脑心肌炎病毒双抗原夹心ELISA建立、血清学调查、毒株分离及RNA干扰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑心肌炎病毒(Encephalomyocarditis virus, EMCV)可以感染多种哺乳动物、啮齿类动物、节肢动物和人并引发脑炎、心肌炎和心肌周围炎等症状;能引致母猪繁殖障碍和仔猪致死性心肌炎,致死率可达100%;而人多以亚临床形式存在。目前EMCV流行范围越来越广,在亚洲、非洲、美洲、欧洲和澳洲均有发现,且感染率逐年增加,不仅给养殖业造成严重的影响,同时也危害着人类健康。
     本研究以脑心肌炎病毒为对象,进行了以下实验研究:
     1.研发了EMCV双抗原夹心ELISA试剂盒并获得了国家发明专利授权:试剂盒以EMCV重组VP1、VP2和2C蛋白作为包被抗原,HRP标记的EMCV为酶标抗原,最适包被浓度为6μg/mL,最适酶标抗原浓度为1:400,最佳样品作用时间为45min,最佳显色时间为30min。与间接ELISA比较,符合率93.5%,特异性为95%,敏感性为92.9%,与FMD、HEV、PPV、BVDV等病毒抗血清无交叉反应,连续生产3批次,批间和批内CV%均小于6%。因此所研发的试剂盒重复性、特异性和稳定性较好,灵敏度较高,可以作为EMCV临床抗体检测和血清学调查有效的方法。
     2. EMCV血清病学调查:⑴从东北、华北、西北等7个地区采集健康人群血清,用双抗原夹心ELISA检测抗体,结果EMCV抗体平均阳性率为30.56%,东北地区最高,阳性率为43.23%,华中地区最低,阳性率为11.26%,各区域之间存在显著性差异;通过分析,抗体阳性率与性别之间不存在关联,与年龄存在可能的线性关系。⑵从上述7个地区专门采集20±5岁青年人群血清进行检测,结果显示抗体阳性率平均为46.00%,高于全年龄段样品平均值,可能与这个年龄段的非家庭性流动、群居性及饮食有直接关系。⑶从这7个地区采集猪血清进行检测,结果抗体平均阳性率为77.00%,明显高于人源EMCV抗体,各区域之间差异不显著。⑷从甘肃某猪场选取30头猪,从出生开始采集血清,之后15d、30d、60d、75d、90d、120d、150d时分别采集血清并检测,结果显示30日龄仔猪抗体阳性率最高为90%,60日龄下降到6.67%,之后抗体阳性率随着时间逐步升高,到150日龄抗体阳性率达到86.67%,经分析,0-60仔猪日龄存在母源抗体保护,60d之后失去母源抗体保护,可自然感染EMCV,群体抗体阳性率又逐步升高。
     3.首次分离到EMCV甘肃毒株,命名为GS01,对其全基因组进行测序,基因全长为7717bp,CDS区6879bp, Genbank登记号为:KJ524642,与国内其他分离毒株同源性99.4%-99.9%。病毒在BHK-21细胞培养3代后TCID50为10-5.8/0.1mL,病毒对小鼠具有极高致死性,LD50为10-3.75/0.5mL。
     4.针对EMCV VP1序列,设计合成了4对编码siRNA的序列并构建真核表达载体,脂质体介导转染至BHK-21细胞并接种EMCV,结果4组siRNA均能抑制脑心肌炎病毒增值,其中X109-2组抑制作用最显著,下降了103.5倍;各组均不能抑制FMDV、JEV等病毒,表明RNAi技术可以抑制EMCV病毒在BHK-21细胞中增殖,特异性好;X109-2组质粒转染至CHO-K1细胞中,还可以抑制pEGF-C1-EMCV-VP1的表达,表明RNAi具有明确靶向性。
     综上,本研究建立了双抗原夹心ELISA检测方法,积累了EMCV流行病学数据,首次分离到了EMCV甘肃毒株,探索了RNAi技术抑制病毒复制的效果,为进一步研究EMCV致病机制和防治等奠定基础。
Encephalomyocarditis virus can infect a variety of mammals, rodents, arthropods and humans,which has been found in Asia, Africa, America, Europe and Australia. It can cause brain myocarditis,myocarditis and myocardial inflammation around the shape, as well as reproductive failure in sows,acute fatal myocarditis in piglets, and the mortality rate could reach up to100%in infected pigs.However, it is usually presented subclinical symptoms when humans are infected. In recent years,EMCV becomes more and more widespread all over the world, and the infection rate is also evaluated.EMCV infection not only threatens the cultivation industry, but also becomes a big threaten to thehuman health.
