荞麦中活性成分对Hep G2细胞作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荞麦不仅营养价值高,而且保健功能强,是最受欢迎的绿色食品。研究表明荞麦中的主要活性成分如胰蛋白酶抑制剂和黄酮类物质具有降低血液胆固醇,抑制脂肪蓄积,抑制大肠癌和胆结石,改善便秘及抗衰老等作用。为进一步揭示其抑制细胞增殖、诱导肿瘤细胞凋亡机理及荞麦药用价值的开发利用,本研究以荞麦胰蛋白酶抑制剂、槲皮素和芦丁为实验材料,对它们的抗肿瘤活性进行了深入研究。
     荞麦BTI基因转染对人肝癌Hep G2细胞的作用研究实验中,利用先前已构建的pEGFP-N1-BTI真核表达质粒,脂质体介导转染Hep G2细胞,分析BTI诱导细胞凋亡作用及对细胞周期调控因子及细胞侵袭迁移的影响。MTT比色法检测BTI对HepG2细胞的毒理效应,结果显示BTI能够明显降低细胞的存活率,并具有时间依赖性,当作用48h后,抑制率达到35%以上。DAPI染色及流式细胞术检测细胞凋亡,实验结果表明经BTI处理的Hep G2细胞出现凋亡信号并产生凋亡小体。RT-PCR和Westem Blot法检测表明BTI在转染细胞中成功转录和表达。细胞周期调控因子检测结果显示转染BTI的细胞中CyclinDl、CyelinE1、CDK2及CDK7转录减少,而P21和P53的转录增加。Westem B10t研究发现BTI可能通过下调CyclinD1表达和上调P21表达,来抑制细胞增殖,诱导细胞凋亡。另外研究还发现经BTI转染后Hep G2细胞的黏附和侵袭迁移能力均有所降低。
     荞麦槲皮素及芦丁对Hep G2细胞作用的比较研究实验中,MTT法检测结果表明槲皮素和芦丁对Hep G2细胞增长均具有抑制作用,槲皮素的抑制效果较芦丁大,并具有时间和浓度依赖性。DAPI染色发现细胞核凝集并有凋亡小体产生。划痕实验表明槲皮素和芦丁在一定浓度范围内能够抑制细胞迁移,并且槲皮素对细胞迁移的抑制作用更明显。流式细胞仪检测细胞内活性氧(ROS)水平,结果发现经槲皮素和芦丁处理后细胞内的ROS均有明显提高,并且经槲皮素作用细胞后ROS变化更明显,推断引发ROS水平升高并诱导细胞凋亡可能是黄酮类物质发挥抗肿瘤作用的一个重要机制。总抗氧化能力(T-AOC)检测结果发现芦丁溶液的T-AOC较槲皮素溶液的T-AOC大,而当二者作用Hep G2细胞后,槲皮素作用后细胞内及培养基中的T-AOC要比芦丁作用后的T-AOC大,这表明两种黄酮化合物都具有很好的抗氧化性,在不同体系中它们的抗氧化活性大小不同。
     真核细胞凋亡的信号转导途径是非常复杂和极其精细的调控网络,需要许多信号分子的参与,胰蛋白酶抑制剂和黄酮类物质诱导细胞凋亡的分子机理仍需要进一步深入地研究,而本文为这个复杂机制的研究及荞麦药用价值的开发利用奠定一定的理论和实验基础,该研究具有一定创新性,研究意义深远。
Buckwheat is of high nutritional values and powerful healthy functions. It is known as the most popular green food. In recent years, some researchs had shown that the main active ingredients of buckwheat, Such as trypsin inhibitor and flavonoids, can cut down blood cholesterol, suppress lipopexia, restrain cancer of colon and gallstones, improve constipation, anti-aging, et al. In order to further reveal the molecular mechanism of anticancer drugs which inhibit cell proliferation and induce cells apoptosis, we used trypsin inhibitor BTI, quercetin and rutin from buckwheat seeds as experimental materials and deeply researched their antitumor effect.
