柑橘水培体系优化及N、Fe胁迫下根系形态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然条件下生长的柑橘砧木主要是依靠在植株根部形成的菌根,由于在无土栽培条件下砧木根部不会形成菌根,所以如何创造一个有利于砧木根系生长的环境成为许多学者关注的焦点。另外,砧木栽培在土壤中不利于观察其根系形态,利用水培可以在不伤害根系的情况下直观、清晰地看到其形态的变化,通过适当改变营养液配方能方便快速的形成缺素环境。对于缺素条件下柑橘生长的研究比较多,但缺素对柑橘砧木形态方面的研究并不多。因此,本文测定了营养液不同通气频率下枳壳幼苗的生长及生理生化指标,以反映出营养液中不同的含氧量对枳壳生长的影响,并且通过营养液缺N和缺Fe处理,对枳壳幼苗的根系形态指标进行了测定,主要结果如下:
     1柑橘水培体系的优化
     (1)不同通气处理对枳壳幼苗生长量的影响
     与营养液中不通氧处理的枳壳(对照)相比,各通气处理的植株高度随着处理时间的延长显著增加,其中T1处理的株高在后期增幅较大。通气处理的叶面积变化趋势均为前8周较缓慢,处理8至12周内增长速度较快。T1植株的叶面积较处理前有了明显的变化,由4.395cm2增加到60.383 cm2。各通气处理的单株地上部及根部干鲜重在前期变化比较缓慢,后期植株生长较快,干物质累积显著。
     (2)不同通气处理对枳壳幼苗生理生化的影响
     与对照相比,各通气处理的电导伤害率值显著较低,T1与T2的变化幅度较小,T3和T4处理的电导伤害率值较高。T1至T4处理由于通气频率逐渐降低,其MDA含量相应逐渐升高,说明增氧可抑制MDA的产生,增加植物活力,抗老化。T1至T4处理的根系活力值在处理相同天数后均高于对照CK的值,高频率通气处理T1和T2的根系活力差异不显著。T1处理的可溶性蛋白含量变化最平稳,T2至T4处理的可溶性蛋白含量变化也不大,均在一定范围内波动。T1、T2和T3处理的可溶性糖含量峰值出现在处理后第8周,较处理前分别增长了42.65%、61.10%和70.61%。T1处理在所有处理中一直保持较高水平的光合色素含量,叶绿素a、总叶绿素和类胡萝卜素含量的最大值均出现在处理后8周。T2、T3和T4处理的光合色素含量变化不大,均在一定范围内波动。
     2 N、Fe胁迫下枳壳幼苗根系形态研究
     (1)缺氮和缺铁对枳壳幼苗生长量的影响
     以在全营养液中生长的枳壳为对照,对照植株株高为44.0cm,而缺氮和缺铁处理植株仅为16.4cm和27.6cm。对照植株的叶面积显著高于缺氮和缺铁植株。缺氮处理的植株在干物质累积方面明显低于对照,缺铁处理的植株生物量介于对照和缺氮处理之间。
     (2)缺氮和缺铁对枳壳幼苗根系形态的影响
     缺氮和缺铁处理的植株主根直径略有下降,三种处理的侧根平均直径差异不大,缺氮植株具有明显较大的根体积。缺氮处理使枳壳幼苗的主根长度和根系总长度增加,但侧根数量明显减少,缺铁处理主根长度最大,但其根系总长度却受到抑制,侧根数量也明显减少。缺氮和缺铁处理的植株根系活力显著下降,缺氮处理具有较大的根系表面积,缺铁处理则根系表面积有所下降。
     (3)缺氮和缺铁对枳壳幼苗营养元素含量的影响
     缺氮处理的植株N、P含量在根、茎、叶中均较低,缺铁植株只有根部的含N量低于CK对照,缺氮和缺铁处理的植株根部的K含量都显著低于对照,而在茎和叶中差异不大。缺铁处理根部的Fe浓度显著低于对照和缺氮处理,而在茎和叶中差异不大。缺氮、缺铁处理和对照在Ca和Mg含量上并无差异,表明这两种缺素处理对Ca和Mg的吸收影响不大。
Under the natural conditions, the growth of citrus rootstocks mainly depends on the mycorrhiza which formed in plant roots.Since there is no mycorrhizal roots in the soilless culture, how to create a conducive environment for the rootstocks to grow becomes the focus of attention of many scholars.Besides,it's not convenient for us to observe the root morphology of the rootstocks which are planted in the soil, hydroponics can be used without harm to see the shape changes of the root visually and clearly.Nutrient deficiency environment can be formed rapidly by changing the nutrient solution formula appropriately.Researches for the growth of citrus under the nutrient deficiency conditions are universal,but for the morphology are few. So,we investigate physiological and biochemistry index of the citrus aurtantium seedlings growing in the nutrient solution with different dissolved oxygen concentrations,in order to find out the effect caused by the dissolved oxygen to the growth of citrus aurtantium.We also investigate the root morphology index of the seedlings under the nitrogen-deficiency and iron-deficiency nutrient solution. The main results show that:
     1 Optimization of a hydroponic culture system for citrus
     (1)Effect of different dissolved oxygen concentrations on growth of the seedlings
     Compared to the citrus seedlings with no air aeration to the nutrient solution(control), the height of the plants of the different aeration treatments increases by the time,and the height of T1 increases considerably in the late period.The growth of leaf area of the plants with different aeration treatments enhances slowly in the first 8 weeks,from the 8th to 12th week it enhances significantly.The leaf area of T1 has significant increase during the experiment,from 4.395cm2 to 60.383 cm2.The fresh and dry weight of the plants with different aeration treatments increases slowly in the previous period, the seedlings grow faster and the accumulation of dry matter was significantly increases in the late period
