe, Cu, Zn in leaves and roots of kiwifruit seedlings reduced significantly. However content of Mn increased and the increase in roots was much higher than that of leaves. Reduce ranges of P, K, Ca upon A. deliciosa were much lower than those of A. chinensis seedlings and reduce ranges of N, Mg had no difference between two kinds of kiwifruit seedlings. Maybe P, K, Ca nutrients were the dominant factors that caused the different resistance between A. deliciosa and A. chinensis. But reduce ranges of Zn, Fe, Cu upon A. chinensis were much lower than those of A. deliciosa seedlings. So far as the same nutrient was concerned, there were also much significant differences between leaves and roots. Reduce ranges of P, K, Mg, Zn upon roots were much higher than those of leaves. However, reduce ranges of Ca、Fe、Cu upon roots were much lower than those of leaves.
引文
[1] Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review [J]. Annals of Botany, 2003, 91: 179~194.
    [2] Malcolm C. Drew. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia [J].Annu. Rev. Plant Physiol. Plant Mol. Biol, 1997, 48:223~250.
    [3] Garnczarska M, Bednarski W. Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots [J]. Plant Physiology and Biochemistry, 2004, 42: 233~240.
    [4] Bailey-Serres J, and Chang R. Sensing and signaling in response to oxygen deprivation in plants and other organisms [J]. Annals of Botany, 2005, 96: 507~518.
    [5] Hypoxia. Ecological Society of America, http://www.esa.org.
    [6]李玉昌,李阳生,李绍清.淹涝胁迫对水稻生长发育危害与耐淹性机理研究的进展[J].中国水稻科学,1998,12 :70~76.
    [7]曾建军,时明芝.植物涝害生理研究进展[J].聊城大学学报(自然科学版),2004,17:(3)54~56.
    [8] Omar R. Lopez, Thomas A. Kursar. Does flood tolerance explain tree species distribution in tropical seasonally flooded habitats? [J]. Oecologia, 2003, 136:193~204.
    [9] Shuang sheng Guo, Yongkang Tang, Feng Gao, Weidang Ai, Lifeng Qin. Effects of low pressure and hypoxia on growth and development of wheat [J].Acta Astronautica, 2008, 63: 1081~1085.
    [10] Bennicelli RP, Stepniewski W, Zakrzhevsky DA, et al. The effect of soil aeration on superoxide dismutase activity, malondialdehyde level, pigment content and stomata diffusive resistance in maize seedlings [J]. J Exp Bot, 1998, 39(3): 203~211.
    [11]汪天,王素平,郭世荣,等.植物低氧胁迫伤害与适应机理的研究进展.西北植物学报[J],2006,26(4):0847~0853.
    [12] New some R D, Kozlow ski T T, Tang Z C. Responses of Ulmusamericana seedling to flooding of soil [J]. Canada Journal of Botany, 1982, 60: 1688~1695.
    [13] Treena Burgess, Jen McComb, and Giles Hardy. Influence of Low Oxygen Levels in Aeroponics Chambers on Eucalypt Roots Infected with Phytophthora cinnamomi [J]. Plant Disease, 1998, 82(4):368~373.
    [14] Tang Z C, Kozlow ski T T. Some physiological and growth responses of Betulapapy rifera seedlings to flooding [J]. Physiologia Plantarum, 1982, 55: 415~420.
    [15]张国荣,余立云.大麦湿害的研究进展[J].大麦科学,2000,4:7~9.
    [16] Guo SR, Tachibana S. Effect of dissolved O2 levels in a nutrent solution on the growth and mineral nutrition of tomato and cucumber seedlings [J]. Japan Soc Hort Sci, 1997, 66(2): 331~337.
    [17]汪天,王素平,郭世荣,等.低氧胁迫下黄瓜幼苗根系多胺代谢的变化[J].园艺学报,2005,32(3):433~437.
    [18] Faouzi Horchania, Philippe Galluscib, Pierre Baldetb etc., Prolonged root hypoxia induces ammonium accumulation and decreases the nutritional quality of tomato fruits [J]. Journal of Plant Physiology, 2008, 165: 1352~1359.
    [19] Karen L. Mckee. Growth and physiological responses of neotropical mangrove seedlings to rootzone hypoxia [J]. Tree Physiology,1996,16, 883~889.
    [20] Sena Gomes A R, Kozlow ski T T. Effects of flooding on growth of Eucalyptuscam aldulensis and E.globules seedlings [J]. Oecologia, 1980, 46: 139~142.
    [21] Schaffer B, Andersen PC, Ploetz RC. Responses of fruit crops to flooding [J]. Hort.Rev. 1992, 13:257~313.
    [22] Schaffer B, Anderson PC. Handbook of Environmental Physiology of Fruit Crops [M].Florida: CRC Press Volume II, 1994.
    [23]高鹏,王国英.植物的涝害胁迫及其适应机制研究进展[J].农业生物技术学报,2001,9(3):55~61.
    [24]王义强,谷文众,姚水攀,等.淹水胁迫下银杏主要生化指标的变化[J].中南林学院学报,2005,25(3):78~80.
    [25] Hammond L G, Allaway W H and Loomis. Effect of oxygen and carbon dioxide levels upon absorption of Potassium by Plants [J].Plant Physiol,1955,30:155~161.
    [26]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998,739~751.
    [27]吴林,张志东,李亚东.越桔耐涝品种的筛选[J].吉林农业科学,2002,27(2):46~48.
    [28]曾淑华,刘飞虎,覃鹏,等.水涝对转SOD和POD基因烟草光合能力的影响[J].湖北农业科学,2004,3:81~93.
    [29]李金才,董琦,余松烈.不同生育期根际土壤淹水对小麦品种光合作用和产量的影响[J].作物学报,2001,27(4):434~441.
    [30]张晓平.不同种源鹅掌楸对涝渍胁迫的响应研究[D].南京:南京林业大学博士学位论文,2004.
    [31]董合忠,李维江,唐薇,等.干旱和淹水对棉苗某些生理特性的影响[J].西北植物学报,2003,23(10):1695~1699.
    [32]王文泉,梅鸿献,郑永战,等.芝麻对涝害的反应及适应性变异[J].中国油料作物学报,2000,22(2):48~52.
    [33] Cai YP, Tao HQ. Effects of soil waterlogging on several physiological characters of wheat leaf after flowering [J]. Plant physiol Commun, 2000, 36(2): 110~113.
    [34]王文泉,郑永战,梅鸿献,等.芝麻对涝害的反应及适应性变异Ⅱ.模拟涝害胁迫下芝麻基因型间的光合生理变化及其对生长调节剂的反应[J].中国油料作物学报,2000,22(2):48~52.
    [35]蔺万煌,李艳红,萧浪涛,等.淹水对烟草生理特性的影响[J].湖南农业大学学报(自然科学版).2001,27(5):339~342.
    [36] Daugherty CJ, Mathews SW, Musgrave ME. Structure changes in rapid-cycling Brassica Rapa selected for different waterlogging tolerance [J]. Can J Bot, 1994, 72(9): 1322~1328.
    [37] Bennicelli RP, Stepniewski W, Zakrzhevsky DA, et al. The effect of soil aeration on superoxide dismutase activity, malondialdehyde level, pigment content and stomata diffusive resistance in maize seedlings [J]. J Exp Bot, 1998,39(3): 203~211.
    [38]李阳生,李绍清.涝渍胁迫对水稻发育后期的生理特征与产量的影响[J].武汉植物学研究,2000,18(2):117~122.
    [39]赵可夫.植物对水涝胁迫的适应[J].生物学通报,2003,38(12):11~14.
    [40]潘瑞炽,董愚得.植物生理学(第三版) [M].北京:高等教育出版社,1995:119~124.
