一串红耐热性与外源基因转化体系构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候变暖的加剧,高温已成为制约植物生长发育的主要非生物胁迫因子之一。明确高温对植物生发育的影响以及植物对高温的反应,是目前植物逆境生理学的重要研究内容。一串红生长适温23-28℃,温度长时间超过35℃时,会严重影响其正常生长和开花。在我国,一串红多在5月至10月期间作为盆花应用,而此时我国南方地区多为高温多雨,因此其生长易受高温胁迫。本研究以浙江省的主栽品种展望、帝王、神州红和皇后等为材料,研究了高温胁迫(40℃)条件下一串红的生理响应及品种间差异;利用双向电泳和质谱技术等差异蛋白质组学方法,研究了高温胁迫条件下不同一串红品种叶片的蛋白质差异表达,探讨了一串红耐热性分子机制;研究了不同激素组合对一串红各外植体愈伤组织诱导率与分化率的影响,并建立了一串红再生体系;研究了利用农杆菌介导法和花粉管通道法建立一串红导入外源基因Cyp2的遗传转化体系。主要研究结果如下
     1.在自然高温胁迫条件下,一串红不同品种间在株高、冠幅、花序长度和花序数上存在显著差异,所有品种生长放缓,并出现了少量叶片萎蔫的现象,但高温对一串红的正常开花影响并不明显。在整体表现上,供试品种中,辉虹、皇后、火娃和红孩表现出较高的观赏价值,耐热性较强。
     2.在田间模拟自然高温条件下,神州红比帝王耐热性强,具体表现为神州红花期较长,冠幅和花序长度受高温影响较小。人工气候箱高温胁迫(40℃)条件下,神州红和帝王叶片叶绿素含量、Fv/Fm值和SOD酶活性均表现降低,CAT和POD活性以及MDA和脯氨酸含量显著增加。两供试品种间以上性状受高温影响的程度差异明显;与帝王相比,神州红有较强的光保护机制和活性氧清除能力。
     3.短期高温胁迫(40℃)可引起一串红PSⅡ反应中心的可逆失活,氧活酶活性的提高、抗氧化剂和渗透调节物质的产生在一定程度上减轻了植物氧化胁迫,与帝王相比,展望光保护机制和活性氧清除系统较强;在双向电泳凝胶上两个品种分别检测到1213个蛋白质点,高温胁迫后展望和帝王分别得到23个和28个上调或下调的差异表达蛋白点。在鉴定的所有蛋白中,大部分与逆境应答、光合作用、植物代谢、蛋白质折叠和降解相关,尤其是与光合用相关蛋白较多,且鉴定的蛋白中有不少属于热激蛋白的sHSPs成员、HSP70成员以及HSP90成员,这些热激蛋白在新生肽链的折叠、寡聚蛋白质的组装、损伤蛋白质的再次折叠、蛋白质的降解、蛋白质的跨膜运输以及在信号转导中均起着重要作用,说明高温胁迫能诱导一串红大量热激蛋白的产生,并通过热激蛋白在不同组织、不同生理过程中的大量表达,减轻或修复高温胁迫所引起的伤害。
     4.三种激素组合(BAP、NAA和2,4-D)能诱导一串红品种皇后和展望叶片、茎段和带节茎段产生愈伤组织,但BAP+NAA组合在各种浓度条件下皆不能诱导种胚产生愈伤组织。经比较,获得了两个品种不同外植体诱导产生愈伤组织的较佳激素组合,叶片、茎段和带节茎段为1.0mg/L2,4-D和1.5mg/L BAP,而种胚为2.0-2.5mg/L2,4-D和1.0mg/L BAP.对一串红愈伤组织分化的研究表明,带节茎段诱导的愈伤组织虽然能偶然产生少量再生苗,但由叶片和茎段诱导的愈伤组织获得再生植株困难较大。而诱导种胚产生的愈伤组织具有较高的不定芽分化能力,在分化培养基上皇后和展望均产生了大量再生苗,且添加有2.0mg/L TDZ和1.0mg/L KT的分化培养基有最高的不定芽分化率。本研究系首次报道一串红通过成熟种子诱导胚性愈伤组织途径获得再生植株,建立了一串红的再生体系。
     5.采用农杆菌介导法获得了少量转Cyp2基因的一串红植株,初步建立了农杆菌介导的一串红遗传转化体系,并表明愈伤组织继代培养不超过30d、菌液OD600值在0.2与0.4之间和侵染时间不超过10min等可以获得较多的抗性愈伤组织。而采用花粉管通道法转入外源基因,处理的一串红植株结实率明显下降,最后虽然获得了一些种子,但经检测均为阴性植株。分析其原因,很可能与一串红授粉后的花序侵泡时间有关,需要进一步研究加以佐证。
Salvia splendens Ker-Gawl. most commonly used to add a splash of brilliant color in a warm season, frequently encounters heat stress in the South China, and its growth and flowering are greatly affected by high temperature. In the present study, high temperature stress responses were investigated in Salvia splendens to determine the morphological and physiological mechanisms associated with the heat tolerance. Comparative proteomic analysis of Salvia splendens varieties, Vista and Kings under40℃stress for4d were conducted to gain a comprehensive understanding for heat tolerance molecular mechanisms. The effect of various combinations of plant growth regulators (PGRs) and explant types on the callus induction and plant regeneration of Salvia splendens was investigated, and in consequence, genetic transformation system using Agrobacterium-mediated and pollen-tube pathway was studied to provide a theoretical and technical basis for development of heat-resistant Salvia splendens varieties. The main resuts are as follows:
     1. There was a significantly different in growth response to natural heat stress among of Salvia splendens varieties. Huo Wa and Pround Red had the longer florescence. Plant highth. rown diameter, inflorescence length and number of the examined varieties were significantly affected by high temperature stress. All varieties showed slower growth and a slightly wilting of leaves when the plants were exposed to high temperature. However, the current heat stress did not affect the flowering of Salvia splendens. On the whole, Pround Red, Queen, Huo Wa and Hong Hai showed higher visual values and heat tolerance.