     A double antigen sandwich ELISA (Ds-ELISA) method was developed, and then used to conductepidemiological survey. At the same time, EMCV Gansu strain was isolated and identified, then weinhibited virus replication in BHK-21cells by RNAi technology. The results are as follows:
     1. The developed EMCV double antigen sandwich detection ELISA kit won the national inventionpatent: it was coated with recombinant EMCV viral proteins VP1, VP2and2C as coating antigen, andHRP-labeled EMCV as enzyme-labelled antigen. The optimal concentration of coating antigen was6μg/mL, and the optimal concentration of enzyme-lablled antigen was1:400dilutied. The best reactiontime was45minutes, and the color reaction time was30minutes. Compared to indirect ELISA, theagreement rate was93.5%, specificity was95%, and sensitivity was92.9%, and didn’t havecross reaction with FMD、HEV、PPV、BVDV antiserum. The kit was made in3batches continuously,CV%between different batches and inside the batch was less than6%. As a result, this kit provided amore effective tool for the investigation of encephalomyocarditis virus antibody surveillance andepidemiology survey with good repeatability, specificity and stability.
     2. Epidemiology survey was conducted as follows:(1) the human serum samples were collected fromseven places including northeast、northwest and North China. The average positive rate of EMCVantibody of humans was30.56%with regional difference that was43.23%in northeast as the highest,and was11.26%in central China as the lowest. There is no correlation between antibody positive rateand gender, but antibody positive rate may be linear with age.(2) The positive rate among20±5adolescents from these seven places was46.00%on average, significantly higher than the total average,and this may have relation to the sexual flow, social and family diet.(3) The average positive rate was77.00%in pigs, which was higher than that in humans and there was no obvious difference betweendifferent areas.(4) We also selected30pigs from a farm in Gansu province, and collected their serumsin15d、30d、60d、75d、90d、120d、150d after birth. At30d, the antibody titer was the highest, about90%, and at60d, the antibody was decreased to6.67%, and then increased to86.67%at150d. Ouranalysis showed that the piglets were protected by maternal antibody in0-60days, and then lost it after60days, so the positive rate increased gradually.
     3. This is the first time to isolate encephalomyocarditis virus strain of Gansu, and named as GS-01. Wesequenced the genome of GS01and found out its complete genome was7717bp, with CDS region of 6879bp. Its Genbank accession no. is KJ524642., and has high homology with other domestic isolatedstrains, the homology was between99.4%-99.9%. The virus TCID50was10-5.8/0.1mL after propagationin BHK-21cells and it had high pathogenicity in mice with an LD3.7550value of10-/0.5mL.
     4. Selecting VP1as target gene, the present study was performed to test the influence of VP1shRNA onencephalomyocarditis virus (EMCV) replication. Four interfering vectors ofpcDNA6.2-GW/EmGFP-miR, namely X109-1, X109-2, X109-3and X109-4, were constructed andwere transfected into BHK-21cells by Lipofectamine2000. After inoculation of EMCV, TCID50andVP1gene expression in BHK-21cells was calculated by TaqMan real-time PCR. Results showed thatall the recombinant VP1shRNAs inhibited viral replication, of which VP1shRNA in X109-2mostseverly interfered with the replication of EMCV. Further investigation showed that viral titer of LgTCID50for EMCV in BHK-21cells was3.5, whereas viral titers of food-mouth disease virus (FMDV)and Japanese encephalitis virus (EJV) were greater than or equal to7.0, demonstrating VP1shRNAspecificly inhibited the replication of EMCV in BHK-21cells. Co-transfection of eukaryotic expressionvector pEGFP-VP1and X109-2plasmid into CHO-K1cell line was carried out. The levels of VP1genetransciption and VP1protein expression in pEGFP-VP1and X109-2cotransfected cells were obviouslylower than those in pEGFP-VP1cells, further confirming the inhibition specificity of VP1shRNA.These findings laid a foundation for further researches of treatment, infection and replicationmechanism of EMCV using VP1siRNA interference technique.
     In this study, we established Ds-ELISA detection method, and obtained the epidemiology data aboutEMCV, isolated Gansu strain for the first time and explored the inhibition effect on virus replicationwith RNAi technology. It laid a foundation for the further study of EMCV pathogenesis and prevention.
引文
1.白娟,等.猪脑心肌炎病毒NJ08株基因组序列测定与分析[J].中国预防兽医学报,2011,33(5):402~404.
    2.陈宏备.脑心肌炎病毒GXLC株致病性研究[陈宏备硕士学位论文].广西:广西大学,2011.