     The experiment maked use of the gene of Buckwheat trypsin inhibitor (BTI) to transfect the human hepatocellular carcinoma cells Hep G2, then studied the influence of BTI to cells growth and migration preliminarily. MTT assay results indicated that BTI could inhibit the growth of Hep G2in a time dependent manner. The inhibition rate reached35%when Hep G2cells were treated for48h. Through DAPI nuclear staining and flow cytometry analysis, we observed that Hep G2cells showed death signals, and produced apoptotic bodies after they were induced by BTI. The cell cycle regulation factor test showed that the mRNA of CyclinD1, CyclinE1, CDK2, CDK7was decreased, but the mRNA of P21, P53was increased in transfected pEGFP-N1-BT1cells. Western Blot analysis showed that BTI may inhibit cells proliferation and induce cells apoptosis through decreasing the expression of CyclinD1and increasing the expression of P21. Then it can achieve the purpose of cancer therapy. Besides, the adhesion and migration capacities of Hep G2cells were decreased when cells were transfected with BTI.
     In another experiment, we compared and studied the antitumor effects of quercetin and rutin from tartary buckwheat seeds. MTT assay showed that quercetin and rutin could inhibit the growth of Hep G2cells in time and concentration dependent manners. DAPI nuclear staining showed that nuclear condensed and apoptotic bodies produced. Cell injury healing experiment indicated that quercetin and rutin could suppress cells migration in certain concentration range. And the inhibiting migration capacity of quercetin was bigger than that of rutin. Through flow cytometry analysis, we can test the intracellular reactive oxygen species (ROS) level. We found that quercetin and rutin could induce the increase of ROS levels significantly, and the ROS level of quercetin was higher than that of rutin. We used the total antioxidant competency (T-AOC) detection Kit to detect the T-AOC of quercetin and rutin, and found that the T-AOC of rutin solution was higher than that of quercetin. Two kinds of flavonoids treate Hep G2cells, the T-AOC of the cells and culture medium of quercetin was higher than that of rutin. The results indicate that quercetin and rutin both have good antioxidant competency, and the antioxidant competency is different in different systems.
     The signal transduction pathways of eukaryotic cells apoptosis are very complex and extremely subtle, it needs many signal molecules to participate. The molecular mechanism of trypsin inhibitors and flavonoids inducing cells apoptosis still need to be further studied, and the thesis laid a experimental basis for this complex mechanism and the exploitation of the value of buckwheat as drugs, the study is originality and meaningful.
引文
[1]王红育,李颖.荞麦的研究现状及应用前景.食品科学,2004,10,388-391.
    [2]Scott CJ, Taggart CC. Biologic protease inhibitors as novel therapeutic agents. Biochimie,2010,92,1681-1688.
    [3]Maya JP, Deborah AS. Complete amino acid sequences of two trypsin inhibitors from buckwheat seed. Phytochemistry,1996,2,327-331.
    [4]张超,李冀新.苦荞麦蛋白酶抑制剂研究进展.粮食与油脂,2006,1,3-6.
    [5]Georgie F, Slavko K, Ilya R. Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol Ther, 2007,2,354-368.
    [6]Giovanni A, David PF. Protease inhibitors in the clinic. Med Chem,2005,1,71-104.
    [7]Moreau T, Baranger K, Dade S, et al. Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie, 2008,90,284-295.
    [8]李夏,曾名勇,董士远,等.胰蛋白酶抑制剂及其抗肿瘤活性研究进展.食品研究与开发,2007,4,163-165.
    [9]Peng L, Tzi BN. A stable trypsin inhibitor from Chinese dull black soybeans with potentially exploitable activities. Process Biochem, 2008,4,992-998.
    [10]Bowman DE. Differentiation of soy bean antitryptic factor. Proc Soc Exp Biol Med, 1946,63,547-550.
