新疆准东煤田中部矿区中侏罗统西山窑组层序地层分析及聚煤规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准噶尔盆地是我国西北部晚石炭世-新近纪发展起来的大型陆内叠合盆地,是我国西北地区主要的侏罗系含煤盆地之一。准东煤田位于准噶尔盆地东部北缘隆起带,克拉美丽山前,蕴藏着极其丰富的煤炭资源。
     本文综合利用测井、岩芯及煤相分析测试等资料,以层序地层学、沉积学和煤岩、煤相学理论为指导,建立准东煤田中部矿区西山窑组含煤岩系层序地层格架,明确西山窑组内部沉积单元构成,探讨沉积体系的演化特征,结合煤相特征对研究区西山窑组巨厚煤层内部关键界面进行识别和划分,讨论煤聚集规律控制因素,最终对层序地层格架下的聚煤规律进行分析研究,为研究区的进一步勘探、全区煤层对比、聚煤规律的认识,提供理论依据,本次研究取得的主要成果如下:
     (1)准东煤田中部矿区侏罗系西山窑组地层可划分为两个三级层序(Sql和Sq2),其中Sql层序位主要含煤层序,发育有低位、湖扩和高位体系域;可识别出6个准层序组和11个准层序。Sq2仅保存1个不完整的低位体系域。层序界面SB1为大面积侵蚀面。层序底界面SB2在靠近北部的克拉美丽山物源区为大面积侵蚀界面;在远离北部克拉美丽山物源区为整合界面;层序界面SB3为代表地层缺失的平行不整合接触面。
     (2)研究区西山窑组主要发育辫状河、辫状河三角洲、滨浅湖三种沉积体系类型。其中Sql低位体系域(Pssl)主要发育辫状河和辫状河三角洲沉积体系,辫状河体系主要分布在研究区中部和北部,辫状河三角洲沉积体系主要分布于研究区的南部边缘。湖扩体系域(Pss2-Pss3)辫状河沉积体系向西北部萎缩,滨浅湖沉积体系整体由研究区东南部向西北部扩张,研究区发育辫状河、辫状三角洲和滨浅湖三种沉积体系类型,垂相上三种类型交互沉积。高位体系域早期(Pss4)继承了湖扩域晚期的古地理特征,中期(Pss5)全区大部分地区淤浅,仅西南部和西北部发育滨浅湖沉积体系;晚期(Pss6)发育辫状河三角洲和滨浅湖沉积体系。
     (3)研究区物源方向湖扩域时期以西北向为主,高位域时期增加了东北向物源,总体碎屑沉积物主要来自研究区北部的克拉美丽山,由于研究区南部钻孔资料较少,是否存在南部物源还有待进一步研究。
     (4)研究区煤层具有高的惰性组含量、低的灰分产率、低的凝胶化指数和相对高的结构保存指数。这些特征表明该煤层在泥炭沼泽形成时期属于相对干燥的森林泥炭沼泽。这可能与泥炭的增长速率大于基底沉降速率,泥炭沼泽长期处于高位状态有关。
     (5)根据煤相参数的垂向变化,将研究区巨厚煤层划分为五个准层序组,8个小层序。湖扩体系域划分为2个准层序组,由3个小层序构成,单个小层序表现为水退,但总体变现为向上水进的过程;高位体系域划分为3个准层序组,由5个小层序构成,下部3个小层序表现为水退,上部2个小层序表现为水进。
     (6)煤聚集的影响因素为基底沉降速率、湖平面变化、沉积体系展布。基底沉降为泥炭的堆积提供了巨大的可容空间,同时基底沉降的差异性导致煤层聚集中心的迁移;湖平面的扩张和萎缩对成煤造成重要影响,水平面的快速扩张会淹没泥炭沼泽使成煤过程终止,而大面积萎缩於浅的湖盆又是有利的聚煤场所;河流河道的大量发育对泥炭沼泽发育不利,很难形成具有重要经济价值的煤层。在植物繁茂,温暖潮湿的古气候条件下,不受物源影响,盆地基底沉降与泥炭生长速率持续平衡的地区才是区域性巨厚煤层生长的有利场所。
     (7)研究区煤的聚集规律表现为:低位体系域发育不稳定的薄煤层,湖扩和高位体系域煤层发育于每个准层序晚期,并向物源方向和盆地中央具有变薄和尖灭的趋势,区域上连续分布的厚煤层和巨厚煤层往往是多个准层序叠加的后果。
Junggar Basin is one of the most important Jurassic coal basin in northwest China. This large intracontinental overlapped basin developped from Late carboniferous until neogene. Easten Junggar coal field is located in the north margin of the uplift zone in the east of Junggar Basin, at the south foothill of Kelameili Mountain. A mass of coal resources have been proved up in this field.