     (2)Effect of different dissolved oxygen concentrations on physiological and biochemistry index
     Compared to control,relative electronical conductivity of the treatments with different aeration is significantly lower,Tland T2 have a lesser extent in the relative electronical conductivity,but the values of T3 and T4 are higher.Content of MDA increases gradually from T1 to T4,because of the decrease frequency of aeration,as a result,oxygen can inhibit the production of MDA and increase the vigor of the plant eith anti-aging.Values of the root activity of the different aeration treatments are all higher than CK dealed with the same number of days.The values of the root activity of T1 and T2 have no significant defference.Content of soluble protein basically has no change in Tl,changes of T2 to T4 are also not significant,they all in a certain range.The peak of soluble sugar content in T1,T2,T3 all appear 8 weeks after treatment,with an increase of 42.65%,61.10% and 70.61% compared with it before the treatment respectively.Tl maintains high levels of photosynthetic pigment content between the different aeration treatments. The maximum values of Chlorophyll a, total chlorophyll and carotenoid content in T1 appear 8 weeks after treatment, the photosynthetic pigment content of T2,T3,T4 changed little, fluctuating within a certain range.
     2 Study on root morphology response to nitrogen-deficiency and iron-deficiency of Poncirus seedlings
     (1)Effect of nitrogen-deficiency and iron-deficiency on growth of the seedlings
     Compared to the citrus seedlings growing in the full nutrient solution(control),height of the nitrogen-deficiency and iron-deficiency plant is only 16.4cm and 27.6cm,while the height of control is 44.0cm. Plant leaf area of control were significantly higher than those of nitrogen deficiency and iron-deficiency plant.Dry matter accumulation of nitrogen-deficiency plants are significantly lower than control,the biomass of iron-deficiency plant is between the control and nitrogen treatments.
     (2) Effect of nitrogen-deficiency and iron-deficiency on root morphology of the seedlings
     Main root diameter of nitrogen-deficiency and iron-deficiency plants decrease slightly,there is no difference of lateral root average diameter in all treatments and control, nitrogen-deficiency plant has significantly larger root volume.Main root length and total root length of nitrogen-deficiency plants increases with significantly reduced the number of lateral roots. iron-deficiency plant has the largest main root length,but the total root length was inhubited and the number of its lateral roots reduced significantly.Root activity of nitrogen-deficiency and iron-deficiency plants decreases significantly, nitrogen-deficiency plants have the larger root surface area than control,but decline has been observed in iron-deficiency plants.