    3.陈进喜,等.猪脑心肌炎病毒GXLC株的分离及其3D基因分子特征的分析[J].中国畜牧兽医,2011,38(1):81~88.
    4.陈振海,等.猪脑心肌炎病毒P1和P12A3C基因重组腺病毒的构建及其在小鼠体内的免疫应答[J].中国兽医科学,2007,37(9):760~766.
    5.董昕欣,等.猪脑心肌炎病毒VP1蛋白单克隆抗体的制备及鉴定[J].中国兽医科学,2007,37(01):24~28.
    6.董艳娇.猪脑心肌炎病毒TJ株2C基因的克隆表达及ELISA检测方法的建立[董艳娇硕士论文].陕西:西北农林科技大学,2008.
    7.凡静静,等.脑心肌炎病毒VP1基因真核表达载体的构建及表达[J].中国兽医科学,2013,43(3):304~309.
    8.凡静静.脑心肌炎病毒VP1基因重组腺病毒的构建及对小鼠免疫效果研究[凡静静硕士学位论文].甘肃:西北民族大学,2013.
    9.冯若飞,等.猪脑心肌炎病毒RT-PCR检测方法的建立[J].黑龙江畜牧兽医,2011,8:122~124.
    10.盖新娜,等.猪脑心肌炎病毒的分离与鉴定[J].畜牧兽医学报,2007,38(1):59~65.
    11.盖新娜.猪脑心肌炎病毒VP1基因的原核表达、血清学调查及分离毒株的鉴定[盖新娜博士学位论文].北京:中国农业大学,2005.
    12.韩妍妍,等.猪脑心肌炎病毒重组抗原间接ELISA诊断方法的建立与应用[J].畜牧与兽医,2007,39(12),1~3.
    13.韩研妍.猪脑心肌炎病毒(EMCV)重组VP1表位蛋白间接Elisa抗体检测方法的建立与应用[韩研妍硕士学位论文].江苏:南京农业大学,2006.
    14.贺东生,等.猪脑心肌炎病毒分子生物学和诊断方法的研究进展[J].中国畜牧兽医学会家畜传染病学分会第七届全国会员代表大会暨第十三次学术研讨会会议论文集(上册),2009:78~80.
    15.侯云德.分子病毒学[M].北京:学苑出版社,1990:495~496.
    16.蒋康富.脑心肌炎病毒VP1蛋白间接ELISA抗体检测方法与灭活疫苗研究[蒋康富硕士学位论文].江苏:南京农业大学,2012.
    17.军事医学科学院实验动物中心主编,实验动物病毒性疾病[M].北京:农业出版社,1992,104~108.
    18.李向茸,等.脑心肌炎病毒VP1结构蛋白的可溶性表达及鉴定[J].中国兽医科学,2011,41(06):557~561.
    19.李向涛,等.猪脑心肌炎病毒GXLC株VP1基因的原核表达及鉴定[J].动物医学进展,2011,32(2):6~9.
    20.刘金辉.脑心肌炎病毒内部核蛋白体进入位点介导白介素-12基因在B16F1细胞中的表达[J].江西医学院学报,2003,43(4):9~11.
    21.刘兰亚,等.河北省猪场脑心肌炎病毒感染的血清学调查[J].中国人兽共患病学报,2010,26(3):252~254.
    22.陆承平.兽医微生物学(第三版)[M].北京:中国农业出版社,2001:559~564.
    23.施开创,等.猪脑心肌炎病毒SYBR Green I real-time PCR检测方法的建立[J].中国兽医科学,2009,39(2):135~139.
    24.施开创,等.猪源脑心肌炎病毒GXLC株全基因组序列测定与分析[J].病毒学报,2010,26(2):134~141.
    25.施开创.猪脑心肌炎病毒病原学及诊断方法的研究[中国农业科学院博士后研究工作报告].北京:中国农业科学院,2012.
    26.王吉,等.脑心肌炎病毒(EMCV)RT-PCR检测方法的建立及初步应用[J].中国比较医学杂志,2013,23(7):44~49.
    27.王玥,等.应用RNA干扰抑制乙型肝炎病毒复制和表达[J].中华肝脏病杂志,2006,10(14):790~792.
    28.韦鹏建.脑心肌炎病毒VP1片段基因稳定性、原核表达及应用研究[韦鹏建硕士学位论文].甘肃:西北民族大学,2011.
    29.徐静,等.脑心肌炎病毒早期诊断技术研究进展[J].中华微生物学和免疫学杂志,2013,33(2):138~143.
    30.殷震,刘景华.动物病毒学(第二版)[M].北京:北京农业出版社,1997.