    [41] Guo SR, Nada K, Katoh H, et al. Differences between tomato (Lycopersicon e sculentum Mill.) and cucumber (Cucumis sativusL.) in ethanol, lactate and maltase metabolisms and cell sap pH of rootsunder hypoxia [J]. J Japan Soc Hort Sci, 1999, 68(1): 152~159.
    [42] Atwell B, Steer B T. The effect of oxygen deficiency on uptake and distribution of nutrients in maize plants [J]. Plant Soil, 1990, 122:1~8.
    [43] Biemel T S, Hajirezaei M R, Melzer M. Srcrole synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions [J]. Planta, 1999, 210(l): 41~49.
    [44] Good A G, Muench D G. Long-term anaerobic metabolism in root tissue: Metabolic products of pyruvate metabolism [J]. Plant Physiol, 1993, 101(4): 1163~1168.
    [45]陈立松,刘星辉.水涝胁迫下的果树生理.果树逆境生理[M].北京:中国农业出版社,2003:167~216.
    [46]陈强,郭修武,胡艳丽,等.淹水对两种甜樱桃砧木根系无氧呼吸酶及发酵产物的影响[J].生态学报,2007 (11):4925~4931.
    [47]陈强.淹水对不同砧木甜樱桃生理生化特性的影响[D].泰安:山东农业大学硕士论文,2007.
    [48]张祖新,姜华武,魏中一,等.淹水胁迫下不同耐渍性玉米自交系根系中的酶学研究[J].湖北农业科学,2003,(3):25~28.
    [49] Joly C A. Flooding tolerance: a reinterpretation of Crawford's metabolic theory [J].Proc. of the Roy.Soc.of Edinburgh, 1994, 102: 343~354.
    [50] Menegus F, Cattaruzza L, M attana M, Beffagna N, Ragg E. Response to anoxia in rice and wheat seedlings. Changes in pH of intracellular compartments, glucose-6-phosphate level and metabolic rate [J]. Plant Physiology, 1991, 95: 760~767.
    [51] Rodolfo G C, Heliodoro C, Irma R. Importance of Rhodospirillum rubrum H+-pyrophosphatase under low-energy conditions [J]. Journal of Bacteriology, 2004, 186 (19): 6651~6655.
    [52]汪天,李娟,郭世荣,高洪波.外源多胺对低氧胁迫下黄瓜幼苗根系生长及H+-ATP酶和H+-焦磷酸酶活性的影响[J].植物生理与分子生物学学报,2005,31(6):592~596.
    [53] Sacha MM, Subbaiah CC, Saab IN. Anaerobic gene expression and flooding tolerance in maize [J]. J Exp Bot, 1996, 47:1~15.
    [54] Anis M. Limami, Claudie Ricoult, Elizabeth Planchet. Response of Medicago truncatula to abiotic stress: Response of Medicago truncatula to flooding stress [J]. Medicago truncatula handbook,2007, 6: 1~32.
    [55] Sato, T., Harada, T. and Ishizawa, K. Stimulation of glycolysis in anaerobic elongation of pondweed (Potamogeton distinctus) turions [J]. J. Exp. Bot., 2002, 53: 1847~1856.
    [56] Good A G, Muench D G. Long-term anaerobic metabolism in root tissue: Metabolic products of pyruvate metabolism [J]. Plant Physiol, 1993, 101(4): 1163~1168.
    [57] Perata P and Alp i A. Ethanol-induced injuries to carrot cells: the role of acetaldehyde [J]. Plant Physiol, 1991, 95 (3): 748~752.
    [58] Liao C T and Lin C H. Physiological adaptation of crop plants to flooding stress [J]. Proc. Natl. Sci. Counc. ROC (B), 2001, 25 (3): 148~157.
    [59] Menegus F, Cattaruzza L, Mattana M, et al. Response to anoxia in rice and wheat seedlings. Changes in the pH of intracellular compartments, glucose-6-ph-osphate level, and metabolic rate [J]. Plant Physiol., 1991, 95 (3): 760~767.
    [60] Roberts J K M, Wemmer Dray P M, Jardetzky. Regulation of cytoplasmic and vacuolar pH in maize root, tips under different experimental conditions [J]. Plant Physiol., 1982, 69: 1344~1347.
    [61] Germain V, Raymond P, Ricard B. Different expression of two lactate dehydogenase genes in response to oxygen deficit [J].Plant Mol. Bio., 1997, 35: 71~72.
    [62] Davies D D, Grego S, Kenworth P. The control of the production of lactate and ethanol by higher plants [J]. Plant Physiol., 197?, 118:297~310.
    [63] Gibbs J, Morrell S, Valdez A, et al. Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia [J]. Journal of Experimental Botany, 2000, 51 (345): 785~796.
    [64] Ellis MH, Millar AA, L lewellyn DJ, et al. Transgenic cotton (Gossypium hirsutum ) overexp ressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency [J]. Australian Journal of Plant Physiology, 2000, 27 (11): 1041~1050.
    [65] Mustroph A, Albrecht G. Tolerance of crop plants to oxygen deficiency stress: Fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia [J]. Physiologia Plantarum, 2003, 117(4): 508~520.
    [66] Ricoult C, Echeverria LO, Cliquet JB, et al. Characterization of alamine aminotransferase (AlaAT ) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula [J]. Journal of Experimental Botany, 2006, 57(12): 3079~3089.
    [67] Hec J, Morgan P W, Drew M C. Transduction of an ethylene signal is required for all death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia[J].Plant Physiol., 1996,112: 463~472.
    [68] Perata P, Vemieri P, Armellini D, et al. Immunological determination of acetaldehyde-protein adducts in ethanol-treated carrot cell [J]. Plant Physiol, 1992(98): 913~918.
    [69] Menegus F, Cattaruzza L, Chersi A, Fronza G.. Differences in the anaerobic lactate-succinate production and in the changes of cell sap pH for plants with high and low resistance to anoxia [J]. Plant Physiol, 1989, (1): 29~32.
    [70] Gout E, Boisson A M, Aubert S, Douce R, Bligny Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorus-31 nuclear, magnetic resonance studies [J]. Plant Physiology, 2001, 125:912~925.
    [71] Else M A, Tiekstra A E, Croker S J. Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpiration in xylem sap [J]. Plant Physiol, 1996, 112: 239~247.
    [72] Wilkinson S, Corlett J A, Oger L. Effects of xylem pH on transpiration from wild-type and flacca mutant tomato leaves: A vitalrole for abscisic acid in preventing excessive water loss even from well-watered plants [J]. Plant Physiol, 1998, 117:703~709.
    [73] Roberts J K M, Andrade F H, Anderson I C. Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants [J]. Plant Physiol, 1985, 77: 492~494.
    [74]李璟,胡晓辉,郭世荣等.D-精氨酸对低氧胁迫下黄瓜幼苗根系多胺含量和无氧呼吸代谢的影响[J].应用生态学报,2007,2(18):376~382.
    [75] Dre, MC, Jackson MB, Giffard SC, et al. Inhibition by silver ions of gas space formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen efficiency [J]. Planta, 1981, 153:217~224.
    [76] Stadtman E R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis andby metal catalyzed reactions [J]. Ann Rev Biochem, 1993, 62:797~821.
    [77] Reznick A Z, Packer L. Oxidative damage to proteins: spectrop-hotometric methods for carbonyl assay [J]. Methods Enzymol, 1994, 233:357~363.
    [78] Stadtman E R, Oliver O N. Metal-catalysed oxidation of proteins. Physiological consequences [J]. J Biol Chem, 1991, 266:2005~2008.
    [79]杜秀敏,殷文璇,越彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121~125.
    [80] Vantoai TT, Bolles CS. Postanoxic injury in soybean (Glycine max) seedlings [J].Plant Physiol, 1991, 97:588~592.