     2. The variety Shenzhouhong had longer florescence, and its rown diameter, inflorescence duration length were less affected by heat stress than Emperor under naturally high temperature. In a growth incubator with40℃. there was no significant difference in SPAD values (relative content of chlorophyll) between two varieties, while heat stress resulted in significant reduction of Fv/Fm (maximum quantum yield of Photosystem Ⅱ photochemistry) and SOD (superoxide dismutase) activity, and significant increase of CAT (catalase) and POD (peroxidase) activities, as well as MDA (malondialdehyde) and proline contents. Moreover, the affected extent differed greatly between two varieties. It may be suggested that Shenzhouhong had much greater ability than Emperor in the capacity of light protection and active oxygen scavenging system in response to high temperature stress.
     3. Heat stress induced reversible inactivation of PS Ⅱ reaction centers and production of protective enzymes and antioxidants, which alleviated oxidative damage of Vista. More than1213protein spots were reproducibly detected on each2-D gel, wherein23and28proteins were differentially up-or down-regulated by heat stress, respectively. There were8pair of spots from the identified proteins similar to both varieties. Most proteins were involved in photosynthesis, metabolism, protein processing and stress response, especially in photosynthesis. Among them, most proteins belong to heat shock protein families, such as the small Hsp (sHsp) family, the Hsp70(DnaK) family and the Hsp90family. These heat shock proteins were responsible for protein folding, refolding, assembly, degradation, translocation under stress conditions, indicating that they could play a crucial role in protecting Salvia splendens against heat stress by re-establishing normal protein conformation and thus cellular homeostasis under heat stress.
     4. The medium containing BAP (6-benzylaminopurin), NAA (naphthalene acetic acid) and2,4-D (2,4-Dichlorophenoxy acetic acid), could induce callus from stem and leaf explants, whereas the medium containing only BAP and NAA failed to induce organogenic callus from mature seeds. For the two cultivars examined. Queen and vista, the highest rate of callus induction from leaf and stem explants occurred in the medium containing1.0mg·L-12,4-D and1.5mg·L-1BAP, whereas the highest rate of callus induction from mature seeds occurred in the medium containing1.0mg·L-BAP and2.0to2.5mg·L-12,4-D. Although shoots were sporadically initiated at very low frequencies from the calli induced from stem segments with nodes, the calli induced from stem or leaf segments did not form shoots. Many regenerated plantlets were obtained from the cotyledon-derived calli, induced from mature seeds, and the medium containing2.0mg·L-1TDZ (1-phenyl-3-(1,2,3-thia-diazol-5-YL) urea) and1.0mg·L-1KT (kinetin), showed the highest efficiency in shoot regeneration of the two Salvia splendens cultivars.
     5. A Cyclophilin2gene (Cyp2) was transferred into Salvia splendens by using agrobacterium-mediated method, and it was primarily proved by PCR analysis that the foreign gene was integrated into the genome of transformated Salvia splendens. and thus a few of positively transgenic plants were obtained successfully. In the genetic transformation system, the rate of resistant callus formation could be significantly enhanced under the following conditions:less than30days for callus subculture, OD600=0.2-0.4in the concentration of agrobacterium and10minutes in infection. However, the seed setting rate of Salvia splendens decreased significantly in the transferred plants by pollen tube pathway. Although a few seeds were harvested, no positive transgenic plants were found by PCR analysis. The results was likely to be associated with the soaked time of inflorescences after pollination. Further research is required to set up a more efficient genetic transformation system for Salvia splendens.
引文
Almeselmani M, Deshmukh PS, Sairam RK. Kushwaha SR, Singh TP. (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Science,171:382-388.
    Antunes MD and Sfakiotakis EM. (2000) Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of'Hayward'kiwifruit. Postharvest Biology and Technology,20:251-259.
    Aphalo PJ and Jarvis PG. (1991) Do stomata respond to relative humidity? Plant Cell and Environment.14:127-132.