     (3)Effect of nitrogen-deficiency and iron-deficiency on nutrient content of the seedlings
     Content of N and P of nitrogen-deficiency plants is all lower in roots,stems and leaves.Only the content of N of iron-deficiency plants in root is less than control, K concentrations of nitrogen-deficiency and iron-deficiency plants in root are significantly lower than control,with little difference in stems and leaves.Content of Fe of iron-deficiency plants in root is significantly lower than that of control and nitrogen treatment,but little difference is observed in stems and leaves.Content of Ca and Mg does not change in all treatments and control,indicating that there is little effect on absorption of Ca and Mg in those both nutrient deficiency.
引文
1.安华明,樊卫国.果树铁营养研究进展.西南农业学报,2001,14(3):83-89
    2.安佳佳,李新国,李绍鹏,王晶晶.短期高温对香蕉幼苗光合作用及相关生理指标的影响.中国农学通报,2010,26(20):362-365
    3. 白团辉,马锋旺,李翠英,束怀瑞,韩明玉,王昆.苹果砧木幼苗对根际低氧胁迫的生理响应及耐性分析.中国农业科学,2008,41(12):4140-4148
    4. 白小明,相斐,鲁存海.氮磷钾肥对高羊茅扩展性和根系特性的影响.草地学报,2009,17(5):600-606
    5. 白志英,李存东,孙红春,吴同燕.干旱胁迫对小麦叶片叶绿素和类胡萝卜素含量的影响及染色体调控.华北农学报,2009,24(1):1-6
    6.陈海波.水曲柳苗木根系对氮胁迫的形态和生理反应.[硕士学位论文].黑龙江:东北林业大学图书馆,2008
    7.蔡金峰.淹水胁迫对乌桕幼苗生长及生理特性的影响.[硕士学位论文].江苏:南京林业大学图书馆,2008
    8. 陈昆,刘世琦,张自坤.水培条件下钾对大蒜幼苗生长及根系活力的影响.北方园艺,2011(1):20-23
    9. 陈明霞,黄见良,崔克辉,李明军.光、氮对水稻根系特征和碳代谢的影响.湖北农业科学,50(2):237-241
    10.陈曦,张婷,刘志洋.低温胁迫对十种宿根花卉电导率的影响.北方园艺,2010(10):121-122
    11.崔兴国.果树缺铁研究进展.黑龙江农业科学,2010(6):152-154
    12.陈钰,郭爱华,姚月俊,姚延梼.低温胁迫下杏花器官内POD、相对电导率和可溶性蛋白含量的变化.山西农业科学,2007,35(3):30-32
    13.常正尧,王健美,齐冰.水稻缺铁胁迫条件下根部形态及电镜观察.阜阳师范学院学报(自然科学版),2008,25(3):30-34
    14.丁飞,王秀峰,史庆华.缺铁胁迫对小白菜光合特性及品质的影响.山东农业科学,2007,(6):51-53
    15.董合忠,李维江,唐薇,李振怀,张冬梅.干旱和淹水对棉苗某些生理特性的影响.西北植物学报,2003,23(10):1695-1699
    16.丁建国,李翠芹,李海波.铁肥对菠菜生长发育的影响.安徽农学通报,2008,14(15):148-149
    17.方丽,任海英,,茹水江.低氧胁迫下西瓜接穗与葫芦砧木形态及生理特性变化.浙江农业学报,2010,22(6):764-768
    18.冯立国,生利霞,束怀瑞.低氧胁迫下外源硝态氮对樱桃根系功能及氮代谢相关酶活性的影响.应用生态学报,2010,21(12):3282-3286
    19.费小红,安保光,赵宝华,李阳生.类胡萝卜素参与水稻抗氧化胁迫的研究进展.现代农业科学,2009,16(1):22-23
    20.郭爱花,陈钰.不同供磷水平对韭菜可溶性蛋白与可溶性糖含量的影响.山东农业科学,2009,4:78-79,89
    21.高福元,张吉立,刘振平,郭芳芳.持续低温胁迫对园林树木电导率和丙二醛含量的影响.山东农业科学,2010,2:47-49,81
    22.高洪波,郭世荣,汪天.根际低氧胁迫对网纹甜瓜硝态氮、铵态氮和蛋白质含量的影响.园艺学报,2004,31(2):236-238
    23.高洪波,郭世荣,章铁军,胡晓辉,张广华.营养液低氧胁迫对网纹甜瓜幼苗生长和生理代谢影响.沈阳农业大学学报,2006,37(3):368-372
    24.高鹏,刘遵春,刘砚璞.4个葡萄品种对水分胁迫的响应及其抗旱性评价.河南农业科学,2009,(3):79-81