    [11]Birk Y, Gertler A, Khalef S.A pure trypsin inhibitor from soya bean. Biochem, 1963, 87,281-284.
    [12]金蓓,田少君.大豆胰蛋白酶抑制剂研究概况.粮食与油脂,2005,6,3-6.
    [13]Ngai PHK, Ng TB. A napin-like polypeptide from dwarf Chinese white cabbage seeds with translation-inhibitory, trypsin-inhibitory, and antibacterial activities. Peptides, 2004,25,171-176.
    [14]Piana S, Carloni P. Conformational flexibility of the catalytic as pdyad in HIV-1 proteinase:an abinition study on the free enzyme. Proteins ,2000 ,1,26-36.
    [15]Kishimura H, Fukumorita K, Adachi K, et al. A Trypsin Inhibitor in the Viscera of Japanese Common Squid (Todarodes Pacificus) Elicits Insulinotropic effects in Diabetic GK Rats. Journal of Food Biochemistry, 2012,1,93-98.
    [16]Swant P, Desai I, Tappel A, et al. Digestive capacity of purified lysosomes. Biopchim Biophys Acta, 1964, 85,93.
    [17]Huang GJ, Sheu MJ, Chen HJ, et al. Growth inhibition and induction of apoptosis in NB4 promyelocytic leukemia cells by trypsin inhibitor from sweet potatostorage roots. J Agric Food Chem, 2007, 55,2548-2553.
    [18]苏伟明,马润娣,于立坚.细胞周期阻滞与肿瘤.湛江海洋大学学报,2001,4,66-70.
    [19]Hartwell LH, Weinert TA. Checkpoints:controls that ensure the order of cell cycle events. Science,1989,246,629-634.
    [20]Joaniti GA, Azevedo RB, Freitas SM. Apoptosia and lysosome membrane permeabilizatin induction on Breast cancer cells by an anticarcinogenic Bowman-Birk protease inhibitor form Vigna unguiculata seds. Cancer Lett, 2010, 293,73-81.
    [21]张宁,王凤山.胰蛋白酶抑制剂研究概况.中国生化药物杂志,2004,2,115-117.
    [22]Kobayashi H, Suzuki M, Tanaka Y, et al. A Kunitz-type protease inhibitor, bikunin, inhibits ovarian cancer cell invasion by blocking the calcium-dependent transforming growth factor-β1 signaling cascade. J Biol Chem, 2003,278, 7790-99.
    [23]Shinohara H, Kobayashi H, Hirashima Y, et al. Urinary trypsin inhibitor efficiently inhibits tumor cell invasion and metastasis in the experimental and spontaneous model. J Jpn Soc Cancer Ther, 1996,3,186-195.
    [24]李艳.基质金属蛋白酶及其抑制剂与恶性肿瘤的侵袭转移.中外医疗,2008,32.
    [25]苏锐,崔丽霞.黄酮类化合物抑菌抗病毒活性的研究.农业技术装备,2011,208,30-33.
    [26]姚新生,天然药物化学[M].北京,人民卫生出版社.1999,191-196.
    [27]刘莉华,宛晓春,李大祥.黄酮类化合物抗氧化活性构效关系的研究进展.安徽农业大学学报,2002,3,265-270.
    [28]李荣,李俊.黄酮类化合物药理活性及其构效关系研究进展.安徽医药,2005,7,481-483.
    [29]于夏,唐滋贵.槲皮素的研究进展.河南职工医学院学报.2011,3,391-392.
    [30]孙涓,余世春.槲皮素的研究进展.现代中药研究与实践,2011,3,85-88.
    [31]臧志和,曹丽萍,钟铃.芦丁药理作用及制剂的研究进展.医药导报,2007,7,758-760.
    [32]尹礼国,曾凡坤,钟耕.荞麦生物类黄酮研究现状.粮食与油脂,2002,12,22-23.
    [33]张宏伟,张永红,卢明俊.食用荞麦对血糖、血脂及血压的影响.环境与职业医学,2003,2,120-124.