    Arriqoni O, Gara L, Tommasi F. Liso R. (1992) Changes in the ascorbate system during seed development of Vicia faba L. Plant Physiology,99:235-238.
    Ashraf M, Saeed MM. Qureshi MJ. (1994) Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environmental and Experimental Botany.34:275-283.
    Baker NR. (1991) A possible role of photosystem 11 in environmental perturbations of photosynthesis. Physiologia Plantarum.81:563-570.
    Banzet N. Richaud C, Deveaux Y. Kazmaier M, Gagnon J, Triantaphylides C. (1998) Accumulation of small heat shock proteins, including mitochondrial Hsp22. induced by oxidative stress and adaptive response in tomato cells. Plant Journal. 13:519-527.
    Bengtsson L. Botzet M. Esch M. (1995) Hurricane-type vortices in a general circulation model. Tellus A.47:175-196.
    Beranova-Giorgianni S. (2003) Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry:strengths and limitations. Trends in Analytical Chemistry,22:273-281.
    Berry J and BjOrkman O. (1980) Photosynthetic response and adaptation to temperature in higher Plants. Plant Physiology,31:491-543.
    Bhullar SS and Jenner CF. (1983) Responses to brief periods of elevated temperature in ears and grains of wheat. Plant Physiology,10:549-560.
    Blomqvist LA, Ryberg M, Sundqvist C. (2006) Proteomic analysis of the etioplast inner membranes of wheat(Trilicum aestivum) by two-dimensional electrophoresis and mass spectrometry. Physiologia Plantarum,128:368-381.
    Blum A, Klueva N, Nguyen HT. (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica,117:117-123.
    Bohnert HJ, Gong QQ, Li PH, Ma SS. (2006) Unraveling abiotic stress tolerance mechanisms-getting genomics going. Current Opinion Plant Biology,9:180-188.
    Boston RS, Viitanen PV, Vierling E. (1996) Molecular chaperones and protein folding in plants. Plant Moecularl Biology,32:191-222.
    Bowler C, Montagu MV. Inze D. (1992) Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology.43:83-116.
    Bradford MM. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,72:248-254.
    Buchholz WG. Harris-Haller L. DeRose RT. Hall TC. (1994) Cyclophilins are encoded by a small gene family in rice. Plant Molecular Biology,25:837-843.
    Bukhov NG. Wiese C, Neimanis S. Ulrich H. (1999) Heat sensitivity of chlorophlasts and leaves:Leakage of protons from thlakoids and reversible activation of cyclic electron transport. Photosynthesis Research,59:81-93.
    Bukhov NG and Carpentier R. (2000) Heterogeneity of photosystem Ⅱ reaction centers as influence by heat treatment of barley leaves. Physiologia Plantarum. 110:279-285.
    Cakmak Ⅰ and Horst WJ. (1991) Effect of aluminium on lipid peroxidation. superoxide dismutase, catalase. and peroxidase activities in root tips of soybean. Physiologia Plantarum,83:463-468.
    Carpentier SC, Witters E, Laukens K. Deckers P. Swennen R, Panis B. (2005) Preparation of protein extracts from recalcitrant plant tissues:an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics,5: 2497-2507.
    Carsono N and Yoshida T. (2006) Identification of callus induction potential of 15 indonesian rice genotypes. Plant Production Science.9:65-70.
    Chaitanya KV. Sundar D. Masilamani S. Reddy AR. (2001) Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regulation,36:175-180.
    Chauhan H, Desai SA, Khurana P. (2007) Comparative analysis of the differential regeneration response of various genotypes of Triticum aestivum, Triticum durum and Trilicum dicoccum. Plant Cell Tissue and Organ Culture,91:191-199.
    Coumans JV. Poljak A, Raftery MJ, Backhouse D, Lily PG. (2009) Analysis of cotton (Gossypium hirsutum) root proteomes during a compatible interaction with the black root rot fungus Thielaviopsis basicola. Proteomics,9:335-349.
    Dat JF. Lopez-Delgado H, Christine HF, Ian MS. (1998) Parallel changes in H2O2 and catalase during thermotolerance by salicylic acid and heat acclimation in Mustard seedlings. Plant Physiology,116:1351-1357.
    Dat JF. Lopez-Delgado H, Foyer CH. Scott IM. (2000) Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology.156: 659-665.
    Delporte F. Mostade O. Jacquemin JM. (2001) Plant regeneration through callus initiation from thin mature embryo fragments of wheat. Plant Cell Tissue and Organ Culture,67:73-80.
    Demmig-Adams B and Adams WW. (1992) Photoprotection and other responses of plant to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology.43:599-626.
    Demirevska-Kepova K. Holzer R. Simova-Stoilova L. Feller U. (2005) Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase. Rubisco binding protein and Rubisco activase in wheat leaves. Biologia Plantarum,49:521-525.
    Diamant S, Eliahu N. Rosenthal D. Goloubinoff P. (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. The Journal of Biological Chemistry,276:39586-39591.
