城市环境下粘性土细观结构的热力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市规模日益扩大及人口不断集中,“热岛”现象日趋突出,这将致使城市下伏岩土体内的温度场发生变化。城市附加地温度场必然导致土中含水量和离子化学场的变化,引起土体液、固相物理化学性质的改变,从而使土颗粒连接、吸附及其性状发生变化,直接影响土体的结构强度。在此情况下,土体的结构强度如何变化?存在何种“热敏组份”?这是非常值得研究的两个问题。在我国,关于温度对岩土介质影响的研究工作开展较多的是寒冷地区低温条件下冻土的力学变形特性及工程影响,这些研究一般是针对0℃以下的冻土,主要研究其冻融循环作用及其水份迁移机理等。关于高温条件下岩石的温度效应问题也得到一定的重视,其工程背景主要是核废料和放射性物质的处置和贮存,研究的对象一般为岩体材料,而对于常温常压下,土体孔隙液含有不同盐份的有关粘性土热力学行为的研究则极为少见。因此,基于城市环境下,选择以上两个问题作为本论文的研究课题具有重要的理论和实际意义。
     本文针对上述研究问题,分析地表温度变化对城市下伏粘性土的扰动水平,研究常温常压下粘性土受热作用的物理-化学表现,讨论了外界温度变化引起土中温度场、化学场变异的事实。同时,在温度差的作用下,通过试验探讨了粘性土力学属性的差异,并且对影响粘性土热力学行为的两个外部因素(温度和时间)进行了试验研究,给出了粘性土细观结构温度效应与时间效应的分析结果:随着温度升高,粘聚力c值不断增大,在30℃~50℃之间存在一陡峭段,而内摩擦角φ变化有起伏;当时间序列加长后,粘聚力c亦是增大,而内摩擦角φ有起伏变化,整体呈递减趋势。因此,从温度场变异引发湿度场、化学场改变的试验结果,证实了城市“热岛”会波及城市下伏粘性土,会导致土体性状变异的事实。
     土中的液相是土体结构中非常活跃的部分。热岛效应引发城市下伏粘性土受热扰动,于是土体内部离子的运动也发生了改变,它通过土中孔隙溶液组份的析出与颗粒矿物的溶入来改变粒间的连接,进而影响土体的结构强度。本文研究土体细观结构固有的内在属性(包括土中水份、孔隙溶液组份、pH值)在温度场作用下的力
    
     欧孝夺.城市环境下粘性土细观结构的热力学行为研究2004年5月
    学表现,揭示温度及其作用时间、孔隙溶液组份、酸碱度对粘性土细观结构力学行
    为的影响。试验结果表明,在40℃环境中,浸泡NaZSZO;土样的粘聚力c最大,在
    60℃环境中,浸泡FeC13土样的c值最大:当环境温度由40℃升高到60℃,c值增幅
    最大的是Feel3,其次是Fe和MnSO4;而Ca(OH)2的‘值减小,MgCI:增幅不大;
    而当环境温度由40℃升高到60℃,FeC13、NaZSZO;的内摩擦角仍是减小的,Fe和
    AICI;变化不大,而MgC12、Ca(OH):增幅相当,仅次于去离子水。将FeC13、Nael、
    Mnso4、ca(OH):分别配制成不同浓度的溶液,浸泡后土样的热力学性质的变化规律
    也不一样,有正效应也有负效应。经pH=2的酸溶液浸泡的土样在40℃的温度环境
    中作用168h后,粘聚力c达到最小值(c=62.skPa);内摩擦角尹在小于30℃时变化
    不大,而环境温度大于30℃后,急剧增大;pH=12土样随着温度升高,粘聚力‘与
    内摩擦角尹有起伏变化现象,40℃时c值最小,c=80.skPa;50℃时沪值最小净二4.4。;
    经酸碱液浸泡后的土样,其粘聚力c随热作用时间T发生不同的变化,热作用时间
    为168h时,酸性土样的粘聚力c有最小值;而碱性土样c值随热作用时间T不断减
    小,两者的。值均小于未浸泡土样;内摩擦角价的变化相对平缓,碱性土样的内摩
    擦角沪是最小的。
     在以上试验研究的基础上,对粘性土细观结构的热力学行为进行机理研究,首
    先从温度场与湿度场的相互作用出发,开展土体含水量、内作用力、水势的热作用
    阐述,并引入分形几何理论,对粘性土的热敏粒组进行了理论解释;其次从温度场
    引起化学场的变化,尤其是可溶盐的溶蚀、结晶析出与氧化还原反应证实了热敏化
    学组份的存在,最后从热一化学一力学三者联动揭示粘性土细观结构热效应的本质。
     提出粘性土热敏系数及其表达形式,建立了土体热敏性分类标准,在此基础上,
    进行粘性土热敏性模糊评测,结果显示:粘聚力c和孔隙比。对粘性土热敏性影响
    较大;最后建立粘性土的热敏性与孔隙液中各离子浓度的线性回归模型。
With the urban expansion and the population condensation, the "heat island" phenomenon becomes prominent day by day, and this causes changes in temperature field in the urban underlying rock-soil mass. The additional urban geothermal field is bound to cause changes in moisture content of the soil, ion-chemical field and the physical-chemical properties of liquid and solid phase of the soil mass, and thereby changes the connection, the absorption and the behaviors of the soil particles, and influences the structural intensity of the soil mass. In this case, how will the structural