    [34]许伟,郭海滨,邵荣,等.芦苇叶总黄酮抑菌及抗氧化性能研究.安徽农业科学,2010,29,16158-16161.
    [35]Naira M PN, Kandaswamib C, Mahajana S, et al. The flavoniod, quercetin, differentially regulates Th-1 and Th-2 cytokine gene expression by normal peripheral blood mononuclear cells. Bab Mol Cell Res,2002,1,29-36.
    [36]Kimata M. Surgical closure of an atrial septal defect using cardiopulmonary bypass. Clin Exp Allergy, 2000, 4, 501.
    [37]宗灿华,马山,于国萍.荷叶黄酮抗衰老作用研究.中国食物与营养,2008,10,52-53.
    [38]周达,罗成,鲁晓翔.黄酮作为酶抑制剂研究进展.食品科技,2009,34,174-178.
    [39]夏维木,陈杞,陈士明,等.应用ESR技术观察芦丁对O2-的清除作用.第二军医大学学报,1997,4,388-389.
    [40]杜崇民,刘春宇.黄酮类化合物抗肿瘤研究进展.中国野生植物资源,2007,26,4-7.
    [41]罗丽萍,高荫榆,洪雪娥,等.甘薯叶柄藤类黄酮的抗肿瘤作用研究.食品科学,2006,8,248-250.
    [42]Vijayabnhu MR, Kanagaraj P, Amnkumar A, et al. Induced growth inhibition and cell death in prostatic carcinoma cells (PC-3)are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. J cancer Res Clin Oncol,2005, 11,765-771.
    [43]Tong WG, Ding XZ, Witt RC, et al. LIPoxygenase inhibitors attenuate growth of human Pancreatic cancer xenografts and induce apoptosis through the mitoehondrial Pathway. Mol Cancer Ther, 2002, 11,929.
    [44]肖义军,刘奋,陈元仲,等.红花桑寄生总黄酮提取物诱导淋巴瘤细胞株CA46凋亡及其分子机制研究.天然产物研究与开发.2008,20,797-802.
    [45]Mu C, Jia P, Yah z, et al. Quercetin induces cell cycle Gl alre through elevating Cdk inhibitors p21 and 1127 in human bepatoma cell line(HepG2). Methods Find Exp Clin Pharmacoi, 2007,3,179-183.
    [46]孟勇,李华,林增海,等.槲皮素对结肠癌细胞SW480体外侵袭的影响.中华全科医学,2011,7.
    [47]宗永立,刘艳平.白屈菜红碱诱导细胞凋亡的机理综述.时珍国医国药,2006,10,2068-2071.
    [48]Gao F, Yi J, Yuan JQ. The cell cycle related apoptotic susceptibility to arsenic trioxide is associated with the level of reactive oxygen species. Cell Res,2004,1,81-85.
    [49]王慧.黄酮类化合物生物活性的研究进展.食品与药品,2010,9,347-350.
    [50]陈庆富.五个中国荞麦(Fagopyrum)中的核型分析.广西植物,2001,2,107-110.
    [51]Chen Q F. A study of cytology, isozyme and interspecific hybridization on the big-achene group of buckwheat species (Fagopyrum, Polygonaceae). Crop Sciences,2004, 44,1511-1518.
    [52]赵钢,唐宇,王安虎,等.中国的荞麦资源及其药用价值.中国野生植物资源,2001,2,31-32.
    [53]李丹.荞麦生物活性成份的研究进展.西部粮油科技,2000,25,6-7.
    [54]Belozersky M.A, Dunaevsky Y.E. Proteolytic enzymes and their inhibitors in buckwheat seeds. Plant Physiology, 1999,46,330-339.
    [55]Zhang Z, Wang Z, Lin R, et al. Purification and characterization of trypsin inhibitor fron tartary buckwheat. Chinese Journal of Biochemistry and Molecula Biology, 1999, 15, 297-251.