    Eckardt NA and Portis AR. (1997) Heat denaturation profiles of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase and the inability of Rubisco activase to restore activity of heat-denaturated Rubisco. Plant Physiology,113:243-248.
    Feirabend J. (1977) Capacity for chlorophyll synthesis in heat-bleached 70s ribosome deficient rye leaves. Planta,135:83-88.
    Feller U, Crafts-Brandner SJ, Salvucci ME. (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiology,116:539-546.
    Fokar M, Blum A, Nguyen HT. (1998) Heat tolerance in spring wheat Ⅱ. Grain filling. Euphytica,104:9-15.
    Foyer CH, Lelandais M, Kunert KJ. Photooxidative stress in plants. Physiologia Plantarum,92:696-717.
    Giaveno C and Ferrero J. (2003) Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, Argentina. Crop Breeding and Applied Biotechnology,3:89-94.
    Gounaris K, Brain AR. Quinn PJ, Williams WP. (1984) Structural reorganization of chloroplast thylakoid membranes in response to heat stress. Biochimica Biophysica Acta,766:198-208.
    Griffin JJ. Ranney TG. Pharr D. (2004) Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud(Cercis canadensis). Journal of the American Society for Horticultural Science,129: 497-502.
    Grover A. Agarwal M. Katiyar-Agarwal S. Sahi C. Agarwal S. (2000) Production of high temperature tolerant transgenic plants through manipulation of membrane lipids. Current Science,79:556-559.
    Gulen H and Eris A. (2004) Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science.166:739-744.
    Gulli M, Corradi M, Rampino P, Marmiroli N, Perrotta C. (2007) Four members of the HSP101 gene family are differently regulated in Triticum durum Desf. FEBS Letters.581:4841-4849.
    Giirel F, Karakas O, Albayrak G, Ari S. (2009) Regeneration capacity of mature embryo-derived callus in barley(Hordeum vilgare L.). Acta Biologica Hungarica. 60:309-319.
    Gurley WB. (2000) HSP101:A key component for the acquisition of thermotolerance in plants. Plant Cell.12:457-460.
    Hamerlynck E and Knapp AK. (1996) Photosynthetic and stomatal responses to high temperature and light in two oaks at the western limit of their range. Tree Physiology.16:557-565.
    Hare PD. Cress WA. Staden JV. (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell and Environment,21:535-553.
    Hartl FU. (1996) Molecular chaperones in cellular protein folding. Nature.381: 571-580.
    Hasegawa PM. Bressan RA, Zhu JK, Bohnert HJ. (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology,51:463-499.
    Havaux M. (1993) Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell and Environment,16: 461-467.
    Havaux M and Tardy F. (1996) Temperature-dependent adjustment of the thermal stability of photosystem Ⅱ in vivo:possible involvement of xanthophyll-cycle pigments. Planta.198:324-333.
    Heckathorn SA. Ryan SL. Baylis JA. Wang DF. Hamilton EW. Cundiff L, Luthe DS. (2002) In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem Ⅱ during heat stress. Functional Plant Biology,29:935-946.
    Heckathorn SA. Downs CA. Sharkey TD, Coleman JS. (1998a) The small. methionine-rich chloroplast heat- shock protein protects PSⅡ electron transport during heat stress. Plant Physiology,116:439-444.
    Heckathorn SA, Downs CA. Coleman JS. (1998b) Nuclear-encoded chloroplast proteins accumulated in the cytosol during severe heat stress. International Journal of Plant Science.159:39-45.
    Hisaminato H, Murata M, Homma S. Relationship between the enzymatic browning and phenylalanine ammonia-lyase activity of cut lettuce, and the prevention of browning by inhibitors of polyphenol biosynthesis. Bioscience Biotechnology and Biochemistry,65:1016-1021.
    Huang BR and Xu CP. (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. Journal of Integrative Plant Biology, 50:1230-1237.
    Huang XQ and Wei ZM. (2004) High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Reports.22: 793-800.
    Iba K. (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology,53:225-245.
    Ismaila AM and Hall AE. (1999) Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Science,39:1762-1768.
    Kapri-Pardes E, Naveh L. Adam Z. (2007) The thylakoid lumen protease Degl is involved in the repair of photosystem Ⅱ from photoinhibition in Aruhidopsis. The Plant Cell,19:1039-1047.
    Kishor PBK, Sangam S. Amrutha RN. Laxmi PS. Naidu KR. (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance. Current Science,88: 424-438.
    Kim JB. Kang JY. Kim SY. (2004) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnology Journal.2:459-466.
    Kinnersley AM and Frank TJ. (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences.19:479-509.
    Kintzios S. Nikolaou A. Skoula M. (1999) Somatic embryogenesis and in vitro rosmarinic acid accumulation in Salvia officinalis and S fruticosa leaf callus cultures. Plant Cell Reports.18:462-466.
    Kobza J and Edwards GE. Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiology,86:69-74.