    [81] Vantoai T T,Beuerlein J E,Schmitthenner A F, et al.Genetic variability for flooding tolerance in soybeans [J]. Crop Science, 1994, 34:1112~1115.
    [82] Sophis B, Ulrich K, Gerd A. Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings [J]. Plant Physiol, 1998, 116:651~658.
    [83]米银法,马锋旺,马小卫.根际低氧对不同抗性猕猴桃幼苗抗氧化系统的影响[J].中国农业科学,2008,41(12):4328~4335.
    [84]白团辉,马锋旺,李翠英,等.水杨酸对根际低氧胁迫下八棱海棠幼苗活性氧代谢的影响[J].园艺学报,2008,35(2):163~168.
    [85]康云艳,郭世荣,李娟,等.2,4-表油菜素内酯对低氧胁迫下黄瓜幼苗根系抗氧化系统的影响[J].中国农业科学,2007,6(3):281~289.
    [86]康云艳,郭世荣,段九菊.外源24-表油菜素内酯对低氧胁迫下黄瓜幼苗抗氧化系统及蛋白含量的影响[J].农业工程学报,2005,12:82~86.
    [87]刘晓忠,李建坤,王志霞,等.涝渍逆境下玉米叶片超氧化物歧化酶和过氧化氢酶活性与抗涝性的关系[J].华北农学报,1995,10(3):29~32.
    [88]董合忠,李维江,唐薇,等.干旱和淹水对棉苗某些生理特性的影响[J].西北植物学报,2003,23(10):1695~1699.
    [89] Bowler C, VanMontage M, Inze Q. Superoxide dismutase and stress tolerance [J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 83~116.
    [90]余淑文,汤章成.植物生理与分子生物学[M].北京:科学出版社,1998,336~389.
    [91]刘国琴,樊卫国.果树对水分胁迫的生理响应[J].西南农业学报,2000,13 (1):101~106.
    [92]陈由强,朱锦懋,叶冰莹.水分胁迫对芒果(Mangiferaindica L. )幼苗细胞活性氧伤害的影响[J].生命科学研究,2000,4(1):60~64.
    [93]晏斌,戴秋杰,刘晓忠,等.玉米叶片涝渍伤害过程中超氧自由基的积累[J],植物学报,1995,37(9):738~74.
    [94] Kawse M. Effect of flooding on ethylene concentration in horticultural plant [J]. Amer. Soc. Hort. Sci., 1972, 97: 584~588.
    [95] Jackson M B, Hallk K C. Early stomatal closure in waterlogged pea plants as mediated by abscisic acid in the absence of foliar water deficits [J]. Plant Cell Environment, 1987, 10:121~130.
    [96] Kawse M. Effect of flooding on ethylene concentration in horticultural plant [J]. Amer. Soc. Hort. Sci., 1972, 97: 584~588.
    [97]王文泉,郑永战,梅鸿献等.不同耐渍基因型芝麻在厌氧胁迫下根系的生理与结构变化[J].植物遗传资源学报,2003,4(3):214~219.
    [98] Drew M C, Jackson M B, Giffard S C. Inhibition by silver ions of gas space formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency[J]. Plania,1981,153:217~224.
    [99] Hiron R W P, Wright S T C. The role of endogenous abscisic acid in the response of plants to stress [J]. Ezp. Bot., 1973, 24:769~781.
    [100] Hwang S Y, Van Toai T T. Abscisic acid induces annerobiosis tolerance in corn [J].Plant Physiol., 1991, 97: 593~597.
    [101] Hurn W P, Lur H S, Liao K C. Role of abscisic acid, ethylene and polyaminjes in flooding promoted senescence of tobacco leaves [J]. Plant Physiol., 1994, 143:102~105.
    [102]何嵩涛,刘国琴,樊卫国.水涝胁迫对银杏内源激素和细胞溶质含量的影响[J].安徽农业科学,2006,34(7):1292~1294.
    [103]徐锡增,唐罗忠,程淑婉.涝渍胁迫下杨树内源激素及其它生理反应[J].南京林业大学学报,1999,23(1):1~5.
    [104]唐罗忠,徐锡增,方升佐.土壤涝渍对杨树和柳树苗期生长及生理性状影响的研究[J].应用生态学报,1998,9(5):471~474.
    [105]汤玉喜,刘友全,吴敏,等.淹水胁迫下美洲黑杨无性系生理生化指标的变化[J].中国农学通报,2008,24(08):162~166.
    [106] Athwal G S, Huber S C. Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase [J]. Plant Journal, 2002, 29:119~130.
    [107] Cristina Branco-Price, Riki Kawaguchi, Ricardo B. Ferreira, Julia Bailey-Serres. Genome-wide analysis of transcript abundance and translation in arabidopsis seedlings subjected to oxygen deprivation [J]. Annals of Botany, 2005, 96: 647~660.
    [108] Valeria Banti, Elena Loreti, Giacomo Novi, Antonietta Santanidllo, Amedeo Alpi, Pierdomenico Perata. Heat acclimation and cross-tolerance against anoxia in Arabidopsis [J]. Plant, Cell and Environment, 2008, 31:1029~1037.
    [109] Chuang-TA Liao, Chin-Ho Lin. Physiological adaptation of crop plants to flooding stress [J]. Proc. Natl. Sci. Counc. ROC(B), 2001, 25(3):148~157.
    [110] K. Szick-Miranda, S. Jayachandran, A. Tam, J. Werner-Fraczek, A. J. Williams, and J. Bailey-Serres. Evaluation of translational control mechanisms in response to oxygen deprivation in Maize [J]. Russian Journal of Plant Physiology, 2003, 50(6): 774~786.
    [111] Sachs MM,HoT-HD. Alteration of gene expression during environmental stress in plant [J]. Annu Rev Plant physiol, 1986, 37:363~376.
    [112] Dennis E S, Sachs M M, Molecular analysis of the Adh2 gene of maize [J]. Nuclei Acids Res, 1985, 13:727~743.
    [113] William W.P. Chang, Lan Huang, Min Shen, Cecelia Webster, Alma L. Burlingame, and Justin K.M. Roberts. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry [J]. Plant Physiology, 2000, 122:295~317.
    [114] Peschke V M, Peschke V M, Sachs M M. Multiple pyruvate decarbolase gene in maize are induced by hypoxia [J]. Mol Gen Genet, 1993, (240): 206~212.
    [115]刘新宇.低氧胁迫时玉米幼苗根尖表达蛋白的鉴定[D].雅安:四川农业大学硕士学位论文,2004,5.
    [116] Peschke V M, Sachs M M. Multiple pyruvate decarbolase gene in maize are induced by hypoxia [J]. Mol Gen Genet, 1993, (240): 206~212.
    [117] Ricard B, Couee1. Plant metabolism under hypoxia and anoxia[J].Plant Physiol, Biochem,1994,32:1~10.
    [118] Huang B. Waterlogging responses and interaction with temperature, salinity and nutrients. In: Wilkinson RE(ed.) Plant environment interactions[J]. Dekker, NewYork, 2002, 263~282.
    [119] Vartapetian B B,Jackson MB. Plant adaptations to anaerobic stress [J]. Annals of Botany, 1997, 79:3~20.
    [120] Rove R N, Beardsell D V. 1973. Waterlogging of fruit trees [J]. Hort. Abstract, 43:533~548.
    [121] Herbert J. Kronzucker, Guy J.D. Kirk, M. Yaeesh Siddiqi, and Anthony D.M. Glass. Effects of hypoxia on 13NH4+ fluxes in rice roots [J]. Plant Physiol, 1998, 116: 581~587.