     Based on the information from the drilling cores, well logs and the analysis of the coal facies, applying the theories and methods of sequence stratigraphy, sedimentology and coal geology, the sequence stratigraphic framework of Xishanyao Formation is established, the formation of sedimentary facies and the evolution of depositional systems are discussed in detailed, the significant stratigraphic boundaries in the single thick coal seam are identified based on the index of the coal facies, the dominative factors of the accumulation of the coal seam are discussed. Finally, the distribution of thick coal seams are analysed, all of those helps to the further exploration, the compare of the coal seams and the comprehension of the accumulation The main achievements of this paper are as follows:
     (1) The middle Jurassic Xishanyao Formation can be divided into two third-order se quences (Sql and Sq2) in the middle of East Junggar coal field, which Sql is the main coal-bearing sequence, containing lowstand system tract (LST), lake expansion system tr act (EST)and highstand system tract (HST). 6 parasequence sets and 11 parasequences ca n be identified. Only one single incomplete LST is preserved in Sq2. SB1 is a large-scal e erosion. SB2 is a large-scale erosion near the Kelameili mountain, and a integrated int erface away from the source area. SB3 is a parallel unconformity interface which means the absence of the strata.
     (2) The Xishanyao Formation mainly were deposited in three types of depositional systems: braided river, braided river delta and shallow lake. Which braided river and braided river delta were mainly formed in LST of Sql, braided river distributed in the central and the northern area, and braided river delta distributed in the southern fringe. Along with the retrogradation of the braided river to the northwest and the expansion of the shallow lake, each type of depositional systems can form in EST of Sql. Early HST contained the similar sedimentary system with the late EST, The whole area were silted during the middle HST.
     (3) Clastic sediments mainly came from the northwest, and a northeast source direction was developed during HST. Kelameili Mountain is the source area. Whether there was a south source area is to be confirmed until the drilling informations in the southen area are sufficient.
     (4) The coal facies analysis of the thick coal seam in the middle of the Easten Junggar coal field reveals high Inertinite content, low ash yield and gelification Index, comparatively high tissue preservation index, which shows that the coal forming environment attributes to a comparatively dry peat bog, which may related to that the rate of the peat growth is quickly than that of the basement subsidence in the peat swamp.
     (5) Five parasequences sets and eight parasequences are divided from the single thick coal seam based on the vertically changes of the coal facies. EST is divided into two parasequences sets from three small sequence compositions, which showed regression singly but transgression as a whole. HST is divided into three parasequences sets from five small sequence compositions, The lower three of which shows regression and the upper two shows transgression.
     (6) The basement subsidence rate, the water level changes and sedimentary systems control the coal accumulation. Firstly, the basement subsidence means the expanding accommodation, the distinction of which result in transferring of the center of the coal formation. Secondly, the expasion or shrinkage of the lake influence the progress of the coal formationt, which was terminated by fast transgression, and beneficial after the regression of lake. It is disadvantageous for the growth of the peat swamp by vast development of the river. With flourishing plants, warm and humid ancient climate conditions, no influence of the source debris, Those area keeping the durative balance of the basement subsidence and growth of the peat is advantaged for the formation of regional thick coal.
     (7) Coal thickness of Xishanyao Formation in this exploration area distributed regularly that unstable thin coal seam was mainly been found in LST, Regional thick seam always distributed in EST and HST, which thichness decreased to the direction of the source and the centre of the basin.