    Lee K, Jeon H, Kim M. (2002) Optimization of a mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell Tissue and Organ Culture,71: 237-244.
    Lindquist S. (1986) The heat-shock response. Annual Review of Biochemistry.55: 1151-1191.
    Lindquist S and Craig EA. (1988) The heat-shock proteins. Annual Review of Genetics,22:631-677.
    Liu H. Zhang GP, Shen GZ. Fu QJ, Ruan SL. (2011) Responses of Salvia splendens cultivars 'Shenzhouhong' and 'Emperor' to thermo-stress. Journal of Zhejiang University (Agriculture & Life Sciences).37:155-161.
    Liu WN, Chilcott CE. Reich RC. Hellmann GM. Regeneration of salvia sclarea via organogenesis. In Vitro Cellular&Developmental Biology,36:201-206.
    Liu XZ and Huang BR. (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science,40:503-510.
    Liu ZC and SD. (1985) Effect of high temperature on chloroplast proteins in wheat. Acta Botanica Sinica.27:63-67.
    Maestri E. Klueva N. Perrotta C. Gulli M. Nguyen HT, Marmiroli N. (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology,48:667-681.
    Masaharu KC. Kouki H. Naoki H, Amane M, Tadaki H. (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem Ⅱ. Plant and Cell Physiology,44:318-325.
    Maxwell K and Johnson GN. (2000) ChlorophyⅡ fluorescence-a practical guide. Journal of Experimental Botany,51:659-668.
    Mayer AM. Polyphenol oxidases in plants-recent progress. Phytochemistry,26: 11-20.
    Mittler R. (2002) Oxidative stress, antioxidant and stress tolerance. Trends in Plant Science,7:405-410.
    Murashige T and Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum,15:473-477.
    Natarajan S and Kuehny JS. (2008) Morphological, physiological, and anatomical characteristics associated with heat preconditioning and heat tolerance in Salvia splendens. Journal of the American Society for Horticulture Science,133: 527-534.
    Ndimba BK. Chivasa S. Simon WJ. Slabas AR. (2005) Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics,5:4185-4196.
    Nollen EAA and Morimoto RI. (2002) Chaperoning signaling pathways:molecular chaperones as stress-sensing 'heat shock' proteins. Journal of Cell Science.115: 2809-2816.
    Nover L. (1991) Heat Shock Response. CRC Press, Boca Raton, FL.
    Nover L. (1994) The heat stress response as part of the plant stress network:An overview with six table, In:Cherry JH(ed). NATO-ASI series on biochemical and cellular mechanisms of stress tolerance in plants. Springer. Berlin-New York:3-45
    Ogawa T. Hiroyuki K, Seiichi T. Hirokazu H. (2008) Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker. Plant Cell Reports,27:1325-1331.
    Ozgen M. Turet M, Altmok S, Sancak C. (1998) Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant Cell Reports.18:331-335.
    Ozgen M. Yildiz M, Koyuncu N, Onde S. (2007) The effect of seed size on tissue culture response of callus from endosperm-supported mature embryos of barley (Hordeum vulgare L.). Cereal Research Communications,35:1415-1425.
    Panchuk Ⅱ, Volkov RA, Schoffl F. (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology,129:838-853.
    Paskin I. (1992) Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology,43:439-463.
    Rampinoa P. Mitab G, Pataleoa S, Pascalia M, Fonzoc N, Perrotta C. (2009) Acquisition of thermotolerance and HSP gene expression in durum wheat [Triticum durum Desf.) cultivars. Environmental and Experimental Botany,66: 257-264,
    Pospisil P and Tyystjarvi E. Molecular mechanism of high temperature-induced inhibition of acceptor side of Photosystem Ⅱ. Photosynthesis Research,62:55-66.
    Quan R, Shang M, Zhang H, Zhao YX, Zhang J. (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journ,2:477-486.
    Queitsch C, Hong SW. Vierling E, Lindquist S. (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell.12:479-492.
    Rivero RM. Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E. Romero L. (2001) Resistance to cold and heat stress:accumulation of phenolic compounds in tomato and watermelon plants. Plant Science.160:315-321.
    Rojas A. Almoguera C. Jordano J. (1999) Transcriptional activation of a heat shock gene promoters in sunflower embryos:synergism between ABI3 and heat shock factors. The Plant Journal.20:601-610.
    Ruan SL, Ma HS. Wang SH. (2011) Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza saliva L.) seedlings when overexpressed. Plant Biology,11:1-15.
    Sairam RK and Tyagi A. Physiology and molecular biology of salinity stres tolerance in plants. Current Science.86:407-421.
    Salvucci ME and Ogren WL. (1996) The mechanism of Rubisco activase:insights from studies of the properties and structures of the enzyme. Photosynthesis Research.47:1-11.
    Salvucci ME and Crafts-Brandner SJ. (2004) Inhibition of photosynthesis by heat stress:the activation state of Rubisco as a limiting factor in photosynthesis. Physiologia Plantatum.120:179-186.