    [122] Guo SR, Tachibana S. Effect of dissolved O2 levels in a nutrient isolution on the growth and mineral nutrition of tomato and cucumber seedlings [J]. Journal of Japanese Society for Horticultural Science,1997,66(2): 331~337.
    [123] Thchibana S,Konishi N. Diurnal variation of in vivo and in vitro nitrate reductase activity in cucumber plants [J]. Journal of Japanese Society of Horticultural Science,1991, 60:593~599.
    [124]陆景陵.植物营养学[M].北京:中国农业大学出版社,2003,268~271.
    [125] Morard P, Laeoste L, Silvestre J. Effect of oxygen deficienecy on uptake of water and mineral nutrients by tomato plants in soilless culture [J]. Journal of Plant Nutrition, 2000, 23(8):1063~1078.
    [126]苏玲,林咸永,章永松,等.水稻土淹水过程中不同土层铁形态的变化及对磷吸附解吸特性的影响[J].浙江大学学报(农业与生命科学版),2001,27(2):124~128.
    [127] Chen HJ, Qualls RG, Blank RR. Effect of soil flooding on photosynthesis, carbohydrate, partitioning and nutrient uptake in the invasive exotic Lepidium Latifolium [J]. Aquatic Botany, 2005, 82: 250~268.
    [128]蔺万煌,李艳红,萧浪涛.淹水对烟草生理特性的影响[J].湖南农业大学学报,2001,27 (5):339~342.
    [129] Gibbs J, Turner DW, Armstrong W, Darwent M J, Greenway H. Response to oxygen deficiency in primary maize roots .I. Development of oxygen deficiency in the stele reduces radial solute transport to the xylem [J]. Auslralian Journal of Plant Physiology, 1998, 25(6):745~758.
    [130]常江,李金才.渍害条件下小麦营养吸收特点.安徽农业大学学报,1997,24 (1):24~29.
    [131]傅前虎,李金才,雷鸣.孕穗期根际土壤淹水对小麦氮素代谢和产量的影响[J].安徽农业科学,2001,29 (5):608~610.
    [132] West D.W. and Taylor, J. A. Response of six grape cultivars to the combined effects of high salinity and rootzone waterloggong [J]. J. Am. Soc. Hortic. Sci.1984(109): 844~851.
    [133] Herath, H. M. E and G. W. Eaton. Some effects of water table, pH, and nitrogen fertilization upon growth and nutrient-element content of high bush blueberry plants [J]. Proc. Amer. Soc. Hort. Sci, 1968, (92):274~283.
    [134] Vartapetian BB, Andreeva IN, Generozova IP, et al.Functional electron microscopy in studies of plant response and adaptation to anaerobic stress[J]. Ann Bot, 2003, 91:155~172.
    [135] Dat J F, Capelli N, Folzer H, Bourgeade P, Badot P. Sensing and signaling during plant flooding [J]. Plant Physiology and Biochemistry, 2004, 42: 273~282.
    [136] Sarkar R K, Das A. Changes in antioxidative enzymes and antioxidants in relation to flooding tolerance in rice [J]. Journal of Plant Biology, 2000, 27(3): 307~311.
    [137] Buchanan.BB, Gruissem W, Jones RL. Biochemistry and Molecular biology of Plants [M],2000,1179~1180.
    [138] D. Vodnika, P. Strajnarb, S. Jemca, I. Ma?ek. Respiratory potential of maize (Zea mays L.) roots exposed to hypoxia [J].Environmental and Experimental Botany, 2008, EEB-1900: 1~4.
    [139]封克,司江英,汪晓丽,等.不同水分条件下水稻根解剖结构的比较分析[J].植物营养与肥料学报,2006,12(3):346~351.
    [140] Bailey-Serres J, and Chang R. Sensing and signaling in response to oxygen deprivation in plants and other organisms [J]. Annals of Botany, 2005, 96: 507~518.
    [141]米海莉,许兴,李树华,等.干旱胁迫下牛心朴子幼苗相对含水量、质膜透性及保护酶活性变化[J].西北植物学报,2003,23(11):1871~1876.
    [142] Foyer C H, Lopez-Delgado H DAT J F. Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling [J]. Physiol Plant, 1997, 100: 241~254.
    [143] Krishna Kaveri Das, D. Panda, M. Nagaraju, S. G. Sharma and R. K. Sarkar. Antioxidant enzymes and aldehyde releasing capacity of rice cultivars (Oryza sativa L.) as determiants of anaerobic seedling establishment capacity [J]. Bilg. J. Plant Physiol, 2004, 30(1-2):34~44.
    [144]石进校,刘应迪,陈军,等.土壤涝渍胁迫对淫羊藿叶片膜脂过氧化和SOD活性的影响.生命科学研究[J],2002,6(4):29~31.
    [145] Sophia Biemelt, Ulrich Keetman, and Gerd Albrecht. Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings [J]. Plant Physiol., 1998, 116: 651~658.
    [146] Willekens H, Chamnongpol S, Davey M. Catalase is a sink for and is indispensable for stress defence in C3 plants[J].EMBO J, 1997, 16: 4806~4816.
    [147] Havir E A. M chanle N A. Enhanced-peroxidatic activity in specific catalase isozymes of tobacco, barley, and maize[J].Plant Physiol, 1989, 91: 812~815.
    [148]张维强,唐秀芝.同工酶与植物遗传育种[M].北京:北京农业大学出版社,1993.
    [149]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002,53~70.
    [150] Huang B. Mechanisms of plant resistance to waterlogging. In: A S Basra and R K Basra eds. Mechanisms of environmental stress resistance in plants [J]. Netherlands: Harwood academic publishers, 1997. 50~81.
    [151] Fukao T, Bailey-Serres J. Hypoxia responses in plants-a balancing act? [J], Trends in Plant Science, 2004,9: 449~456.
    [152] Felle H. pH regulation in anoxic plants [J]. Annals of Botany, 2005, 96: 519~532.
    [153] Chen HJ, Qualls RG. Anaerobic metabolism in the roots of seedlings of the invasive exotic Lepidium latifolium [J]. Environmental and Experimental Botany, 2003, 50 (1): 29~40.
    [154]魏和平,利容千,王建波.淹水对玉米叶片细胞超微结构的影响[J].植物学报,2000,42 (8): 811~817.
    [155] Su P H and Lin C H. Metabolic responses of luffa roots to long-term flooding [J]. Plant Physiol.,1996, 148 (6): 735~740.
    [156] Pablo J, Jacqueline FN, C B Watkins. Fermentative metabolism and organic acid concentrations in fruit of selected strawberry cultivars with different tolerances to carbon dioxide [J]. Amer. Soc. Hort. Sci. 1999, 124(6):696~701.
    [157] Kennedy R A, Rumpho M E, Fox T C. Anaerobic metabolism in plants [J]. Plant Physiol, 1992, 100:1~6.
    [158] Kader AA. Biochemical and physiological basis for effects of controlled and modified atmospheres on fruit and vegetables [J]. Food Tecnology, 1986, 40: 99~104.
    [159] AngelusK, T heophanes S, Kalliopi A. Suppression of cellulose and polygalacturonase and induction of alcohol dehydrogenase isoenzymes in avocado fruit mesorcarp subjected to low oxygen stress [J]. Plant physiol. 1991, 96: 269~274.
    [160] Davis, Brecht. Physiolgical studies of brown stain, a form of CO2 injury of harvested lettuce [J]. Ph. D. thesis. Univ. of Califomia, 1973.
    [161] Dang yang ke, Linda Gold tein, AA Kader. Effects of short-term exposure to low O2 and high CO2 atmospheres on quality attributes of strawberries [J]. Journal of Food Science.1991, 56 (1): 50~5 4.