intensity of the soil mass change and what heat sensitive component will be there? These two problems are worth being studied in geo-technical field. In our country, the researches on the influence of temperature on the rock-soil medium are carried out mostly for the mechanical-deformational behavior of the frozen soil under low temperature conditions in cold areas and its engineering influence. These researches generally based on t
    he frozen soil below 0C mainly study its freeze-thaw cycle action and its moisture migration mechanism. The problems about the temperature effect of rock under high temperature conditions also are paid certain attention to. Its engineering backgrounds are mainly the disposal-storage of nuclear waste and radioactive materials, and its research object is usually the material of rock mass. But we can rarely find the researches on the thermodynamics of clayey soil with different salt components in pore liquid of soil mass at normal temperatures (below 60C) and pressures. So, basing on the urban environment, it has important theoretical and practical significance to choose these two problems as the research issues of dissertation.
    Aiming at aforementioned research problems, this dissertation analyses the disturbance level caused by the variation of the surface temperature to the underlying clayey soil, and the physical-chemical manifestation of clayey soil acted by heat at normal temperatures and pressures. At the same time, this dissertation approaches through experiments the discrepancy of the mechanical attribution of clayey soil under the action of temperature field, researches two external factors (temperature and time) that influenced the thermodynamic behavior of clayey soil, and presents the analytical results of temperature effect and time effect of the thin-view structure of clayey soil. With the increase of
    
    
    
    
    temperature, the value of cohesion rises progressively and there is an abrupt segment between 30C and 50C, but the value of the angle of internal friction is fluctuated. After the time sequence has been lengthened, the value of cohesion still rises, while the value of the angle of internal friction fluctuates and the whole effect takes on a decreasing trend. Therefore, the experimental result that the variation of the temperature field causes the changes of the moisture and chemical fields confirms the fact that the urban heat island can affect the urban underlying clayey soil and cause the variation of the soil mass behavior.