    Savchenko GE, Klyuchareva EA, Abramchik LM. Serdyuchenko EV. (2002) Effect of periodic heat shock on the membrane system of etioplasts. Russian Journal of Plant Physiology,49:349-359.
    Scalf M, Westphall MS, Smith LM. (2000) Charge reduction electrospray mass spectrometry. Analytical Chemistry,72:52-60.
    Schirmer EC, Lindquist S, Vierling E. (1994) An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. The Plant Cell.6:1899-1909.
    Schoffl F, Prandl R, Reindl A. (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K. (Eds.). Molecular Responses to Cold. Drought, Heat and Salt Stress in Higher Plants. R G. Landes Co., Austin,Texas. 81-98.
    Sestili F, Janni M. Doherty A. Botticella E. D'Ovidio R. Masci S, Jones HD, Lafiandra D. (2010) Increasing the amylase content of durum wheat through silencing of the SBElla genes. BMC Plant Biology,10:144-164.
    Shahsavari E. (2010) Evaluation and optimizations of media on the tissue culture system of upland rice. International Journal of Agriculture and Biology,12: 537-540.
    Shanjani PS. (2003) Nitrogen effect on callus induction and plant regeneration of Juniperus excelsa. International Journal of Agriculture and Biology,5:419-422
    Shi QH, Bao ZY, Zhu ZJ, Ying QS, Qian QQ. (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis saliva L. Plant Growth Regulation,48: 127-135.
    Sharma KK, Anjaiah V. (2000) An efficient method for the production of transgenic plants of peanut(Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Science.159:7-19.
    Sharkey TD. Effects of moderate heat stress on photosynthesis:importance of thylakoid reactions, rubisco deactivation. reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell and Environment.28:269-277.
    Shimomura K, Kitazawa T. Okamura N, Yagi A. (1991) Tanshinone production in adventitious roots and regenerates of Salvia miltiorrhiza. Journal of Natural Products,54:1583-1587.
    Straten AVD, Rommel C, Dickson B. Hafen E. (1997) The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. The EMBO Journal,16:1961-1969.
    Sun WN, Montagu MV, Verbruggen N. (2002) Small heat shock proteins and stress tolerance in plants. Biochimica Biophysica Acta.1577:1-9.
    Sundby C, Melis A, Maenpaa P. Andersson B. (2006) Temperature dependant changes in the antenna size of photosystem ⅡI. Reversible conversion of PhotosystemⅡα to PhotosystemⅡβ. Biochimica et Biophysica Acta(BBA)-Bioenergetics,851:475-483
    Sun D, Kaplan F, Lee KJ, Guy CL. (2003) Acquired tolerance to temperature extremes. Trends in Plant Science.8:179-187.
    Sun XW. Min OY. Guo JK. Ma JF. Lu CM. Adam Z. Zhang LX. (2010) The thylakoid protease Degl is involved in photosystem-Ⅱ assembly in Arabidopsis thaluaba. The Plant Journal.62:240-249
    Thomas TD. Sreejesh KR. (2004) Callus induction and plant regeneration from cotyledoary explants of ash gourd (Benincasa hispida L.). Scientia Horticulturae. 100:359-367.
    Unlii M, Morgan ME, Minden JS. (1997) Difference gel electrophoresis. A single gel method of detecting changes in protein extracts. Electrophoresis,18:2071-2077.
    Vierling E. (1991) The role of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology,42:579-620.
    Vikrant and Rashid A. (2003) Somatic embryogenesis or shoot formation following high 2,4-D pulse-treatment of mature embryos of Paspalum scrobiculatum. Biologia Plantarum,46:297-300.
    Vinocur B and Altman A. (2005) Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations. Current Opinion in Biotechnology,16: 123-132.
    Visioli G, Maestri E, Marmiroli N. (1997) Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arubidopsis thuliana (L.) Heynh. Plant Molecular Biology,34:517-527.
    Wahid A and Close TJ. (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum.51: 104-109.
    Wahida A, Gelania S, Ashrafa M. Fooladb MR. (2007) Heat tolerance in plants:an overview. Environmental and Experimental Botany,61:199-223.
    Wahid A and Shabbir A. (2005) Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regulation.46: 133-141.
    Wang WX, Vinocur B, Shoseyov O. Altman A. (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science.9:244-252.
    Waters ER. Lee GJ. Vierling E. (1996) Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany,47:325-338.
    Weis E and Berry JA. (1988) Plants and high temperature stress. In SP Long. FI Woodward, eds, Plants and Temperature. Company of Biologists Ltd, Cambridge. UK.42:329-346.
    Wheeler CH, Dunn MJ, Rheumatology H, London UK. Pharmacia A. (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis.21:3666-3672.
    Wu DL, Hou SW, Qian PP. Sun LD. Zhang YC, Li WJ. (2009) Flower color chimera and abnormal leaf mutants induced by 12C6+ heavy ions in Salvia splendens Ker-Gawl. Scientia Horticulturae,121:462-467.