    31.岳野,等.脑心肌炎病毒蚀斑纯化及滴度测定方法的建立[J].中国生物制品学杂志,2012,25(6):767~769.
    32.张国龙.猪脑心肌炎病毒VP1蛋白的表达与单克隆抗体的研制[张国龙硕士学位论文].江苏:南京农业大学,2010.
    33.张国庆,等.猪脑心肌炎病毒BJC3分离株全基因组序列测定于分析[J].学术年会兽医部分,2006:824~827.
    34.张海霞,等.脑心肌炎病毒的体外细胞增殖培养及其冻干保存试验[J].中国兽医科学,2012,42(11):1128~1132.
    35.张家龙,等.规模化猪场脑心肌炎病毒感染的血清学调查[J].中国兽医杂志,2007,43(1):7~9.
    36.张岭岭,等.猪脑心肌炎病毒RT-LAMP检测方法的建立[J].中国兽医学报,2012,32(1),44~47.
    37.张岭岭.猪脑心肌炎病毒的分离鉴定及RT-LAMP快速检测方法的建立[张岭岭硕士学位论文].河北:河北农业大学,2011.
    38.赵东升,等.猪脑心肌炎病毒种毒纯化及其生物学特性[J].中国兽医杂志,2007,43(5):8~10.
    39.赵东升,等.脑心肌炎疫苗研究进展[J].中国兽医杂志,2008,44(1):51~52.
    40.赵婷,等.盖新娜等.猪源和鼠源脑心肌炎病毒分离株基因组的比较分析[J].畜牧兽医学报,2009,40(6):873~878.
    41.朱彩珠,等.口蹄疫现状与未来[M].北京:中国农业科学技术出版社,2009:72~74.
    42.朱书,盖等.脑心肌炎病毒VP1蛋白100位氨基酸的突变导致其对小鼠致病性的改变[J].中国科学:生命科学,2011,41(6):462~471.
    43. Acha DN, et al. Encephalomyocarditis. In: Zoonoses and Communicable Diseases Common toMan and Animals, seconded[M], Scientific Publication, Washington,1991:336~338.
    44. Aleksey GA, et al. Encephalomyocarditis viral protein2A localizes to nucleoli and inhibitscap-dependent mRNA translation[J]. Virus Res,2003,95:45~57.
    45. Allaire M, et al. Picornaviral3C cysteine proteinases have a fold similar to chymotrypsin-likeserine proteinases[J]. Nature,1994,369(6475):72~76.
    46. An DJ, et al. Encephalomyocarditis in Korea: serological survey in pigs and phylogenetic analysisof two historical isolates[J].Vet Microbiol,2009,137(1-2):37~44.
    47. Ano Y, et al. Oxidative damage to neurons caused by the induction of microglial NADPH oxidasein encephalomyocarditis virus infection[J]. Neurosci Lett,2010,469:39~43.
    48. Arnold E, et al. Implication of the picornavirus capsid structure of polyprotein processing[J].Proc Natl Acad Sci, USA,1987,84:21~25.
    49. Bae YS, et al. Genomic differences between the diabetogenic and non diabetogenic variants ofencephalomyocarditis virus[J]. Virology,1989,170(1):282~287.
    50. Bai J, et al. Pathogenicity and molecular analysis of an encephalomyocarditis virus isolate frommideastern China[J]. Can J Veter Res,2012,76(2):157~160.
    51. Billinis C, et al. Effect of challenge dose and age in experimental infection of pigs withencephalomyocarditis virus[J]. Vet Microbiol,2004,99(3-4):187~195.
    52. Billinis C. Encephalomyocarditis virus infection in wildlife species in Greece[J]. J Wildl Dis,2009,45(2):522~526.
    53. Blanchard JK. Encephalomyocarditis virus infection in African green and squired monkeys:comparison of pathology effect[J]. Lab Anim Sci,1987,37:635~639.
    54. Bogaerts WJ, et al. Immunization of mice with live attenuated encephalomyocarditis virus: localimmunity and survival[J]. Infect Immunity,1973,8(4):528~533.
    55. Bosch A, et al. TaqMan real-time RT-PCR using Mengo virus mutant strain vMC0as extractioncontrol for detection of virus (such as hepatitis A virus) in clinical samples and/or in shellfish[J].PCT Int. Appl,2008,1~26.
    56. Brocchi E, et al. Development of monoclonal antibody based ELISA for the detection ofencephalomyocarditis virus(EMCV)and of EMCV-induced antibodies[J]. Selezione Veterinaria,2000, supplement:207~215.
    57. Brummelkamp T, et al. A system for stable expression of short interfering RNAs in mammaliancells[J].Science,2002,296:550~553.