    25.郭世荣.营养液溶氧浓度对黄瓜和番茄根系呼吸强度的影响.园艺学报,2000,27(2):141-142
    26.高巍.矮牵牛缺氮、缺磷、缺钾植株的形态和生理指标的变化.长春大学学报,2007,17(6),61-63
    27.黄鹤丽,林电,章金强,孙恪志.水分胁迫对巴西香蕉幼苗水分状况、质膜透性和根系活力的影响.基因组学与应用生物学,2009,28(4):740-744
    28.韩杨,黄世臣,李莉.水分胁迫接种VAMs对山杏叶片中可溶性糖和脯氨酸含量的影响.延边大学农学学报,2008,30(3):217-221
    29.韩振海,沈隽.果树的缺铁失绿症——文献述评.园艺学报,1991,18(4):323--328
    30.井春喜,张怀刚,师生波,张梅妞,李毅.土壤水分胁迫对不同耐旱性春小麦品种叶片色素含量的影响.西北植物学报,2003,23(5):811-814
    31.姜琳琳,韩立思,韩晓日,战秀梅,左仁辉,吴正超,袁程.氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响.植物营养与肥料学报,2011,17(1):247-253
    32.景茂,曹福亮,汪贵斌,潘静霞.土壤水分含量对银杏生长及生物量分配的影响.南京林业大学学报(自然科学版),2005,29(3):5-8
    33.李翠英,马锋旺,白团辉,束怀瑞,韩明玉,王昆.低氧胁迫对苹果砧木幼苗生长与生理特性的影响.西北植物学报,2008,28(5):1001-1006
    34.刘刚,郭世荣,康云艳.钙对低氧胁迫下黄瓜幼苗生长和可溶性蛋白表达的影响.江苏农业科学,2008,(6):135-137
    35.李含芬,马春晖.缺铁胁迫对沙梨叶片黄化、再复绿和根系中Fe(Ⅲ)还原酶活性的影响.青岛农业大学学报(自然科学版)2009,26(3):203-206
    36.陆海峰,潘英华,卿冬进.缺水和缺铁胁迫对玉米光合作用特性和根生长的影响.广西农业生物科学,2007,26(1):44-49
    37.李莉,任金平,曲柏宏,黄世臣,李玉梅,庞建成.水分胁迫对苹果梨叶片可溶性糖、脯氨酸含量的影响.吉林农业科学,2007,32(1):51-54
    38.李凌,周泽杨,裴炎.小金海棠和丽江山荆子的缺铁胁迫反应.园艺学报,2003,30(6):639-642
    39.李妮亚,曹翠玲,高俊凤.干旱对小麦幼苗诱导蛋白表达与某些生理特性的初步探讨.西北植物学报,1997,17(2):210-216
    40.李卫宁,郗国宏,李超.微量元素铁对芦荟根系活力及活性物质含量的影响.安徽农业科学,2010,38(20):10619-10621
    41.陆新华,叶春海,孙光明.干旱胁迫下菠萝苗期叶绿素含量变化研究.安徽农业科学,2010,38(8):3972-3973,3976
    42.梁喜献.控释增氧剂对水培植物的影响.广西热带农业,2009(6):74-76
    43.刘新宇,黄玉碧.低氧胁迫对玉米根尖蛋白表达影响的研究.西南农业学报,2004,17(3):318-323
    44.刘义玲,李天来,孙周平.根际低氧胁迫对网纹甜瓜光合作用、产量和品质的影响.园艺学报,2009,36(10):1465-1472
    45.李玉英,庞发虎,孙建好,李隆,程序.根系分隔和施氮对蚕豆/玉米间作体系根系分布和形态的影响.中国农业大学学报,2010,15(4):13-19
    46.乔海涛,杨洪强,申为宝,姜倩倩,由淑贞,张龙,冉昆,张鑫荣.缺氮和缺铁对平邑甜茶幼苗根系构型的影响.园艺学报,2009,36(3):321-326
    47.苏丹,孙国峰,张金政,姜闯道,于强波,顾德锋,董燃.水分胁迫对费菜和长药八宝生长及生物量分配的影响.园艺学报,2007,34(5):1317-1320
    48.石进校,赵福永,刘应迪,陈军.温度胁迫下淫羊藿的膜脂过氧化和保护酶活性.生命科学研究,2002,6(2):160-162
    49.生利霞,束怀瑞.低氧胁迫对平邑甜茶根系活力及氮代谢相关酶活性的影响.园艺学报,2008,35(1):7-12
    50.田晓艳,刘延吉,张蕾,张弘,刘沛含.盐胁迫对景天三七保护酶系统、MDA、Pro及可溶性糖的影响.草原与草坪,2009,(6):11-14
    51.谭勇,梁宗锁,王渭玲,段绮梅.氮、磷、钾营养胁迫对黄芪幼苗根系活力及根系导水率的影响.中国生态农业学报,2007,15(6):69-72
    52.王翠玲,杨晓明,曹孜义.缺铁黄化对葡萄生长及果实品质的影响.果树学报,2007,24(1):26-29
    53.王慧超,向邓云,徐亚丽.PEG浸老化种子对茎瘤芥幼苗叶片MDA含量的影响.安徽农业科学,2010,38(14):7722-7723
    54.王慧蕾,唐小付,龙明华.营养液低氧胁迫对网纹甜瓜嫁接苗逆境指标的影响.中国蔬菜,2008(3):26-29
    55.王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报,2001,18(4):459-465
    56.王金玲,董心久,田成军,魏凌基.水分胁迫对小黑麦生理生化特性和可溶性蛋白质的影响.麦类作物学报,2006,26(5):137~139