引文
[1]张满郎,张琴,朱筱敏.准噶尔盆地侏罗系层序地层划分探讨[J].石油实验地质,2000,22(3):236-240;
    [2]王宜林,王英民,齐雪峰等.准噶尔盆地侏罗系层序地层划分[J].新疆石油地质,2001,22(5):382-386;
    [3]柳永清,李寅,准噶尔盆地侏罗系露头层序地层及沉积学特征[J],地球学报,2001,22(1):49-54;
    [4]鲍志东,管守锐,李儒峰等,准噶尔盆地侏罗系层序地层学研究[J],石油勘探与开发,2002.29(1):48-51;
    [5]刘豪,王英民,浅析准噶尔盆地侏罗系煤层在层序地层中的意义[J],沉积学报,2002.20(2):197-202;
    [6]张冬玲,鲍志东,杨文秀,准噶尔盆地侏罗系层序地层格建立及主控因素分析[J],大庆石油学院学报,2005.29(2):10-12;
    [7]鲍志东,刘凌,张冬玲等,准噶尔盆地侏罗系沉积体系纲要[J],沉积学报,2005.23(2):194-202
    [8]邱春光,邓宏文,吴铁壮等,准噶尔盆地腹部侏罗系层序地层划分[J],新疆地质,2006.24(2):165-167;
    [9]邢焕清,准噶尔盆地侏罗系层序地层研究展望[J],石油实验地质,2006.28(1):34-37;
    [10]刘海涛,卫延召,张光亚等,准噶尔盆地白家海地区侏罗系聚煤作用与层序地层[J],天然气地球科学,2006.17(6):802-806;
    [11]Diessel,C.F.K., Coal-bearing Depositional Systems[J].Springer-Verlag,Berlin.pp.1992.19-22.
    [12]Bohacs, K., Suter,J.,1997.Sequence stratigraphic distribution of coaly rocks:fundamental controls and paralic examples[J].AAPG,Bulletin 81,1612-1639.
    [13]C.Diessel, R.Boyd, J.Wadsworth, D.Leckie, G.Chalmers,2000.On balanced and unbalanced accommodation and peat accumulation ratios in the Cretaceous coals from Gates Formation, Western Canada, and their sequence-stratigraphic significance[J], International Journal of Coal Geology,43(2000).143-186
    [14]Claus F.K.Diessel.Utility of coal petrology for sequence-stratigraphic analysis[J], International Journal of Coal Geology,70 (2007) 3-34;
    [15]Michael Holz, Wolfgang Kalkreuth, Indranil Banerjee,Sequence stratigraphy of paralic coal-bearing strata:an overview[J],nternational Journal of Coal Geology,48 (2002) 147-179;
    [16]钟蓉,傅泽明.华北地台晚石炭世—早二叠世海水进退与厚煤带分布关系[J].地质学报,1998,72(1):64-75;
    [17]郝黎明,邵龙义,时宗波等.旋回频率曲线在幕式聚煤作用中的研究—以西南地区上二叠 统为例[J].古地理学报,2000a,2(4):12-19;
    [18]李宝芳,温显端,李贵东.华北石炭、二叠系高分辨层序地层分析[J].地学前缘,1999,6(增刊):81-94;
    [19]李增学,魏久传,韩美莲.海侵事件成煤作用——种新的聚煤模式[J].地球科学进展,2001,16(1):120-124;
    [20]张鹏飞,邵龙义,代世峰.华北地台晚古生代海侵模式雏议[J].古地理学报,2001,3(1):15-24;
    [21]顾家裕,陆相盆地层序地层学格架概念及模式[J],石油勘探与开发,1995.22(4);
    [22]李思田,林畅松,谢习农等,大型陆相盆地层序地层学研究—以鄂尔多斯中生代盆地为例[J].地学前沿(中国地质大学,北京),1995.2(3-4):133-136;
    [23]王双明,张玉平,鄂尔多斯侏罗纪盆地形成演化和聚煤规律[J],地学前缘(中国地质大学,北京),1999.6(增刊);
    [24]文怀军,鲁静,尚潞君等,2006.青海聚乎更矿区侏罗纪含煤岩系层序地层研究[J],中国煤田地质,18(5):19-21;
    [25]黄曼,邵龙义,鲁静等,柴北缘老高泉地区侏罗纪含煤岩系层序地层特征[J],煤炭学报,2007.32(5):485-489;
    [26]杨明慧,夏文臣,非海相前陆盆地含煤沉积层序地层分析——以柴达木盆地大煤沟侏罗系剖面为例[J],煤田地质与勘探,1998,26(3);
    [27]吴孔友,查明,王绪龙等,2005.准噶尔盆地构造演化与动力学背景再认识[J],地球学报,26(3):217-222;
    [28]张朝军,何登发,吴晓智等,2006.准噶尔多旋回叠合盆地的形成与演化[J],(1):47-58;