    The liquid phase of soil is a very dynamic part in the structure of the soil mass. When the urban underlying clayey soil has heat disturbance, the motion of internal ions in soil mass begins to change. It can change the inter particle connection through the separation of pore solution's component in soil and the dissolution of particle mineral, thus influencing the structural intensity of the soil mass. From the mechanical expression of inherent attributions (including the moisture content of soil, the pore solution's component and the value of PH) of the thin-view structure of soil mass under the action of temperature field, this dissertation researches the influence of temperature and its acting time, the pore solution's component and the acidity-alkalinity on the thin-view structure of clayey soil. The experimental results show that the value of cohesion of the soil sample soaked in Na2S2O4 solution is the maximum when the temperature is 40C while the value of cohesion o
引文
[1] James Trefil. A Scientist in the City. The Doubleday Broadway Publishing Group, a division of Random House, Inc. USA, 2000
    [2] 吴恒,张信贵,韩立华.水化学场变异对土体性质的影响[J].广西大学学报(自然科学版),1999,24(2):85~88
    [3] 中国市长协会《中国城市发展报告》编委会.2001~2002中国城市发展报告[R].北京:西苑出版社,2002.12
    [4] 于春梅.世界城市贫穷人口的增长[J].城市问题,1997(4):10
    [5] 中国城市年鉴1995.中国城市年鉴出版社,1995
    [6] 窦建奇.关于城市“热岛效应”的思考[J].武汉城市建设学院学报,2001,18(3):76~78
    [7] 郭桂香,张东威,布和.认识热污染问题[J].环境保护,1994(5):35~37
    [8] 严平,杨书廷,王相文,等.合肥城市热岛强度及绿化效应[J].合肥工业大学(自然科学版).2000,23(3):348~352
    [9] Swaid H. N. Themal effects of artificial heat sources and shaded ground areas in the urban canopy layer. Engergy and Buildings, 1990, 15: 253~261
    [10] 黄春长主编.环境变迁[M].北京:科学出版社,1998
    [11] 刘永智,吴青柏,张建民,等.高原多年冻土地区公路路基温度场现场实验研究[J].公路,2000,(2):5~8
    [12] 木下诚一著.王异,张志权译.冻土物理学.长春:吉林科学技术出版社,1985
    [13] 焦坤,李德成.蔬菜大棚条件下土壤性质及环境条件的变化[J].土壤,2003,(2):94~97
    [14] 李文庆,李光德,骆洪义.大棚栽培对土壤盐分状况影响的研究[J].山东农业大学学报,1995,26(2):165~169
    [15] 张明初,等.萍乡市蔬菜大棚小气候特征观察小结[J].江西气象科技,1997,(3):26~29
    [16] 赵风艳,吴风芝,刘德,等.大棚菜地土壤理化特性的研究[J].土壤肥料,2000,(2):11~13
    [17] Kraus Mary J. Development of potential acid sulfate paleosols in Paleocene floodplains, Bighorn Basin, Wyoming, USA [J]. Palaeogeography, Palaeoclimatology, 1998, 144: 23~224
    [18] 赵宝华,张金池.丰县黄泛区盐碱土的形成过程与改良措施[J].南京林业大学学报(自然科学版),2003,27(2):69~72
    [19] 曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37~44
    [20] 张在明.对于发展环境岩土工程的初步探讨[J].土木工程学报,2001,34(2):1~7
    [21] 白彦光,武胜忠,彭彦彬,等.环境岩土工程的内容与特点[J].太原理工大学学报,2003,34(1):102~106
    [22] 方晓阳.21世纪环境岩土工程展望[J].岩土工程学报,2000,22(1):1~11
    
    
    [23] 孙钧.岩土工程的特点与未来的创新发展[J].岩土工程界,2003,6(5):20~23
    [24] 钱易.《第一届全国环境岩土工程与土工合成材料技术研讨会论文集》序[A].第一届全国环境岩土工程与土工合成材料技术研讨会议论文集[C].杭州:浙江大学出版社,2002.
    [25] 龚晓南.21世纪岩土工程发展展望[J].岩土工程学报,2000,22(2):238~242
    [26] 施斌.注重理论与应用相结合的环境岩土工程[J].水文地质工程地质,2000,(2):1~3
    [27] 熊厚金,张良辉,邹小平,林天健.岩土工程化学导论.岩土工程学报,1999,21(4):403~407
    [28] 曲永新,张永双,冯玉勇.当前国际环境地质工程(环境岩土工程)研究的热点领域及其相关技术[J].工程地质学报,1998,6(4):301~304
    [29] Mescri, G. (1975). Discussion. J. Geotech. Div. ASCE 101, GTA, 409~412
    [30] Tavenas, F. and Leroueil, S. (1990). Laboratory and in situ stress-strain-time behaviour of soft clays-state-of-the-art paper. Int. Symp. Geotech. Engng. Soft Soils, Mexico City