    [162] Renar JB, Jefrey KB, Steven AS, et al. Mango tolerance to reduced oxygen levels in controlled atmosphere storage [J]. J.A mer. Hort. Sci. 2000, 125(6): 707~713.
    [163] Kanellies AK, T Solomos. Suppression of cellulose and Polygalacturonase and induction of alcohol dehydrogenase isoenzymes in avocado fruit mesocarp subjected to low oxygen stress [J]. Plant Physiol.1991, 96: 269~274.
    [164] Nanos GD, kader AA. Metabolism and other responses of‘Bartlet’pear fruit and suspension-cultured‘Posse Crassane’pear fruit cells held in 0.25%O2 [J]. Amer. Soc. Hort. Sci. 1992, 117: 934~940.
    [165] Dang yang ke, AA Kader. External and internal factors influence fruit tolerance to low-oxygen atmospheres [J]. J.A mer. Hort. Sci, 1992, 117(6): 913~918.
    [166] Kader AA. Biocheimical and physiological basis for effects of controlled and modified atmospheres on fruit and vegetable [J]. Food Technology, 1986, 5: 99~103.
    [167] Dang yang ke, Elhadi Y, Mila Mateos, et al. Ethanolic fermentation of‘Bartlet’pear as influenced by ripening stage and atomospheric composition [J]. J. Amer. Hort. Sci, 1994, 119 (5): 976~982.
    [168] Bohnert HJ, Nelson DE, Jensen RG. Adaptions to environmental stress [J].The plant cel1, 1995, 7:1099~1111.
    [169] Bohnert H J, Jensen RG.Stratigies for engineering water-stress tolerance in plants [J], Trend in Biontechnology, 1996, 14: 89~97.
    [170]陈大清,董登峰,李亚南,等.小麦抗涝的基因型差异对逆境胁迫的比较生理学效应.湖北农学院学报[J],1998,18(4) :295~298.
    [171] Gomes ARS, Kozlowski TT, Phydiological and growth responses to flooding of seedlings of Heves brasiliensis [J].Biotropic, 1988, 20(4): 286~293.
    [172] Terazawa K, Ikuzawa K, Effects of flooding on lesf dynamies and other seedling responses in flood-tolerant Alnus japonica and flood-tolerant Betula platyphylla var. japomical [J].Tree Physiology, 1994, 14(3): 251~261.
    [173] Keeley J E.Population differentiation along a flood frequencygradient: phydiological adaption toflooding in Nyssa sylvatica [J]. Ecological Monongraphs.1979, 49(1): 89~108.
    [174]卓仁英,陈益泰.木本植物抗涝性研究进展[J].林业科学研究,2001,4 (2):215~222.
    [175]束良佐,李爽.水杨酸浸种对水分胁迫下玉米幼苗某些生理过程的影响[J].南京农业大学学报,2002,25 (3):9~11.
    [176]黄建昌,肖艳,赵春香.自由基清除剂对香蕉水分胁迫的保护作用[J].福建果树,1999(4):1~3.
    [177]樊军锋,李嘉瑞,韩一凡等.mtlD/gutD双价耐盐基因转化秦美猕猴桃的研究[J].西北农林科技大学学报,2002,30(3):53~58.
    [178] Suauki K, Ital R, Suauki K. Formate dehydrogenate, and enzyme of anaerobic metabolism is induced by iron deficiency in barley roots [J]. Plant Physiol., 1998, 116: 725~732.
    [179]白团辉,马锋旺,李翠英,等.苹果砧木幼苗对根际低氧胁迫的生理响应及耐性分析[J].中国农业科学,2008,41(12):4140~4148.
    [180]孙艳军,郭世荣,胡晓辉,等.根际低氧逆境对网纹甜瓜幼苗生长及根系呼吸代谢途径的影响[J].植物生态学报,2006,30(1):112~117.
    [181]郭世荣.营养液溶氧浓度对黄瓜和番茄根系呼吸强度的影响[J].园艺学报,2000,27(2):141~142.
    [182] Guo S R, Nada K Y, Tachibana S J. A role for nitrate reductase in the high tolerance of cucumber seedlings to root-zoon hypoxia [J]. J Jpn Soc Hortic Sci, 1998, 67(4):613~618.
    [183] Kolb R M, Dolder H. Cortelazzo A L. Effects of anoxia on root ultrastructure of four nectropical trees [J]. Protoplasma, 2004, 224(1-2):99~105.
    [184] Hubert H F. Ph regulation in anoxic plants [J]. Annals of Botany, 2005, 96(4): 519~532.
    [185]黄宏文.猕猴桃研究进展(Ⅱ)[M].北京:科学出版社.2003,12(1):137~137.
    [186]王莉,王圣梅,黄宏文.猕猴桃属种间嫁接亲和性试验研究及抗根结线虫砧木的初步筛选[J].武汉植物学研究,2001,19(1):47~51.
    [187]生利霞,束怀瑞.低氧胁迫对平邑甜茶根系活力及氮代谢相关酶活性的影响[J].园艺学报.2008,35(1):7~12.
    [188]郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社, 2004: 101~104.
    [189]高俊凤.植物生理学试验技术[M].西安:世界图书出版社,2000,159~198.
    [190]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,119~263.
    [191]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,164~194.
    [192]赵世杰,许长成,邹琦,孟庆伟.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1991,30:207~210.
    [193]陈义强,邓祖湖,郭春芳,等.甘蔗常用亲本及其衍生品种的抗旱性评价[J].中国农业科学,2007,40(6):1108~1117.
    [194]韩瑞宏,卢欣石,高桂娟,等.紫花苜蓿抗旱主成份及隶属函数分析[J].草地学报,2006,14(2):142~146.
    [195]高克昌,韩云丽,赵随堂,等.用隶属函数对小扁豆品种进行综合评价[J].杂粮作物,2007,27(1):22~24.
    [196]陈荣敏,杨学举,梁凤山,等.利用隶属函数法综合评价冬小麦的抗旱性[J].河北农业大学学报,2002,25(2):7~9.
    [197]郭延平.杏的抗旱性研究[D].杨凌:西北农业大学博士学位论文,1996.
    [198]李翠英,马锋旺,白团辉,等.低氧胁迫对苹果砧木幼苗生长与生理特性的影响[J].西北植物学报,2008,28 (5):1001~1006.
    [199]吴九根,唐建军,宋松泉.水稻对缺氧胁迫的响应及耐性鉴定[J].生物学杂志,1995,2:13~16.
    [200]熊明彪,罗茂盛,田应兵,等.小麦生长期土壤养分与根系活力变化及其相关性研究[J].土壤肥料,2005,3:8~11.
    [201] Pastori GM,Trippi VS.Oxidative stress induces high rate of glutathione reductase synthesis in a drought resistant maize strain [J]. Plant Cell Physiol,1992,33:957~961.
    [202] Demming BK, et al. Photoinhibition and Zeaxanthin formation in intact leaves: apossible role of the xanthophylls cylle in the dissipation of excess light energy [J]. Plant physiol.1987, 84: 218~224.
    [203]胡学俭.10树种抗旱特性研究[D].泰安:山东农业大学硕士学位论文,2005.
    [204]王旭,郭世荣,李军,等.Ca2+对根际低氧胁迫下黄瓜幼苗生长和叶片荧光特性的影响[J].西北植物学报,2007,27(5):859~863.
    [205]高洪波,郭世荣,章铁军,等.营养液低氧胁迫对网纹甜瓜幼苗生长和生理代谢影响[J].沈阳农业大学学报,2006,37 (3):368~372.
    [206] H.J. Daunicht, H.J. Brinkjans, Gas exchange and growth of plants under reduced air pressure [J]. Advances in Space Research, 1992, 12 (5): 107~114.