    58. Canelli E, et al. Encephalomyocarditis virus infection in an Italian zoo[J]. J Virol,2010:7:64~66.
    59. Chang HT, et al. Complete Genome Sequence of Porcine Encephalomyocarditis virus from anAardvark in China[J]. Genome A,2014,2(2):7~14.
    60. Cohen SH, et al. Comparison of the nucleotide sequences of diabetogenic and nondiabetogenicencephalomyocarditis virus[J]. Virology,1988,166(2):603~607.
    61. Craighead JE, et al. Demonstration of encephalomyocarditis virus antibody in human serums fromPanama[J]. Proc Soc Exp Biol Med,1963,114:500~503.
    62. Craighead JE. Pathogenicity of the M and E variants of the encephalomyocarditis(EMC) virus: I.Myocardiotropic and neurotropic properties[J]. Am J Pathol,1966,48:333~345.
    63. Cronin ME, et al. The natural history of encephalomyocarditis virus-induced myositis andmyocarditis in mice. Viral persistence demonstrated by in situ hybridization[J]. J Exp Med.1988,168(5):1639~1648.
    64. Cui Y, et al. A sensitive and specific nanoparticle-assisted PCR assay for rapid detection of porcineparvovirus[J]. Letters in Applied Microbiology,2014,58(2):163~167.
    65. Czewicz J, et al. Prevalence and risk factors for encephalomyocarditis virus infection in Peru[J].Vector Borne Zoonotic Dis,2011,11(4):367~374.
    66. Daniela G, et al. Pathogenesis of encephalomyocarditis experiment infection in young piglets:apotential animal model to study viral myocarditis[J]. Vet. Res.2006,37:15~23.
    67. Dea S, et al. Outbreaks in Quebec pig farms of respiratory and reproductive problems associatedwith encephalomyocarditis virus[J]. J Vet Diagn Invest,1991,3(4):275~282.
    68. Denis P, et al. Genetic variability of encephalomyocarditis virus (EMCV) isolates[J].Vet Microbiol,2006,113(1-2):1~12.
    69. Deutz A, et al. Sero-epidemiological studies of zoonotic infections in hunters-comparative analysiswith veterinarians, farmers, and abattoir workers[J]. Wien Klin Wochenschr,2003,115(3):61~67.
    70. Diallo IS, et al.Encephalomyocarditis virus infection in a splenectomised calf[J] Aust VetJ,2013,91:391~394.
    71. Dick GWA, et al. Mengo Encephalomyelitis Virus. Isolation and Immunological Properties[J]. Br JExp Pathol,1948:29(6):547~558.
    72. Donnelly ML,et al. The cleavage activity of aphthovirus and cardiovirus2A proteins[J]. J GenVirol,1997,78(1):13~21.
    73. Duke GM, et al. Sequence and structural elements that contribute to efficient encephalomyocarditisvirus RNA translation[J]. J Virol,1992,66(3):1602~1609.
    74. Duke GM, et al. Attenuation of Mengo virus through genetic engineering of the5' non codingpoly(C) tract[J]. Nature,1990,6257(343):474~476.
    75. Emerson CL, et al. Antibody responses to two encephalomyocarditis virus vaccines in rhesusmacaques(Macacamulatta)[J]. J Med Primatol,1996,25(1):42~45.
    76. Fabian B, et al. The leader protein of ardioviruses inhibits atress granule Assembly[J]. Virology,2011,85(15):9614~9622.
    77. Famulok M, et al. In vivo-applied functional RNAs as tools in proteomics and genomics research[J].Trends Biotechnol,2002,20:462~466.
    78. Fata-Hartley CL, et al. Dipyridamole reversibly inhibits mengovirus RNA replication[J]. J Virol,2005,79(17):11062~11070.
    79. Gainer JH. Encephalomyocarditis virus infections in Florida,1960-1966[J]. J Am Vet Med Assoc,1967,151(4):421~425.
    80. Garkavenko O, et al. Monitoring for potentially xenozoonotic viruses in New Zealand pigs[J]. MedVirol,2004,72(2):338~344.
    81. Ge X, et al. Seroprevalence of encephalomyocarditis virus in intensive pig farms in China[J]. VetRec,2010,166:145~146.
    82. Gelmetti D, et al. Pathogenesis of encephalomyocarditis experimental infection in young piglets: apotential animal model to study viral myocarditis.[J]. Vet Res,2006,37(1):15~23.
    83. Grigera PR, et al. Foot-and-mouth disease virus capsid proteins VP0,VP1and VP3synthesized byin vitro translation are the major components of14S particles[J]. ActaVirol,1985,29:449~454.