    [31] S. Levoueil and P. R. Vaughan, (1990). The general and Congruent effects of structure in nature soil and weak rock, Geotechnique 40. 3, 467~488
    [32] 常宝琦.黄土湿陷性的初步研究[C].中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集,1962
    [33] 林崇义.黄土的结构性特性[C].中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集,1962
    [34] 高国瑞.兰州黄土显微结构与湿陷机理探讨[J].兰州大学学报,1979(1):123~126
    [35] Mitchell, J. K., Fundamentals of Soil Bechavior, 1976
    [36] N. K. Tovey. Quantitative analysis of electron micrographs of soil microstructure, Procreedings of the International Symposium on soil structure, 1973
    [37] Y. X. Wu, Quantitative approach on microstructure of engineering clay, 6th Congress of IAEG, 1990, Amsterdam
    [38] 张惠芬,冯璜,郭九皋,等.粘土矿物钝化改性和钝化机理初步研究[J].高校地质学报,2000,6(2):287~291
    [39] 肖树芳.泥化夹层的组构及强度蠕变特性[M].长春:吉林科学技术出版社,1991
    [40] 刘松玉,方磊.试论粘土粒度分布的分形结构[J].工程勘察,1992(2):1~4
    [41] 蒋明镜.结构性粘土的本构模型和土体逐渐破损分析[D].南京水利科学研究院,博士学位论文,1996.5
    [42] 吴恒,张信贵,易念平,等.水土作用与土体细观结构研究[J].岩石力学与工程学报,2000,19(2):199~204
    [43] 胡瑞林,李向前,等.粘土微结构定量模型及其工程地质特征研究[M],北京:地质出版社,1995.3
    [44] 齐吉琳.土的结构性及其定量化参数的研究[D].西安理工大学,博士学位论文,1999.1
    [45] 胡再强.黄土结构性模型及黄土渠道浸水变形试验与数值分析[D].西安理工大学,博士学位论文,2000.11
    
    
    [46] 王幼麟.粘性土结构特征的研究方法与问题[M].水文地质与工程地质论丛.1985
    [47] 谭罗荣.土的微观结构研究概况和发展[J].岩土力学,1983,4(1):73~85
    [48] 沈珠江.士体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95~97
    [49] 蒋明镜,沈珠江,刑素英,等.结构性粘土研究综述[J].水利水电科技进展,1999,19(1):26~30
    [50] 吴恒,欧孝夺.从科学实验方法探讨土力学发展的新途径[J].岩石力学与工程学报,2004,
    [51] 施斌.粘性土微观结构定量研究中的几个热点课题[J].岩土工程学报,1997(2):119~120
    [52] Tovey N K. Mapping of the Orientation of Fine-grained Minerals in Soils and Sediments. Bulletin of the International Association of Engineering Geology, 1992, (46): 93~101
    [53] 谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1996,12(6):651~656
    [54] A. W. Skempton and R. D. Northey. The Sensitivity of clays. Geotechnique, vol. Ⅲ, No. 1 March, 1952
    [55] Jiang Mingjing and sheng Zhujiang. Microscopic analysis of shear band in structured clay. Chinese Journal of Geotechnical Engineering Mar., 1998, vol. 20, No. 2, 102~107
    [56] 沈珠江主编.理论土力学[M].北京:中国水利水电出版社,2000
    [57] 张诚厚.两种结构性粘土的土工特性[J].水利水运科学研究,1983(4):65~71
    [58] 白冰,赵成刚.温度对粘性土介质力学特性的影响[J].岩土力学,2003,24(4):533~537
    [59] Paaswell R E. Temperature effects on clay consolidation [J]. J. Soil Mech. and Found. Engrg. Div., ASCE, 1967, 93 (3): 9~21
    [60] Schiffman R L. A thermoelastic theory of consolidation[J]. Environmental and Geophysical Heat Transfer, ASME, 1972, 5 (4): 78~84
    [61] Campanella R G, Mitchell J K. Influence of temperature variation on soil behavior[J]. J. Soil Mech. And Found. Engrg. Div., ASCE, 1968, 94(3): 709~734
    [62] Eriksson L G. Temperature effects on consolidation properties of sulphide clays[J]. Proc. 12th ICSMFE, 1989 (3): 2087~2090
    [63] Leroueil S. Compressibility of clays: fundamental and practical aspects[J]. J. Geotech. Engrg., ASCE, 1996, 122(7): 534~543
    [64] Tidfors M. Temperature effect on preconsolidation pressure [J]. Geotech. Test. J., 1989, 12 (1): 93~97
    [65] 徐学祖,邓友生等.冻土中水分迁移的实验研究[M].北京:科学出版社,1991
    [66] P.M.兹洛切夫斯卡娅,B.M.季维希洛娃.秦素娟译.土中结合水译文集[M],地质出版社,1982
    [67] Hueckell T, Borsetto M. Thermoplasticity of saturated clays and shales: constitutive equations [J]. J. Geotech. Engrg., ASCE, 1990, 116(12): 1765~1777