    [207] K.A. Corey, D.J. Barta, D.L. Henninger, Photosynthesis and respiration of wheat stand at reduced atmospheric pressure and reduced oxygen [J]. Advances in Space Research, 1997, 20(10): 1869~1877.
    [208] C. He, F.T. Davies, R.E. Lacey, et al.. Effect of hypobaric conditions on ethylene evolution and growth of lettuce and wheat [J]. Journal of Plant Physiology, 2003, 160(11): 1341~1350.
    [209] Steven T,et al. Differential flood stress resistance of two tomato genotypes [J]. J Amer sci, 1989, 114(6): 976~980.
    [210] Mark R,et al. Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and‘aerotropic rooting’[J]. Annals of Botany, 2001, 88:579~589.
    [211] Christine J, et al. Characterization of populations of rapid cycling Brassica Rapa L. selected for differential waterlogging tolerance [J]. Journal of Experimental Botany, 1994, 45:385~392.
    [212]高洪波.根际低氧胁迫下网纹甜瓜幼苗生理代谢的特征及Ca2+,GABA生理调节功能[D].南京:南京农业大学博士学位论文,2005.
    [213]高洪波,郭世荣.外源γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗抗氧化酶活性和活性氧含量的影响[J].植物生理与分子生物学学报,2004,30(6):615~659.
    [214]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993.
    [215]李学湛.渍水胁迫对不同大豆品种叶片细胞超微结构的影响[J].大豆科学,1998,17(4):377~380
    [216] Das K K, Sarkar R K. Post flood changes on the status chlorophyll, carbohydrate and nitrogen content and its association with submergence tolerance in rice [J]. Plant Archives, 2001,1(1&2):15~19.
    [217] Sarkar R K, De R N, Reddy J N, et al. Studies on the submergence tolerance mechanism in relationto carbohydrate,chlorophyll and specific leaf weight in rice [J]. Plant Physiology, 1996, 149: 623~625.
    [218]曹旸,蔡士宾,严建民.小麦叶片RuBP羧化酶活性对湿害逆境的响应能力及亲本效应分析[J].作物学报,1997,2(1):102~106.
    [219]周苏玫,王晨阳,王重义.土壤渍水对冬小麦根系生长及营养代谢的影响[J].作物学报,1996,27(5):674~679.
    [220]张润花,郭世荣,李娟.盐胁迫对黄瓜根系活力、叶绿素含量的影响[J].长江蔬菜,2006,2:47~48.
    [221]孙艳,王益权,杨梅,等.土壤紧实胁迫对黄瓜根系活力和叶片光合作用的影响[J].植物生理与分子生物学学报,2005,31(5):545~550.
    [222]张晓海,蔡寒玉,汪耀富,等.干旱胁迫对烤烟生长及抗性生理的影响[J].烟草农业科学,2005,1(2):122~126.
    [223]周广生,朱旭彤.湿害后小麦生理变化与品种耐湿性的关系[J].中国农业科学,2002,35 (7):777~783.
    [224]徐文铎,郑元润,刘广田.内蒙古沙地云杉生长与生态条件关系的研究[J].应用生态学报,1993,4(4):368~373.
    [225]王西锐,雷玉山,刘运松,等.猕猴桃中熟新品种华优的选育[J].中国果树,2008,02:8~12.
    [226] Bano A., Dorffling K., Bettin D. and Hahn H. Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of Leopold A.C. (eds), Senescence and Aging in Plants[J]. Academic rice plants in drying soils. Aust. J. Plant Physiol, 1993, 20: 109~115.
    [227] Davies W.J., Metcalfe J., Lodge T. A. and Costa A.R. Plant growth substances and the regulation of growth under drought[J]. Aust. J. Plant Physiol, 1986, 13: 105~125.
    [228] Laurentius A.CJ. Voesenek, Minke Banga, Jan G.H.M. Rijnders, Eric J.W. Visser, Cornelis W.PaM. Blom. Hormone sensitivity and plant adaptations to flooding [J]. Folia Geobot. Phytotax, 1996, (31): 47~56.
    [229] Wample R.L. and Reid D.M. The role of endogenous auxins and ethylene in the formation of adventitious roots and hypecothl hypertrophy in flooded sunflowers plants [J]. Physiol. Plant, 1979, (45): 219~225.
    [230] Zhujie Xie, Dong Jiang, Weixing Cao, Tingbo Dai and Qi Jing. Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statuses [J]. Plant Growth Regulation, 2003, (41): 117~127.
    [231] Reid D M, Crozier A. The effects of flooding on the export of gibberellin from the root to the shoot [J]. Planta, 1969, 89: 376~349.
    [232] Burows W J, Carr D J. The effect of flooding the root system of sunflower plant on the cytokinin contents in the xylem sap [J]. Physiol Plant, 1969, 22: 1105~1112.
    [233] Hein M.B., Brenner M.L. and Brun W.A. Accumulation of 14C-radiolabel in leaves and fruits after injection of 14C-tryptophan into seed of soybean [J]. Plant Physiol., 1986, 82: 454~456.
    [234] Yuan C.X. and Ding J. Effects of water stress on the content of IAA and the activities of IAA oxidase and peroxidase in cotton leaves [J]. Acta Phytophysiol. Sinica, 1990, (16): 179~183.
    [235]段成国,李宪利,高东升.内源ABA和GA3对欧洲甜樱桃花芽自然休眠的调控[J].园艺学报,2004,31(2):149~154.
    [236]苏华,徐坤,刘伟.大葱花芽分化过程中内源激素的变化[J].园艺学报,2007,34 (3):671~676.
    [237] Chapin FS, Autumn K, Pugnaire F. Evolution of suites of traits in response to environmental stress [J]. Am Nat, 1993, 142: 578~592.
    [238] Nagel OW et al. Growth rate, plant development and water relations of the ABA-deficient tomato mutant sitiens [J]. Physiol Plant, 1994, 92:102~108.
    [239]时明芝,周保松.植物涝害和耐涝机理研究进展[J].安徽农业科学,2006,34(2):209~210.
    [240]唐定台,徐民新,冯永红.石竹试管花的诱导及其影响因子的研究[J].园艺学报,1996,23(3):277~280.
    [241]欧阳琳,洪亚辉,黄丽华,等.不同逆境胁迫信号对超级稻幼苗生理生化影响及植物激素变化的初步研究[J].农业现代化研究,2007,28(1):104~106.
    [242]张建农,李计红.甜瓜不同性别花蕾发育中激素和多胺的变化[J].园艺学报,2007,34(5):1195~1200.
    [243]黄宏文,龚俊杰,王圣梅,等.猕猴桃属( Actinidia)植物的遗传多样性[J].生物多样性,2000,8(1):1~12.
    [244]邢少辰,蔡玉红,周开达.植物多倍体研究的新进展[J].吉林农业科学, 2001,26(3): 12~15.
    [245]高鹏,王国英.植物的涝害胁迫及其适应机制研究进展[J].农业生物技术学报,2001,9(3):55~61.
    [246] Cai YP, Tao HQ. Effects of soil waterlogging on severalphysiological characters of wheat leaf after flowering [J].Plant physiol Commun, 2000, 36(2): 110~113.
    [247]王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报, 1997, 13 (2) : 273~278.
    [248]周艳虹,黄黎峰,喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响[J].植物生理与分子生物学学报, 2004, 30: 153~160.
    [249]喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究,2003,16(5):6~11.
    [250]林金科.水分胁迫对茶树光合作用的影响[J].福建农业大学学报,1998,27(4):423~427.
    [251]高健,侯成林,吴泽民.淹水胁迫对I-69/55杨蒸腾作用的影响[J].应用生态学报,2000,11(4):518~522.