    84. Guy M, et al. Efficient infection of buffalo rat liver-resistant cells by encephalomyocarditis virusrequires binding to cell surface sialic acids[J] J Gen Virol,2009,90(Pt1):187~196.
    85. Hahn H, et al. Encephalomyocarditis viruses with short poly(C) tracts are more virulent than theirmengo virus counterparts[J]. J Virol,1995,69(4):2697~2699.
    86. Hammoumi S, et al.Encephalomyocarditis virus may use different pathways to initiate infection ofprimary human cardiomyocytes.Arch Virol2012;157(1):43-52;
    87. Helwig FC, et al. A filter-passing agent producing interstitial myocarditis in anthropoid apes andsmall animals[J]. Science,1945,102:31~33.
    88. Hill BD, et al. Encephalomyocarditis virus infection and pig disease in Queensland. Aust Vet J.,1985,12(12):433~434.
    89. Hirasawa K, et al. Prevention of encephalomyocarditis virus-induced diabetes in mice by inhibitionof the tyrosine kinase singalling pathway and subsequent suppression of nitric oxide production inmacrophages[J]. J Virol,1999,73:8541~8548.
    90. Hubbard GB, et al. An encephalomyocarditis virus epizootic in a baboon colony[J]. Lab. Anim. Sci,1992,42(3):233~242.
    91. IIyinskii PO, et al. CD1d mediates T-cell-dependent resistance to secondary infection withencephalomyocarditis virus (EMCV) in vitro and immune response to EMCV infection in vivo[J].Journal of Virology,2006,80(14):7146~7158.
    92. Iwasaki A, et al. Pimobendan inhibits the production of profilammatory cytokines and geneexpression of inducible nitric oxide synthase in a murine model of viral myocarditis[J]. Journal ofthe American College of Cardiology,1999,33:1400~1407.
    93. Jeoung HY,et al. Immunogenicity and safety of virus-like particle of the porcineencephalomyocarditis virus in pig[J]. Virology,2011,8:170.
    94. Jeoung HY,et al. A novel vaccine combined with an alum adjuvant for porcineencephalomyocarditis virus (EMCV)-induced reproductive failure in pregnant sows[J]. Res Vet Sci.2012,23(3):1508~1511.
    95. Joo H, Kim HS, et al. Detection of antibody to encephalomyocarditis virus in mummified orstillborn pigs[J]. Arch Virol,1988,100(1-2):131~134.
    96. Jorge EO, et al. Protection of non-murine mammals against encephalomyocarditis virus using agenetically engineered Mengo virus[J]. Vaccine,1996,14:155~161.
    97. Jun HS, et al. Cloning and expression of the VPl major capsid protein of diabetogenicencephalomyocarditis(EMC) virus and prevention of EMC virus induced diabetes by immunizationwith the recombinant VP1protein[J]. J Gen Virol,1995,76:2557~2566.
    98. Kassimi LB, et al. Nucleotide sequence and construction of an infectious cDNA clone of an EMCVstrain isolated from aborted swine fetus[J]. Virus Res,2002,83(1-2):71~87.
    99. Kassimi LB, et al. Detection of encephalomyocarditis virus in clinical samples byimmunomagnetic separation and one-step RT-PCR[J]. J Virol Meth,2002,101(1):197~206.
    100. Kim HS, et al. Serologic, virologic and histopathologic observations of encephalomyocarditis virusinfection in mummified and stillborn pigs[J]. J Vet Diag Invest,1989,1(2):101~104.
    101. Kirkland PD, et al. Human infection with encephalomyocarditis virus in New South Wales[J]. MedJ Aust,1989,151:176~178.
    102. Koenen F, et al. Reproductive failure in sows following experimental infection with a BelgianEMCV isolate[J]. Vet Microbiol,1994,39:111~116.
    103. Koenen F, et al. Epidemiologic pathogenic and molecular analysis of recent encephalomyocarditisoutbreaks in Belgium. Zentralbl Veterinary Med,1999,46(4):217~231.
    104. LaRue R, et al. A wild-type porcine encephalomyocarditis virus containing a short poly(C) tract ispathogenic to mice, pigs, and cynomolgus macaques[J]. J Virol,2003,77(17):9136~9146.
    105. Li J, et al. Analysis of IgG heavy chain to light chain ratio with mutant encephalomyocarditis virusinternal ribosome entry site[J]. Protein Engineering, Design&Selection,2007,20(10),491~496.
    106. Lin W, et al. Isolation, molecular characterization, and phylogenetic analysis of porcineencephalomyocarditis virus strain HB10in China[J]. Infect Genet Evol,2012,12(6):1324~1327.