    [68] Hueckeii T, Baldi G. Thermoplasticity of saturated clays: experimental constitutive study[J]. J. Geotech. Engrg. A SCE, 1990, 116(12): 1778~1795
    [69] Boudali M. Viscous behavior of natural clays[J]. Proc. 13th ICSMFE, 1994(1): 411~416
    
    
    [70] FengXiating, SetoM. Fractal structure of the time distribution of microfracturingin rocks[J]. Geophysical Journal Internationai, 1999, 136: 275~285
    [71] Habibagahi K. Temperature effect and the concept of effective void ratio[J]. Indian Geotechnical Journal, 1977, 7(1): 14~34
    [72] Towhata I, Kuntiwattanakul P, Seko I, et al. Volume change of clays induced by heating as observed in consolidation tests[J]. Soils and Foundations, 1993, 33 (4): 170~183
    [73] Mitchell J K, Kao T C. Measurement of soil thermal resistivity[J]. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104 (10): 1307~1320
    [74] Salomone L A, Kovacs W D. Thermal resistivity of soils[J]. Journal of the Geotechnical Engineering Division, ASCE, 1984, 110 (3): 375~389
    [75] Gangadhara R, Singh D N. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal, 1999, 36 (2): 767~773
    [76] Campanella R G, Mitchell J K. Influence of temperature variation on soil behavior[J]. J. Soil Mech. And Found. Engrg. Div., ASCE, 1968, 94(3): 709~734
    [77] Burghignoli A, Desideri A, Miliziano S. Discussion on volume change of clays induced by heating as observed in consolidation test[J]. Soils and Foundations, 1995, 35 (3): 122~124
    [78] Hueckel T, Peano A. Some geotechnical aspects of radioactive waste isolation in continental clays[J]. Computers and Geotech., 1987, 3 (2, 3): 157~182
    [79] Boudali M. Viscous behavior of natural clays[J]. Proc. 13th ICSMFE, 1994 (1): 411~416
    [80] Modaressi H, Laloui L. A thermo-viscoplastic constitutive model for clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21 (5): 313~315
    [81] Gatmiri B, Delage P. A formulation of fully coupled thermal-hydraulic-mechanical behavior of saturated porous media, numerical approach[J]. International Joumal for Numerical and Analytical Methods in Geomechanics, 1997, 21 (2): 199~225
    [82] Cui Y J, Sultan N, Delage P. A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal, 2000, 37(2): 607~620
    [83] 吴青柏,施斌,等.青藏公路沿线多年冻土与公路相互作用研究[J].中国科学(D辑),2002,32(6):514~520
    [84] 韩皓,侯芸,赵文祥,等.高寒地区土的物理性质对冻胀性的影响及软土冻土地基处理的原则和方法研究(一)[J].内蒙古公路与运输,2001,(4):13~15
    [85] 汤连生.水-土化学作用的力学效应及机理分析[J].中山大学学报(自然科学版),2000,39(4):104~109
    [86] Garrielsson, A/Bergdahl, U/Moritz, L. Thermal energy storage in soils at temperatures reaching 90 degrees C. Journal of Solar Energy Engineering, 2000, 122 (1): 3~8
    [87] 吴海青.孔隙水对岩石变形特性的影响及其工程意义[A].见:中国岩石力学与工程学会编.第二次全国岩石力学与工程学术会议论文集[C].北京:知识出版社,1989,345~351
    
    
    [88] 施斌.粘土击实过程中微观结构的定量评价[J].岩土工程学报,1996,18(4):57~62
    [89] 蒋然.“热污染”向我们袭来[J].沿海环境,2000(2):16
    [90] 王璋保.工业炉窑的热污染不可忽视[J].工业加热,1999(2):7~10
    [91] Campanella R G, Mitchell J K. Influence of temperature variation on soil behavior[J]. J. Soil Mech. And Found. Engrg. Div., ASCE, 1968, 94(3): 709~734
    [92] 高凌霞,杨向军.西安地区黄土湿陷性的影响因素[J].大连民族学院学报,2003,5(1):66~69
    [93] 关文章.湿陷性黄土工程性能新篇[M].西安:西安交通大学出版社,1990
    [94] 吴恒,欧孝夺,周东.城市环境下粘性土的热力学行为初探[J].广西科学,2003,10(3):205~207,215.