    [252]卢元芳,冯立田.NaCI胁迫对菠菜叶片中水分和光合气体交换的影响(简报) [J].植物生理学通讯,1999,35(4):290~291.
    [253]邹琦.作物在水分逆境下的光合作用[J].作物杂志,1994,(5):l~4.
    [254] Pezeshki S R, Delaune R D.Responses of seedlings of selected woody species to soil oxidation reduction conditions[J].Environmental and Experimental Botany,1998,40(2):123~133.
    [255] Farquhar D G, Sharkey T D. Stomatal conductance and photosynthesis [J]. Annu. Rev. Plant Physiol. ,1982 ,33: 317~345.
    [256] Genty B E , Briantais J M ,Baker N R. The relationship betweenthe quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim. Biophys. Acta, 1989, 990: 87~92.
    [257]卢从明,张其德,匡廷云.水分胁迫对小麦叶绿素a荧光诱导动力学的影响[J].生物物理学报,1993 ,9 (3) : 453~457.
    [258]郭书奎,赵可夫. NaCl胁迫抑制玉米幼苗光合作用的可能机理[J].植物生理学报,2001 ,27 (6) : 461~466.
    [259] Papageogiou C. ChlorophyII fluorescence an intrinsic probe of photosynthesis [M].Gorindiee ed.Bioenergetics of Photosynthesis. New York :Academic Press ,1975 :319~371.
    [260] Demmig Adams B. Carotenoids and photo-protection in plant:A role for the xanthophyIIs zeaxanthin[J ].Biochem Biophys Acta ,1990 ,(1020) :129.
    [261] Lin R C, Xu C C , Li L B. Xanthophyll cycle and itsmolecularmechanism in photop rotection[J]. Acta Bot. Sin. , 2002, 44: 379~383.
    [262] Malkin S, Fork D C.Photosynthetic unit of sun and shade plants[J]. Plant Physiol. ,1981, 67: 580~583.
    [263]张其德,朱新广,卢从明,冯丽洁,匡廷云,张建华.盐胁迫下CO2浓度倍增对冬小麦叶绿体光能吸收和激发能分配的影响[J].生物物理学报,1998,14: 537~542.
    [264]孙永平,汪良驹. ALA处理对遮荫下西瓜幼苗叶绿素荧光参数的影响[J].园艺学报,2007, 34 (4) : 901~908.
    [265]郭世荣,橘昌司,李谦盛.营养液温度和溶解氧浓度对黄瓜植株氮化合物含量的影响[J].植物生理与分子生物学报,2003,29(6):593~596.
    [266] Hisashi K N. Anoxia tolerance in rice roots acclimated by several different periods of hypoxia [J]. Journal of plant Physiology, 2003, 160: 565~568.
    [267] Takeshi F, Julia B S. Plant responses to hypoxia-is survival a balancing act? [J]. Trends in Plant Science, 2004, 9 (9): 449~456.
    [268]胡晓辉,郭世荣,李璟,等.低氧胁迫对黄瓜幼苗根系无氧呼吸酶和抗氧化酶活性的影响[J].武汉植物学研究,2005,23(4):337~341.
    [269]高洪波,郭世荣,汪天.根际低氧胁迫对网纹甜瓜硝态氮、铵态氮和蛋白质含量的影响[J].园艺学报,2004,31:236~238.
    [270]刘文革,阎志红,王川,等.西瓜幼苗抗氧化系统对淹水胁迫的响应[J].果树学报, 2006,23(6):860~864.
    [271] Malgorzata G, Waldemar B. Effect of a short-time hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots [J]. Plant Physiology and Biochemistry, 2004, 42: 233~240.
    [272]高洪波,郭世荣.外源γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗抗氧化酶活性和活性氧含量的影响[J].植物生理与分子生物学学报,2004,30(6):615~659.
    [273] Ezzatollah K, Lila G, Jacqueline K, Mahnaz H. Antioxidant enzymes during hypoxia–anoxia signaling events in Crocus sativus L. corm [J]. New York Academy of Sciences, 2006, 1091(1): 65~75.
    [274]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:167~169.
    [275]曾韶西,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应[J].植物生理学报,1991,17(2):177~182.
    [276] Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase [J]. Jornal of Experimental Botany, 1981, 32: 93~101.
    [277]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,6:55~57.
    [278] Uchida A, Jagendorf A T, Hibino T, Takabe T, Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice [J]. Plant Science, 2002, 163: 515~523.
    [279] Biemelt S, Keetman U, Mock H P, Grimm B. Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia [J]. Plant, Cell &Environment, 2000, 23: 135~144.
    [280]康云艳,郭世荣,段九菊,等.24-表油菜素内酯对低氧胁迫下黄瓜根系抗氧化系统及无氧呼吸酶活性的影响[J].植物生理与分子生物学报,2006,32(5):535~542.
    [281] Blokhina O B, Chirkova T V, Fagerstedt K V. Anoxic stress leads to hydrogen peroxide formation in plant cells [J]. Journal of Experimental Botany, 2001, 52(359): 1179~1190.
    [282] Skulachev V P. Membrane-linked systems preventing superoxide formation [J]. Bioscience Reports, 1997, 17(3): 347~366.
    [283] Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review [J]. Annals of Botany, 2003, 91: 179~194.
    [284] Ellis M H, Dennis E S, Peacock W J. Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance [J]. Plant Physiology, 1999, 119: 57~64.
    [285]陈强,郭修武,胡艳丽,等.淹水对甜樱桃根系呼吸强度和呼吸酶活性的影响[J].应用生态学报,2008,19 (7):1462~1466.
    [286]姜玉梅,歌德.乳酸脱氢酶同工酶的提取及活性测定[J].哈尔滨医科大学学报,1999.33 (1 ):71~73.
    [287]欧阳光察.苹果酸脱氢酶活性测定.上海植物生理学会薛应龙主编.植物生理学实验手册[M].上海:上海科学技术出版社,1985,179~181.
    [288]欧阳光察.葡萄糖-6-磷酸脱氢酶活性的测定.上海植物生理学会薛应龙主编.植物生理学实验手册[M].上海:上海科学技术出版社,1985,183~184.
    [289] Bergmeger H U. Methods of enzymatic analysis, 3rd, VolⅢ[M]. Verlag Chemse: Weinhein Press, 1983: 598~616.
    [290]康云艳,郭世荣,段九菊.根际低氧胁迫对黄瓜幼苗根系呼吸代谢的影响[J].应用生态学报,2008,19 (3):583~587.
    [291] Hess B, Ke D, Kade rA A. Changes in intracellular pH, ATP, and glycolytic enzymes in‘hass’avocado in response to low O2 and high CO2 stresses [J]. In Proc 6th Intl Contr Atomsphere Res. Conf, NARRAES-71, Corneli Univ., ithaca, N.Y. 1993, l~9.
    [292] Holcroft DM, AA Kader. Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit postharvest [J]. Biology and Technology, 1999,17(l):19~32.
    [293] Robert J KM, K Chang, C Webster. Dependence of ethanolic fermentation, cytoplasmic pH regulation and viability on the activity of alcohol dehydrogenase in hypoxic maize root tips [J]. Plant Physiol, 1989, 89: 1275~1278.
    [294] Jackson M B, M. C. Drew. In Kozlowsk L TT (ed) flooding and plant growth [J]. Academic Press Florida, 1984, 47~128.
    [295] Scandalious J. G. In Smith phytochemical society symposia series No: 14. Regulation of enzymesynthesis and activity in higher plants [J]. Academic Press London, 1977, 20~135.
    [296] Hoffman N E, Bent A F, Hanson A D. Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue [J]. Plant Physiol, 1986, 82(3): 658~663.
    [297]王晓云,毕玉芬.植物苹果酸脱氢酶研究进展[J].生物技术通报,2006 (4 ):44~50.