    107. Liu H, et al. Complete nucleotide sequence of encephalomyocarditis virus isolated from Southchina tigers in china[J]. Genome Announc,2013,1(4): e00651~13.
    108. Luo M, et al. The atomic structure of Mengo virus at3.0resolution[J]. Science,1987,235:182~191.
    109. Madshus IH, et al. Different pH requirements for entry of the two picornaviruses, humanrhinovirus2and murine encephalomyocarditis virus. Virology1984;139(2):346-357;
    110. Majno G, et al. An overview of cell death[J]. Am J Pathol,1995,146:3~15.
    111. Martin LR,et al. Mengovirus and encephalomyocarditis virus poly(C) tract lengths can affect virusgrowth in murine cell culture[J]. J Virol,2000,74(7):3074~3081.
    112. Matsumori A, et al. Suppression of cytokines and nitric oxide production, and protection againstlethal endotoxemia and viral myocarditis by a new NF-kappaB inhibitor[J]. Eur J Heart Fail,2004,6:137~144.
    113. Matsumori A,et al. Increased circulating cytokines in patients with myocarditis andcardiomyopathy[J]. Br Heart J,1994,72(6):561~566.
    114. Maurice H, et al. The occurrence of encephalomyocarditis virus (EMCV) in European pigs from1990to2001[J]. Epidemiol Infect,2005,133(3):547~557.
    115. Maurice H, et al. Transmission of encephalomyocarditis virus(EMCV) among pigs experimentallyquantified[J]. Vet Microbiol,2002S,88(4):1~14.
    116. Meng XJ,et al. Development of a radiolabeled nucleic-acid probe for the detection ofencephalomyocarditis virus of swine[J]. J Vet Diagn Inves,1993,5(2):254~258.
    117. Moffat K, et al. Effects of foot-and-mouth disease virus nonstructural proteins on the structure andfunction of the early secretory pathway:2BC but not3A blocks endoplasmic reticulum-to-Golgitransport[J]. J Virol2005:79(7):4382-95;
    118. Morishima T, et al. Genomic and receptor attachment differences between Mengo virus andencephalomyocarditis virus [J]. Virology,1982,122(2):461~465.
    119. Murnane TG, et al. Fatal disease of swine due to encephalomyocarditis virus[J]. Science1960,131:498~499.
    120. Nelsen SB, et al. Analysis of sequence and pathogenic properties of two variants ofencephalomyocarditis virus differing in a single amino acid in VP1[J]. Virus Res,1996,41:109~122.
    121. Nishimura NY, et al. Cellular prion protein prevents brain damage after encephalomyocarditisvirus infection in mice[J]. Arch Virol,2008,153:1007~1012.
    122. Oberste MS, et al. Human febrile illness caused by encephalomyocarditis virus infection, Peru[J].Emerg Infect Dis,2009,15(4):640~646.
    123. Ohguchi A, et al. Encephalomyocarditis(EMC) virus-induced sialodacryoadenitis in mice[J]. ExpMol Pathol,2005,78:58~63.
    124. Olga V,et al. Suppression of Injuries Caused by a Lytic RNA Virus (Mengovirus)and TheirUncoupling from Viral Reproduction by Mutual Cell/Virus Disarmament[J] J. Virol.2012,86(10):5574~5583.
    125. Osorio JE, et al. Protection of non-murine mammals against encephalomyocarditis virus using agenetically engineered Mengo virus [J]. Vaccine,1996,14(2):155~161.
    126. Palmenberg AC, et al. The genomic sequence of Mengovirus and its relationship to othercardioviruses[J]. Nucleic Acids Res,1993,44(6):341~350.
    127. Palmenberg AC. In vitro synthesis and assembly of picornaviral capsid intermediate structures.[J].J Virol,1982,44:900~906.
    128. Papaioannou N,et al. Pathogenesis of encephalomyocarditis virus(EMCV) infection in pigletsduring the viraemia phase: a histopathological, immunohistochemical and virological study[J]. JComp Pathol,2003,129:161~168.
    129. Pfister T, et al. A cysteine-rich motif in polio-virus protein2C (ATPase) is involved in RNAreplication and binds zinc in vitro[J]. J Virol,2000,74(1):334~343.
    130. Philipps A, et al. Isolation and molecular characterization of a second serotype of theencephalomyocarditis virus[J]. Vet. Microbiol,2012,161(1-2):49~57.
    131. Psalla D, et al. Pathogenesis of experimental encephalomyocarditis: a histopathological,immunohistochemical and virological study in rats[J]. J Comp Pathol2006;134(1):30~39.