    [56]Zhang Z, Li Y, Shi X, et al. Gene cloning and sequenceing of common buckwheat trypsin inhibitor. Acta Botanica Boreali Occidentalia Sinica, 2005,25,46-51.
    [57]Wang ZH, Zhao ZH, Zhang Z, et al. Purification and Characterization of a Protease Inhibitor from Fagopyrum tartaricum Gaertn Seeds and Its Effectiveness Against Insects. Chinese Journal of Biochemistry and Molecular Biology,2006,12,960-965.
    [58]Zhang Z, Li YY, Li C, et al. Expression of a buckwheat trypsin inhibitor in Escherichia coliand its effect on proliferation of multiple myeloma IM-9 cell proliferation. Acta Biochim Biophys Sin, 2007, 9,701-707.
    [59]Wang ZH, Gao L, Li YY, et al. Induction of apoptosis by buckwheat trypsin inhibitor in chronic myeloid leukemia K562 cells. Biol Pharm Bull, 2007,4, 783-786.
    [60]Gao Li, Li YY, Zhang Z, et al. Apoptosis of human leukemia HL-60 cells induced by recombinant common buckwheat trypsin inhibitor. Journal of Experimental Hematology, 2007,1,59-62.
    [61]Li F, Li YY, Bai CZ, et al. Effect of Recombinant Buckwheat Trypsin Inhibitor on Apoptosis and Caspases Activity in Human Hepatoma (HepG2) Cells. Chinese Journal of Biochemistry and Molecular Biology, 2009,2, 182-187.
    [62]白崇智.重组荞麦胰蛋白酶抑制剂诱导肝癌细胞H22凋亡的作用及机制.细胞生物学杂志,2009,1,79-83.
    [63]Li YY, Zhang Z, Wang ZH, et al. rBTI induces apoptosis in human solid tumor cell lines by loss in mitochondrial transmembrane potential and caspase activation. Toxicol Lett,2009,189,166-170.
    [64]Jian YQ, Mayer D, kuhn M. Flavnoids in fine buekwheat flour and their free radical scanveging activities. Deutsche Lebensmittel Rundschou, 1998,9, 343-349.
    [65]宝塔娜,彭树林.苦养粉中化学成分.天然产物研究与开发,2003,1,24-26.
    [66]郭玉蓉,韩舜愈.荞麦黄酮类化合物的提取分离及结构鉴定.2004,11,131-134.
    [67]徐宝才,肖刚.液质联用分析测定苦荠黄酮.食品科学,2003,6,113-117.
    [68]黄兴富,赵声定,孙浩岩,等.荞麦中黄酮类化合物的研究进展.中国民族民间医药,2010,2,24-25.
    [69]刘淑梅,韩淑英,崔国金,等.甜荞麦叶总黄酮降糖、降脂作用及机制.第四军医大学学报,2003,19.
    [70]谭萍,方玉梅,王毅红,等.苦荞种子黄酮类化合物的抗氧化作用.贵州农业科学,2009,3,30-31.
    [71]闫斐艳,崔晓东,李玉英,等.苦荞麦黄酮对人食管癌细胞EC9706增殖的影响.中草药,2010,7.
    [72]王安虎,熊梅,耿选珍,等.中国荞麦的开发利用现状与展望.作物杂志,2003,3.7-8.
    [73]Tang ZY, Ye SL, Liu YK, et al. A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol,2004,130,187-196.
    [74]Netzel AS, Hooper JD, Szabo R, et al. Membrane anchored serine proteases:a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev, 2003,22,237-258.
    [75]杜惠芬,李克生,郭红云,等.胰蛋白酶抑制剂体外抑制肿瘤细胞降解细胞外基质的研究.中国预防医学杂志.2004,5,138-139.
    [76]李志琴,章静波.细胞周期调控与肿瘤.癌症进展杂志,2004,2,146-150.
    [77]张艳,范学工,田雪飞,等.幽门螺杆菌对肝细胞系HepG2 cyclinD1, PCNA mRNA表达的影响.世界华人消化杂志,2004,1,93-96.