    [95] 张一平,白锦鳞,等.温度对土壤水势影响的研究[J].土壤学报,1990,27(4):454~458
    [96] 高鹏程,张一平,等.温度对土壤水分性状的影响[J].西北林学院学报,2003,18(1):77~79
    [97] 张玉红,杨庆丽.土体本构模型评述[J].佛山科学技术学院学报(自然科学版).1998,16(4):46~50
    [98] 吴恒,张信贵,易念平,等.水土作用与土体细观结构研究[J].岩石力学与工程学报,2000,19(2):199~204
    [99] 李彰明,李相菘,黄锦安.砂土扰动效应的细观探讨[J].力学与实践,2001,23(5):26~28
    [100] 周茗如,杜永峰.从细观力学分析制作高性能混凝土的途径[J].甘肃工业大学学报,1998,24(4):81~83
    [101] 奥西波夫著.粘土类土和岩石的强度与变形性能的本质[M].北京:地质出版社,1985,147~149
    [102] Corey A T. Measurement of water and air permeability in unsaturated soil[J]. Proc of sei soc Amer, 1957, 21 (1): 7~10
    [103] Yoshimi & Osterberg. Compression of partial saturated cohesive soils[J]. ASCE, 1963, (SM4)
    [104] 俞培基,陈愈炯.非饱和土的水-气形态及其与力学性质的关系[J].水利学报,1965,(1):16~23
    [105] 包承纲.非饱和土的性状及膨胀土边坡稳定问题[J].岩土工程学报,2004.26(1):1~15
    [106] 高安秀树.分数维[M].常子文等译,北京:地震出版社,1989年
    [107] Xu Yongfu. Fractal Character of Grain-size Distribution of Expansive Soils, Fractals, 1997, 5(1)
    [108] Ochiai M, Ozao R, Yamazaki Y. Self-Similarity Law of Partical-size Distribution and Energy Law in Size Reduction of Soids. Physica A. 1992, 19(1): 259~300
    [109] 武汉水利电力学院.土力学及岩石力学[M].北京:水利出版社,1979.358~359
    [110] 程昌炳.应用化学动力学研究土体长期稳定性的理论基础[J].岩土力学,1989,10(4):83~88
    [111] 徐仁扣,季国亮.pH对酸性土样中铝的溶出和铝离子形态分布的影响[J].土壤学报,1998,35(2):162~171
    [112] 李淑萍,侯万国,戴肖南,等.pH对Fe-Al-Mg-MMH/钠质蒙脱土悬浮体触变性的影响[J].高等学校化学学报,2002,1763~1766
    [113] Krupt N P. Micromechanical definition of the strain tensor for granular materials. Journal of
    
    Applied Mechanics, 1996, 118: 711
    [114] 李文建,李兴应.氟硼酸、土酸对粘土膨胀性能的影响[J].石油钻采工艺,1995,17(2):56~60
    [115] 刘松玉,方磊,陈浩东,等.论我国特殊土粒度分布的分形结构[J].岩土工程学报,1993,15(1):23~30
    [116] 赵宇,何淑芬,崔鹏,等.用固体力学化学理论研究岩土的力学化学行为——以成都龙泉紫色土为例[J].自然灾害学报,2002,11(2):70~74
    [117] 米切尔 J K.岩土工程土性分析原理[M],高国瑞译.南京:南京工学院出版社,1988,335~335
    [118] 姚海林,刘少军,程昌炳.一种天然胶结土粘聚力的微观本质[J].岩石力学与工程学报,2001,20(6):871~874
    [119] 约翰·内特[美] 等著,张勇等译.应用线性回归模型[M].北京:中国统计出版社,1990
    [120] 杨庆,贺洁,奕茂田.非饱和红粘土和膨胀土抗剪强度的比较研究[J].岩土力学,2003,24(1):13~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700