    132. Psalla D, et al. Pathogenesis of experimental encephalomyocarditis: a histopathological,immunohistochemical and virological study in mice[J]. J Comp Pathol,2006,135:142~145.
    133. Racaniello VR. Picornaviridae: The viruses and their replication[J]. Virology,2001,685~715.
    134. Rachel G, et al. Palmenberg. Mutational analysis of the EMCV2A protein identifies a nuclearlocalization signal and an eIF4E binding site[J]. Virology,2011,410:257~267.
    135. Reddacliff LA, et al. Encephalomyocarditis virus infections in an Australian zoo[J]. Zoo Wild Med,1997,28:153~157.
    136. Schomber T, et al. Gene silencing by lentivirus-mediated delivery of siRNA in human CD4+cells[J].Blood,2004,103(12):4511~4513.
    137. Schwarz EM, et al. NF-kappa β-mediated inhibition of apoptosisis required forencephalomyocarditis virus virulence: a mechanism of resistance in p50knockout mice[J]. J Virol,1998,72:5654~5660.
    138. Scraba DG. Functional aspects of the capsid structure of Mengo virus[J]. J Struct Biol,1990,104:52~62.
    139. Shi, Kaichuang,et al. Development and application of a TaqMan real-time RT-PCR assay for thedetection of porcine encephalomyocarditis virus[J].Zhongguo Shouyi Kexue,2011,41(9):928~932.
    140. Song MS, et al. Genetic characterization of Encephalomyocarditis virus isolated from abortedswine fetus in Korea[J]. J Micro&Biotech,2006,16(10):1570~1576.
    141. Straw BE, et al. Diseases of Swine[M]. Ames, Iowa, USA: Iowa State University Press,1999:139~144.
    142. Svitkin YV, et al. Rapamycin and wartmannin enhance replication of a defectiveencephalomyocarditis virus[J]. J Virol,1988,72(7):5811~5819.
    143. Tesh RB. The prevalence of encephalomyocarditis virus neutralizing antibody among varioushuman population[J]. Am J Trop Med hyg,1978,27(1Pt1):144~149.
    144. Tracy N, et al. Computational analysis of miRNA-mediated repression of translation: Implicationsfor models of translation initiation inhibition[J]. RNA,2008,14:1480~1491.
    145. Uprichard S, et al. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpinRNAs [J].Proc Natl Acad Sci USA,2005,102(3):773~778.
    146. Vanderhallen H, et al. Identification of encephalomyocarditis virus in clinical samples by reversetranscription-PCR followed by genetic typing using sequence analysis[J]. Journal of ClinicalMicrobiology,1998,36(12):3463~3467.
    147. Vanderhallen H, et al. Rapid diagnosis of encephalomyocarditis virus infections in pigs using areverse transcription-polymerase chain reaction [J]. J Virol Meth,1997,66(1):83~89.
    148. Vlemmas J, et al. Immunohistochemical detection of encephalomyocarditis virus (EMCV) antigenin the heart of experimentally infected piglets[J]. J Comp Pathol,2000,122(4):235~240.
    149. Voss JM, et al. Screening for antibodies against zoonotic agents among employees of theZoological Garden of Vienna, Sch nbrunn, Austria[J]. Berl Munch Tierarztl Woche nschr,2004,117(9-10):404~409.
    150. Wang JF, et al. Propranololamelio rates and epinephrine exacerbates progression of acute andchronic viral myocarditis[J]. Am J Physiol Heart Circ Physiol.2005,289:1577~1583.
    151. Yamanouchi UA, et al. Characteristics of testicular lesions in mice infected with a low dose ofencephalomyocarditis (EMC) virus[J]. Exp Mol Pathol,2004,77:72~76.
    152. Yoon JW, et al. Viruses cause type1diabetes in animals[J]. Annals of the New York Academy ofSciences,2006,1079:138~146.
    153. Yoon JW, et al. Virus induced diabetes mellitus. XVIII. Inhibition by a non diabetogenic variant ofencephalomyocarditis virus[J]. J Exp Med,1980,152:878~892.
    154. Yuan W, et al. Complete genome sequence of porcine encephalomyocarditis virus strain BD2[J].Genome Announc,2013,1(6): e01028~13.
    155. Zhang G, et al. Genomic analysis of two porcine encephalomyocarditis virus strains isolated inChina[J], Arch Virol,2007,152(6):1209~1213.
    156. Zimmermann A, et al. The complete nucleotide sequence and construction of an infectious cDNAclone of a highly virulent encephalomyocarditis virus[J]. Virology,1994,203(2):366~372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700