    [29]陈业全,王伟锋,2004.准噶尔盆地构造动力学过程[J].地质力学学报,10(2):155-164;
    [30]陈书平,张一伟,汤良杰,2001.准噶尔晚石炭世——二叠纪前陆盆地的演化[J].石油大学学报(自然科学版),25(5):11-15;
    [31]韩晓黎,阿依古丽,伍菁华等,2001.准噶尔盆地东部边缘区构造格架及构造样式[J],新疆石油地质,22(3):203-205;
    [32]新疆地矿局第九地质大队,《准东煤田东南部煤矿勘查区地质报告》(未公开发表)2008.
    [33]Octavian Catuneanu,2002.Sequence stratigraphy of clastic systems:concepts, merits, and pitfalls[J],Geological Society of Africa Presidential Review No.1,Journal of African Earth Sciences,35 (2002) 1-43;
    [34]朱筱敏.层序地层学[M],山东东营:石油大学出版社,2000;
    [35]刘宝瑶,曾允孚.岩相古地理基础和工作方法[M].北京:地质出版社,1985;
    [36]高青海,2006.煤层成因和煤相研究历史回顾及其研究现状[J],中国煤田地质,18(2):18-21
    [37].Diessel, C.F.K., On the correlation between coal facies and depositional environments. Proc.20th Symp., Dep. Geol., Univ.Newcastle, N.S.W.,1986,19-22.
    [38].Calder, J., Gibbling, M., Mukhopadhyay, P.,1991.Peat formationin a Westphalian B piedmont setting,Cumberland basin, Nova Scotia:implications for the maceral-based interpretation of rheotrophic and raised paleomires[J]. Bull. Soc. Geol. Fr.162:283-298.
    [39].M.B. Silva, W. Kalkreuth, Petrological and geochemical characterization of Candiota coal seams, Brazil—Implication for coal facies interpretations and coal rank. International Journal of Coal Geology 2005,6:.217-238
    [40].Diessel, C., Boyd, R.,Wadsworth, J., Chalmers, G., Significant surfaces and accommodation trends in paralic coal seams. In:Boyd, R., Diessel, C.F.K., Francis, S. (Eds.), Advances in the Study of the Sydney Basin.34th Newcastle Symposium, ewcastle, NSW, Australia, pp.2000a.15-20.
    [41].Davies, R., Diessel, C., Howell, S., Flint, S., Boyd, R.,. Vertical and lateral variation in the petrography of the Upper Cretaceous Sunnyside coal of Eastern Utah, USA — implications for the recognition of high-resolution accommodation changes in paralic coal seams[J]. Int. J. Coal Geol.2005 61,13-33.
    [42].Petersen, H.I., Bojesen-Koefoed, J.A., Nytoft, H.P., Surlyk, F., Therkelsen, J., Vosgerau, H., 1998. Relative sea-level changes recorded by paralic liptinite-enriched coal facies cycles, Middle Jurassic Muslingebjerg Formation, Hochstetter Forland, Northeast Greenland[J]. Int. J. Coal Geol.36,1-30.
    [43].Holz, M.,2003. Sequence stratigraphy of a lagoonal estuarine system—an example from the lower Permian Rio Bonito Formation,Parana'Basin, Brazil[J], Sedimentary Geology 162: 305-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700