    [298]罗磊.甜杨PPP途径关键调控酶G-6-PDH的理化特性和抗冻机制[D].北京:北京林业大学硕士论文,2007.
    [299] Umedta, Uehimaiya H. Differential transcript levels of genes associated with glycolysis and alvohol fermentation in rice plants (oryza sative L.) under submergence stress [J]. Plant Physiol, 1994, 106:1015~1022.
    [300]彭克勤,夏石头,李阳生.涝害对早中稻生理特性及产量的影响[J].湖南农业大学学报(自然科学版),2001,7(3):174~176.
    [301]杨万年,林志福,任国邻.暗诱导油菜子叶衰老过程G-6-P脱氢酶和乙醇脱氢酶活性的变化[J].中国油料作物学报,2003,25(3):43~45.
    [302] Musrur R , Ani1G et al. Effeets of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice [J]. Aust. J. Plant Physiol, 2001, 28: 1231~1241.
    [303] Walter Larcher.翟志席,郭玉海,等译.植物生理生态学[M].北京:中国农业大学出版社,1997,293~286.
    [304]刘晓忠,汪宗立.缺氧条件诱导玉米根系乙醇脱氢酶活性的调节作用[J].植物学通报,1996,1 3(1):48~49.
    [305]潘向艳.杂交鹅掌楸不同无性系对淹水胁迫的反应[D].南京:南京林业大学硕士研究生论文,2006.
    [306]王生.淹水胁迫对杨树无性系苗期生长及生理的影响[J].云南林业科技.1998,6(2):28~33.
    [307]陈强,郭修武,胡艳丽,等.淹水对甜樱桃根系呼吸和糖酵解末端产物的影响[J].园艺学报,2008,35 (2):169~174.
    [308] Dang yang Ke. Regulation of fermentative metabolism in avocado fruit under oxygen and carbon dioxide stresses [J]. Amer. Hort. Sci, 1995, 120(3): 481~490.
    [309] Saglio P H, Pradet A. Soluble sugars, respiration, and energy charge during aging of excised maize root tips [J]. Plant Physiol, 1980, 66: 516~519.
    [310]马月花,郭世荣.低氧胁迫对黄瓜幼苗根系呼吸代谢的影响[J].中国蔬菜,2005,2:18~20.
    [311] Fox G G, McCallan N R, Ratcliffe R G. Manipulating cytoplasmic pH under anoxia: a critical test of the role of pH in the switch from aerobic to anaerobicmetabolism [J]. Planta, 1994, 195: 324~330.
    [312] Kennedy R A, Fox T C. Anaerobic metabolismin plants [J].Plant physiol, 1992, 100:1~6.
    [313]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [314]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000,257~282.
    [315]王宝山.小麦叶片中Na+、K+提取方法的比较[J].植物生理学通讯,1995,31(1):50~52.
    [316]黄晓华,周青,马育国,等.钙减轻紫外辐射伤害小麦幼苗的研究[J].农业环境保护,2001,20 (6):457~458.
    [317]蒋廷惠,占新华,徐阳春.钙对植物抗逆能力的影响及其生态学意义[J].应用生态学报,2005,16(5):971~976.
    [318] Luan S. Singnalling drought in guard cell [J]. Plant Cell Environ, 2002, 25: 229~237.
    [319]宗会,胡文玉.植物钙调素(CaM)研究进展[J].园艺学年评,1996,2:177~196.
    [320]李延,刘星辉,庄卫民.植物Mg素营养生理的研究进展[J].福建农业大学学报,2000,(01):74~80.
    [321] Cakmak I. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enchanced in magnesium and potassium deficient leaves, but not in phosphorus-deficient leaves [J]. Journal of Experimental Botany, 1994, 45(278): 1259~1266.
    [322] Polle A, Otter T, Jakobs B M. Effect of magnesium-deficiency on antioxidative systems in needles of Norway spruce grown with different ratios of nitrate and ammonium as nitrogen sources [J]. New Phytol, 1994, 128: 621~628.
    [323]汪洪,褚天铎.缺镁对菜豆幼苗膜脂过氧化及体内活性氧清除酶系统的影响[J].植物营养与肥料学报,1998,4(4):368~392.
    [324]曹恭,梁鸣早.锰-平衡栽培体系中植物必需的微量元素[J].土壤肥料,2004,1:加1~4.
    [325]师进霖,纳玲洁,马琼媛,等.锰硼营养对黄瓜产量及抗氧化酶活性的影响[J].中国生态农业学报,2007,15(2):44~46.
    [326]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1996,32~70.
    [327]白宝璋,史芝文.植物生理学[M].北京:中国科学技术出版社,1992,43~44.
    [328]程瑞平,束怀瑞,顾曼如.水分胁迫对苹果树生长和叶中矿质元素含量的影响[J].植物生理学通讯,1992,28(1): 32~34.
    [329]曾骧.果树生理学[M].北京:北京农业大学出版社,1992.
    [330]马文涛,樊卫国.干旱胁迫对实生红橘、甜橙和柚叶中营养元素含量的影响[J].西南农业学报,2007,20(4):630~633.
    [331]刘国琴,何嵩涛,樊卫国,等.土壤干旱胁迫对刺梨叶片矿质营养元素含量的影响[J].果树学报,2003,20 (2):96~98.
    [332]刘建福,倪书邦,贺熙.水分胁迫对澳洲坚果叶片矿质元素含量的影响[J].热带农业科技,2004,27 (1):1~3.
    [333] Schwartz S, Bar-Yosef B. Magnesium uptake by tomato plants as affected by Mg and Ca concentration in solution culture and plant age [J]. Agronomy Journal, 1983,75:267~272.
    [334]陈亚华,等.NaCl胁迫下棉花幼苗的离子平衡[J].棉花学报,2001,13(4):225~229.
    [335]杨涛,严重玲,梁洁,等.盐胁迫下木麻黄幼树营养元素的分配规律[J].亚热带植物科学,2003,32(3):1~4.
    [336] Ratellfe R.G In vivo NMR studies of the metabolic response of plant tissues to anoxia [J]. Annu Bot, 1997, 79(suppl A): 39~48.
    [337] GermainV, Raymond P, Ricard B. Diferent expression of two lactate dehydogenase genes inresponse to oxygen deficit [J]. Plant Mot Biol, 1997, 35: 711~721.
    [338]刘鑫,朱端卫,等.酸性土壤活性锰与pH,Eh关系及其生物反应[J].植物营养与肥料学,2003,9(3):317~323.
    [339] Marschner H. Mechanisms of adaptation of plants to acid soils [J]. Plant Soil, 1991, 134: 1~20.
    [340]何电源.中国南方土壤肥力与栽培植物施肥[M].北京:科学出版社,1994.
    [341]丁维新.不同耕作制度对土壤中锰贮存形态及其有效性的影响[J].热带亚热带土壤科学,1994,3(3):15.
    [342] Mukaopadhyay MJ, Sharma A. Manganese in cell metabolism of higher plants [J]. Bot Rev, 1991,51: 117~149.
    [343] Chen HJ, Qualls RG, Blank RR. Effect of soil flooding on photosynthesis, carbohydrate, partitioning and nutrient uptake in the invasive exotic Lepidium Latifolium[J]. Aquatic Botany, 2005, 82: 250~268.
    [344]张宪政,陈凤玉,王荣富.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1994,20~21.
    [345]刘建福,倪书邦,贺熙勇,等.水分胁迫对澳洲坚果叶片矿质元素含量的影响[J].热带农业科技,2004,27 (1):1~3.
    [346]周晓阳,赵楠,张辉.水分胁迫下中东杨气孔运动与保卫细胞离子浓度变化的关系[J].林业科学研究,2000,13 (1):71~74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700