    [78]张辉,方肇勤.肝癌组织中Cyclin D1及其相关基因研究的进展.现代生物医学进展,2007,1,131-134.
    [79]敖然,王颖,张道荣.Pinl与CyclinDl在肝癌中的表达及意义.山西医药杂志,2009,10,894-895.
    [80]顾立强,常文军,韩一芳,等.细胞周期蛋白E1基因表达上调与胃癌发生的关系.第二军医大学学报.2010,5,508-511.
    [81]Dulic V, Lees E, Reed SI. Association of human cyclin E with a periodic G1-S phase protein kinase. Science, 1992,257, 1958-1961.
    [82]陈济,宋方洲.CyclinE-CDK2分子活性机制.医学分子生物学,2006,3,220-222.
    [83]曹银芳.靶向CDK2、CyclinE的siRNA对HepG2细胞周期及凋亡的影响(D).内蒙古医学院,2008.
    [84]赵爱国,吴曙光.沉默CDK7导致pRb和CDK2磷酸化水平下降并诱导HepG2细胞凋亡.中国药理学通报,2005,1,106-110.
    [85]房伟,龚伟,梅兴国,等.P53P21双基因转染对肝癌细胞生长的抑制作用研究.肿瘤防治研究,2003,6,455-457.
    [86]王恒,叶棋浓,张述,等.P21基因的克隆及其对肺癌细胞生长的抑制.生物化学杂志,1997,5,493-498.
    [87]Park US, Park SK, Lee YI, et al.. Hepatitis B virus-X protein upregulates the expression of p21wafl/cipl and prolongs G1-S trallsition via a p53-independent pathway in human hepatoma cells. Oncogene 2000; 19,3384-3394.
    [88]Park US, Su JJ, Ban KC, et al. Mutations in the p53 tumor suppressor gene in three shrew hepatocellular Carcinoma associated with hepatitis B virus infection and intake of aflatoxin B1. Gene,2000,1,73-80.
    [89]舒伟,马清钧,叶听.CyclinE-CDK2相关蛋白与细胞周期调控.生物技术通讯,2008,1,97-100.
    [90]罗庚求,文继舫,李景,等.Twist对胃癌细胞系MKN28迁移和侵袭能力的影响.中南大学学报,2008,2,174-178.
    [91]卫吉芸,刘桂林.绿色荧光蛋白及在生物技术研究中的应用.国外畜牧学猪与 禽,2011,3,100-101.
    [92]桂慕燕,叶向群,吴春旭,等.含增强型绿色荧光蛋白(EGFP)基因的家蚕同源重组质粒载体的构建.厦门大学学报,2002,5,628-633.
    [93]查仁明.高等真核生物细胞周期蛋白研究进展.渝西学院学报,2003,3,53-56.
    [94]王开阳,熊爱珍,蒋星星,等.细胞周期依赖性蛋白激酶对体外培养人肝癌细胞侵袭力的影响.世界华人消化杂志,2010,2,119-124.
    [95]罗丽萍.甘薯叶柄藤中试综合提取的活性多糖、类黄酮构成及生理活性研究.南昌大学,博士学位论文.2006.
    [96]Saravana KJ, Mahitosh M. Involvement of non-protein thiols, mitochondrial dysfunction, reactive oxygen species and p53 in honey-induced apoptosis. Invest New Drugs, 2010, 28,624-633.
    [97]Fang J, Nakamura H, Iyer AK. Tumor-targeted induction of oxystress for cancer therapy. J Drug Target, 2007, 15,475-486.
    [98]Ren W, Qiao Z, Wang H, et al. Tartary buckwheat flavonoid activates caspase 3 and induces HL-60 cell apoptosis. Methods Find Exp Clin Pharmacol, 2001,8,427-432.
    [99]常徽.植物黄酮抗肿瘤研究进展.国外医学卫生学分册,2006,5,296-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700