    57.王晶英,赵雨森,王臻,李贺程.干旱胁迫对银中杨生理生化特性的影响.水土保持学报,2006,20(1):197-200
    58.王丽娜,克热木·伊力,侯江涛.水分胁迫对扁桃砧木叶片脯氨酸、可溶性蛋白质、质膜透性、相对含水量的影响.新疆农业大学学报,2006,29(3):53-58
    59.王明元,夏仁学,王幼珊,周开兵,王鹏,倪海枝.缺铁和过量重碳酸盐胁迫下丛枝菌根真菌对枳生长的影响.园艺学报,2008,35(4):469-474
    60.王树起,韩晓增,乔云发,严君,李晓慧.施氮对大豆根系形态和氮素吸收积累的影响.中国生态农业学报,2009,17(6):1069-1073
    61.汪天.低氧胁迫下黄瓜幼苗体内多胺的代谢及其生理调节功能的研究.[博士学位论文].江苏:南京农业大学图书馆,2005
    62.王义强,蒋舜村,石明旺,黄旭光,梁艳.不同抗氧化剂对银杏愈伤组织褐变影响的研究.经济林研究,2003,21(4):21-23
    63.汪宗立,丁祖性.小麦湿害及耐湿性的生理研究——Ⅱ.不同生育期土壤过湿对小麦某些生理过程的影响.江苏农业科学,1981,4:10-18
    64.王中梅,李胜利,王永华.秋茬生菜深水栽培氧的需求规律.中国农学通报,2007,23(3):483-485
    65.徐海军,孙广玉,周志强,张悦.氮素水平对五味子幼苗生长的影响.国土与自然资源研究,2011,(1):71-73
    66.许建锋,马艳芝,刘玉祥,张玉星,张胜珍.低温胁迫对晚熟桃枝条电导率、SOD及POD活性的影响.贵州农业科学,2010,38(11):200-202
    67.杨宝铭,吕德国,秦嗣军,黄作港.淹水对‘寒富’苹果保护酶系和根系活力的影响.沈阳农业大学学报,2007,38(3):291-294
    68.袁军,谭晓风,袁德义.缺素对普通油茶幼苗根系形态及活力的影响.湖北农业科学,2010,49(2):314-315
    69.袁琳,克热木·伊力.盐胁迫对阿月浑子可溶性糖、淀粉、脯氨酸含量的影响.新疆农业大学学报,2004,27(2):19-23
    70.杨明,陈历儒,王继玥,宋海星,欧中甜.氮素对油菜根系生长和产量形成的影响.西北农业学报,2010,19(4):66-69
    71.杨学书,李佛琳,韩伟,陈光辉.施氮量对烤烟云烟87生长和产质量的影响.安徽农业科学,2010,38(33):18810-18811
    72.主春福,彭福田,彭静.不同施氮处理对平邑甜茶根系构型的影响.山东农业科学,2008,4:57-61
    73.张恩让,任媛媛,胡华群.钙对淹水胁迫下辣椒幼苗根系生长和呼吸代谢的影响.园艺学报,2009,36(12):1749-1754
    74.张福锁,刘书娟,毛达如,韩振海.苹果抗缺铁基因型差异的生理生化指标研究.园艺学报,1995,22(1):1-6
    75.张金凤,孙明高,夏阳,李国雷,胡学俭.盐胁迫对石榴和樱桃脯氨酸含量和硝酸还原酶活性及电导率的影响.山东农业大学学报(自然科学版),2004,35(2):164-168
    76.周龙,廖康,王磊,许正,杨文英.低温胁迫对新疆野生樱桃李电解质渗出率和丙二醛含量的影响.新疆农业大学学报,2006,29(1):47-50
    77.周灵芝,龙明华,唐小付.营养液低氧胁迫对厚皮甜瓜几个逆境指标的影响.中国蔬菜,2007(7):16-19
    78.张明生,谢波,谈锋,张启堂.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究.中国农业科学,2003,36(1):13-16
    79.张倩,何婧,王桢,胡淑静,谌继红.中华芦荟在不同胁迫下的丙二醛和可溶性糖含量的变化.西南民族大学学报(自然科学版),2009,35(2):290-292
    80.张维强,沈秀瑛.水分胁迫和复水对玉米叶片光合速率的影响.华北农学报,1994,9(3):44-47
    81.赵旭,李天来,孙周平.根际低氧胁迫对番茄植株叶片和果实碳水化合物代谢的影响.2010,(2):19-22
    82.庄小锋.新几内亚凤仙缺素症状和N营养研究.[硕士学位论文].北京:北京林业大学图书馆,2008
    83.赵瑛,吕红,魏存发.氮磷钾供应水平对莴笋植株矿质元素含量影响研究.甘肃农业科技,2002,(2):37-39
    84.张玉琼,张鹤英.淹水逆境下玉米若干生理生化特性的变化.安徽农业大学学报,1998,25(4):378-381
    85.郑永强,邓烈,何绍兰,周志钦,易时来,毛莎莎,赵旭阳.几种砧木对哈姆林甜橙植株生长、产量及果实品质的影响.园艺学报,2010,37(4):532-538
    86.张治礼,郑学勤.油菜叶片自然衰老过程中部分生理指标的变化规律.中国油料作物学报,2004,26(2):47-50
    87. Afrousheh M, Ardalan M, Hokmabadi H. Nutrient deficiency disorders in Pistaciavera seedling rootstock in relation to eco-physiological,biochemical characteristics and uptake pattern of nutrients. Scientia Horticulturae,2010,124: 141-148