    Xu S. Li JL. Zhang XQ, Wei H, Cui LJ. (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation. antioxidant metabolites. and ultrastructure of chloroplast in two cool-season turgrass species under heat stress. Environmental and Experimental Botany,56:274-285.
    Xiong L, Lee H, Ishitani M, Zhu JK. (2002) Regulation of osmotic stress responsive gene expression by LOS6/ABA1 locus in Arabidopsis. The Journal of Biological Chemistry,277:8588-8596.
    Xu JC, Belanger F, Huang BR. (2008) Differential gene expression in shoots and roots under heat stress for a geothermal and non-thermal Agrostis grass species contrasting in heat tolerance. Environmental and Experimental Botany,63: 240-247.
    Yamada M Hidaka T. Fukamachi H. (1996) Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Horticulturae,67:39-48.
    Yanga KA, Lima CJ, Honga JK, Parka CY. (2006) Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Science. 171:175-182.
    Yin H. Chen QM, Yi MF. (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regulation.54:45-54.
    Yu L, Jing YX. Shen SH. (2004) Advances in plant proteomics. Acta Phytoecologica Sinica,28:114-125.
    陈希勇.孙其信.孙长征.(2000)春小麦耐热性表现及其评价.中国农业大学学报,5:1-8.
    成卓敏,何小源,陈彩层.张杰.肖红,周广和.(1993)大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植株.自然科学进展.3:560-564.
    成卓敏.吴茂森.夏光敏.应用基因枪法获得抗大麦黄矮病毒转基因小麦.(2000)植物病理学报,30:116-121.
    崔岩.杨庆凯.周思军.孔凡江.(2003)提高大豆花粉管通道技术的转化率研究.大豆科学.22:75-77.
    董爱香.郝宝刚.张西西.张华丽.(2007)5个一串红品种耐热性鉴定.中国农学通报.23:265-269.
    傅巧娟,沈国正,陈一,赵杭苹.(2009)一串红新品种‘神州红’.园艺学报,36:1557-1558.
    郑鹏,谭德冠,孙雪飘,张家明.(2009)花粉管通道法介导的真菌耐盐基因转化拟南芥.基因组学与应用生物学,28:465-470.
    郭晓琳,张红伟,刘欣洁,刘亚娟,张锋,孙东发,谭振波.(2005)大麦成熟胚愈伤组织的诱导和植株再生的研究.植物遗传资源学报,6:418-422.
    韩笑冰,利容千,王建波.(1997)热胁迫下萝卜不同耐热品种细胞组织结构比较.武汉植物学研究,15:173-178.
    季芝娟,薛庆中.(2004)植物蛋白质组学研究进展.生命科学,16:241-245.
    贾开志,陈贵林.(2005)高温胁迫下不同茄子品种幼苗耐热性研究.生态学杂志,24:398-401.
    姜春明,尹燕枰.刘霞,王振林.(2007)不同耐热性小麦品种旗叶膜脂过氧化和保护酶活性对花后高温胁迫的响应.作物学报,33:143-148.
    姜闯道,高辉远.邹琦.(2000)类囊体膜pH梯度在光抑制中的护机理.植物生理学通讯,36:97-102.
    赖钟雄,赖呈纯,颜鸿伟.(2001)矮秆一串红离体培养快繁技术.福建农业大学学报,30:483-485.
    李凤兰,刘荣梅,胡国富,徐永清,胡宝忠.(2008)一串红(Salivia splendens Ker-Gawl)的研究进展.东北农业大学学报,39:131-135.
    李凤兰,胡国富,胡宝忠.(2005)八种不同花色一串红组织培养快繁的研究.15:71-73.
    李晶,吉彪,商文楠,陈龙涛,魏玲,魏湜.(2010)不同氮素水平下黑麦旗叶蛋白质差异表达.植物生理学通讯,46:365-369.
    李晓芝,白娟.(2000)小麦高温锻炼过程中钙调素含量的变化.华北农学报,15:20-23.
    刘峰.万书波.毕玉平.闫彩霞,李春娟,赵晋平.单世华.(2008)农杆菌介导轮状病毒抗原蛋白VP4基因遗传转化花生的研究.作物学报,34:1285-1289.
    柳展基,杨小红,毕玉平.(2006)蛋白质组学在农业中的应用.分子植物育种,4:106-110.
    范海延,陈捷,邵美妮,许玉凤,张春宇.(2009)白粉病菌胁迫下黄瓜R17叶片的蛋白质组分析.园艺学报,36:829-834.
    侯艳霞,汤浩茹,张勇,罗娅,董晓莉.(2009)DNA提取方法对一串红不同部位DNA提取的比较,基因组学与应用生物学,28:94-100.
    黄丽俊,王建华.(2005)蛋白质组研究技术及其进展.生物学通报,40:4-6.
    李维平,李云.(2004)生物质谱技术与蛋白质组学.生命科学研究,5:113-116.