    88. Ali M, Hahn E, Paek K. Effects of temperature on oxidative stress defence systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol Biochem, 2005,43:213-223
    89. Arunothai Jampeetong, Hans Brix. Oxygen stress in Salvinia natans:Interactive effects of oxygen availability and nitrogen source. Environmental and Experimental Botany,2009,66:153-159
    90. Bailey Serres J, Chang R. Sensing and signalling in response to oxygen deprivation in plants and other organisms. Annals of Botany,2005,96:507-518
    91. Blokhina O B, Chirkova T V, Fagerstedt K V. Anoxic stress leads to hydrogen peroxide formation in plant cells. Journal of Experimental Botany,2001,52(359): 1179-1190
    92. Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress:a review. Annals of Botany,2003,91:179-194
    93. Biemelt S, Keetman U, Mock H P, et al. Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant, Cell &Environment,2000,23:135-144
    94. Bragina T V, Drozdova I S, Ponomareva Y V. Photosynthesis respiration and transpiration in maize seedlings under hypoxia induced by complete flooding. Doklady Bio Sci,2002,384:274-277
    95. Dat J F, Capelli N, Folzer H, et al. Sensing and signalling during plant flooding. Plant Physiology and Biochemistry,2004,42:273-282
    96. Drew M C. Oxygen deficiency and root metabolism injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48:223-250
    97. Fukao T, Bailey S. Plant responses to hypoxia is survival a balancing act? Trends in Plant Science,2004,9(9):449-456
    98. Garmczarska M, Bednarski W. Effect of a short-time hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots. Plant Physiology and Biochemistry,2004,42:233-240
    99. Hisashi K. Anoxia tolerance in rice roots accumulated by several different periods of hypoxia. Journal of Plant Physiology,2003,160:565-568
    100.Jampeetong A, Brix H. Nitrogen nutrition of Salvinia natans:Effects of inorganic nitrogen form on growth, morphology, nitrate reductase activity and uptake kinetics of ammonium and nitrate. Diamond and related materials.2009,18,574-577
    101.Karen Smeets, Joske Ruytinx, Frank Van Belleghem. Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant Physiology and Biochemistry,2008,46:212-218
    102.Keyhani E, Ghamsari L, Keyhani J, et al. Antioxidant enzymes during hypoxia-anoxia signaling events in Crocus sativus L. corm. New York Academy of Sciences,2006,1091(1):65-75
    103.Liu Ying, Gu Jia Cun; Wei Xing. Variations of morphology, anatomical structure and nitrogen content among first-order roots in different positions along branch orders in tree species. Chinese Journal of Plant Ecology,2010,34:1336-1343
    104.Lopez B J, Cruz R A, Herrera E L. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology,2003,6 (3):280-287
    105.Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell and Environment,2005,28:67-77
    106.Maribela P, Amarilisde V, Javier A, et al. Differential tolerance to irondeficiency of citrus rootstocks grown in nutrient solution. Scientia Horticulturae,2005,104:25-36
    107.Morard P, Lacoste L, Silvestre J. Effect of oxygen deficiency on mineral nutrition of excised tomato roots. Plant Nutr,2004,27:613-624
    108.Narayanan S, Ruma D, Gitika B. Antioxidant activities of seabuckthorn (Hippophae rhamnoides) during hypoxia induced oxidative stress in glial cells. Molecular and Cellular Biochemistry,2005,278:9-14
    109.Pandey O P, Ashak, Haque H. NAD-alcohol dehydrogenase and superoxide dismutase activity in Zea mays under hypoxicand post-hypoxic stress regime. Plant Bio,2000,27:71-73
    110.Pestana M.,de Varennes A., Faria,E.A. Diagnosis and correction of iron chlorosis in fruit trees:a review. Journal of Food, Agriculture and Environment,2003,1:46-51
    111.Richard W Zobel, Ghiath A Alloush, David P Belesky. Differential root morphology response to no versus high phosphorus in three hydroponically grown forage chicory cultivars. Environmental and Experimental Botany,2006,57:201-208
    112.Sarkar R K, Das A. Changes in antioxidative enzymes and antioxidants in relation to flooding tolerance in rice. Journal of Plant Biology,2000,27(3):307-311
    113.Shishkova S, Rost T L, Dubrovsky J G. Determinate root growth and meristem maintenance in Angiosperms. Annals of Botany,2008,101:319-340
    114.Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science,2002,163: 515-523
    115.Yeh D M, Chiang H H. Growth and flower initiation in hydrangea as affected by root restriction and defoliation. Sci Hortic,2001,91:123-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700