    梁建生,张建华.曹显祖.(1998)根系环境温度变化对根系吸水和叶片蒸腾的影响.植物学报,40:1152-1158.
    林忠平,胡遗雷.(1997)植物抗逆性与水杨酸介导的信号转导途径的关系.植物学报,39:185-188.
    马盾,黄乐平,黄全生,孟庆玉,危晓薇,陈勋基.古丽.(2005)提高棉花花粉管通道法转化率的研究.西北农业学报.14:10-12.
    马晓娣,彭惠茹.汪矛.王丽.孙其信.(2004)作物耐热性的评价.植物学通报,21:411-418.
    彭永宏.章文才.(1995)猕猴桃叶片耐热性指标研究.武汉植物学研究,13:70-74,
    任丽萍.范海延.宋铁锋,王珊珊.刘晶瑜.(2011)基于双向电泳技术的植物差异蛋白质组学研究进展.中国农学通报.27:53-57.
    阮松林.马华升.王世恒,忻雅,钱丽华.童建新.赵杭苹.王杰.(2006)植物蛋白质组学研究进展—Ⅰ.蛋白质组关键技术.遗传,28:1472-1486.
    沈国正,傅巧娟.崔海瑞.(2009)一串红SRAP-PCR体系的优化与品种鉴别.杭州农业与科技.5:34-38.
    邰付菊.李扬,陈良.(2008)低温胁迫下棉花子叶蛋白质差异表达的双向电泳分析.华中师范大学学报.42:262-266.
    田学军.(2008)高温与植物耐热性关系的研究.安徽农业科学,36:133-134.
    腾年军.陈发棣.(2002)基因工程在花卉遗传改育中的应用研究.植物学通报.19:538-545王春香.杨美珠.(1993)马铃薯X病毒外壳蛋白基因在转基因烟草植株中的表达及抗病.植物学报.35:819-824.
    王关林,方宏筠.(1998)植物基因工程原理与技术.北京:科学出版社.
    王俊丽.(2006)植物转基因研究进展.中央民族大学学报(自然科学版),15:57-65.
    王浩波,林茂,杨坤,戴祖云,程国旺,余增亮.(2002)导入南瓜DNA选育抗枯萎病西瓜新种质的研究.西北农业学报,11:24-25.
    王学奎.(2006)植物生理生化实验原理与技术.2版.北京:高等教育出版社,167-281.
    王艳杰,申家恒.(2006)花粉管通道法转基因技术的细胞胚胎学机理探讨.西北植物学报,26:628-634.
    王英超,党源,李晓艳.(2010)蛋白质组学及其技术发展.生物技术通讯,21:139-144.
    魏军亚,刘德兵,陈业渊,蔡群芳,周鹏.(2008)花粉管通道法介导PRSV-CP基因dsRNA转化番木瓜.西北植物学报.28:2159-2163.
    温晓刚,林世青.匡廷云.(1996)高温胁迫对光系统Ⅱ异质性的影响.生物物理学报,12:714-718.
    吴国胜,曹婉虹,王永建.姜亦巍,张丽蓉.(1995)细胞膜稳定性及保护酶和大白菜耐热性的关系.园艺学报,22:353-358.
    叶兴国,陈明,杜丽璞.徐惠君.(2011)小麦转基因方法及其评述.遗传,35:422-430.
    尹贤贵,罗庆熙,王文强,潘光辉,杨琦凤.尹诗麟.(2001)番茄耐热性鉴定方法研究.西南农业学报,14:62-65.
    曾君祉,王东江,吴有强.张健.周文娟,朱小平,徐乃正.(1993)用花粉管途径获得小麦转基因植株.中国科学(B辑).23:256-262.
    曾韶西,王以柔,刘鸿先.(1991)低温下黄瓜幼苗子叶硫氢基(sH)含量变化与膜脂过氧化.植物学报,33:50-54.
    张斌,丁在松,张桂芳,石云鹭.王金明,方立锋.郭志江.赵明.(2007)根癌农杆菌介导获得稗草Ecppc(?)专基因小麦的研究.作物学报,33:356-362.
    张佳星.何聪芬,叶兴国.董银卯.(2007)农杆菌介导的单子叶植物转基因研究进展.生物技术通报,2:23-26.
    张鹏,朱育强,陈新娟,陈丽萍,周胜军.(2011)差异蛋白质组学技术及其在园艺植物中的应用.中国农学通报,27:212-218.
    张祥喜,华志华,陈光宇.(2001)水稻抗性转基因研究进展.生物工程进展,21:15-19.
    赵万芩,姜世平,付新生,朱永莉,杨奎姝.(2005)利用花粉管通道法将查尔酮合酶基因导入仙客来.分子植物育种,3:531-536.
    朱玉贤,李毅.(1997)现代分子生物学.北京,高等教育出版社:251-252.
    朱鑫,沈火林,程杰山.韩青霞,杨辉.(2006)高温胁迫对芹菜幼苗生长及生理指标的影响.中国农学通报.22:225-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700