牛肉中水活度对氧化品质的影响及牦牛肌红蛋白cDNA分析和氧化特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品的氧化品质是影响消费者感官接受程度的重要因素,包括水活度在内的很多因素对食物的氧化变质都具有影响。对含水量中等的肉品(半干肉)(intermediate moisture meat,IMM)来说,可通过对水活度(water activity,a_w)的调节以获得最佳感官指标和最长货架期。长期以来,很多研究认为在高水活度和低水活度下脂质氧化更易发生,而美拉德非酶促褐变反应(Maillardreaction)的强度则随着水活度的升高而增加。脂质氧化、蛋白质氧化和非酶促褐变反应相互联系,并且三者可协同作用引起半干肉品的氧化变质。我们的前期研究表明,在450 nm下测定的硫代巴比妥酸反应物质(TBARS_(450))而非经典的在532 nm下测定的TBARS值(TBARS_(532))可在肉品加速贮藏条件下(49℃)随时间延长而增加,由于TBARS_(450)可由脂质氧化和美拉德非酶促褐变共同引起,因而该反应更能反映在加速存储过程中由脂质氧化和美拉德反应引起的氧化变质情况。
     该研究用含15%脂肪的牛肉为材料,通过添加甘油醇(0%、20%、40%、60%)获得水活度范围为0.76-0.98的牛肉香肠样品,探讨了水活度对牛肉在低温(4℃)和加速贮藏条件(49℃)包括脂质氧化、蛋白质氧化、美拉德非酶促褐变的各氧化品质及肉品表面和内部颜色(L、a、b值)的影响。结果表明,在4℃和49℃两个贮藏温度下,经典的TBARS_(532)均值随着贮藏时间的增加而降低。TBARS_(450)在4℃贮藏样品中不随贮藏时间和水活度而有显著改变。在49℃时,不同水活度样品的TBARS_(450)均随贮藏时间延长而有显著性增加(P<0.05),且对照(0%甘油醇)与各处理样品间无显著差异(P>0.05),因此TBARS_(450)受加速贮藏温度(49℃)和贮藏时间的影响比受水活度的影响更大。美拉德反应(MR@370)的变化趋势与TBARS450非常一致。蛋白质氧化在4℃贮藏样品中随贮藏时间的延长而降低直至第4周基本达到稳定,而对照和样品之间无显著差异(P<0.05)。在49℃贮藏4周后,蛋白质氧化随贮藏时间的延长有明显提高(P<0.05)。在所有取样检测的贮藏时间点,对照和处理样品间均无显著性差异(P>0.05)。因此,与脂质氧化和美拉德非酶促褐变相似,蛋白质氧化受贮藏时间和温度的影响比受水活度的影响更大。
     采用完全冷冻干燥的牛肉分别经饱和的NaCl、NaBr、K_2CO_3、MgCl_2、LiCl溶液复水获得了具不同水活度(0.008-0.754)的牛肉样品,然后在49℃下进行加速贮藏。在用1H固态核磁共振(nuclear magnetic resonance,NMR)研究该系列样品中水分子迁移率与脂质氧化相关性的机理及核磁共振成像(nuclearresonance image,NRI)观察样品精细结构时发现,水和脂质的质子分别产生两个吸收峰,其质子扫描光谱表明吸收峰与样品中水分含量有很好的相关性。1H强度和水自旋-自旋弛缓时间(T_2)均随着水活度、存储温度和存储时间的增加而增加。谱线宽度分散现象随含水量增加而减少,它在短期存储(0-30天)的水活度为0.3的样品中出现,经更长存储时间后消失,这表明即使样品中含水量达到平衡后,在贮藏过程中仍然存在着动态变化。用核磁共振成像对贮藏12周的对照(a_w=0.008)和复水样品(a_w=0.753)检测时显示,对照中的水分子排布有位置局限性,因而迁移率低,而复水后的样品中水分子呈弥散状分布,相应地其迁移率也会更高。因此,以TBARS_(450)检测的脂质氧化以及美拉德非酶促反应产物随水活度的降低而增加的现象有可能与观测到的水分子迁移率和肉品细微结构的改变有关。
     对IMM牛肉中水活度对包括脂质氧化、蛋白质氧化和美拉德非酶促反应等氧化品质的影响及水分子迁移率与脂质氧化相关性机理的研究,可以帮助我们更好地理解肉品中水合作用动力学的机制及其对肉品脂质氧化以及其他氧化品质的影响,这将为改善半干肉品品质和延长其贮藏期提供理论依据。
     由于作为普通畜产品的鲜肉中的脂质氧化与蛋白质氧化,特别是与肉品中最重要的呈色蛋白质肌红蛋白氧化间的相关性已经研究得非常彻底,因此该论文的第二部分就着重在对高原特有物种牦牛的肌红蛋白基因序列、功能及其氧化特性与脂质氧化的相关性进行研究。
     牦牛(Bos grunniens)是牛属动物中唯一能在海拔3,500米以上高寒地区繁衍生存的种群,对高寒、缺氧、日温差大等严酷的自然环境具有很强的抗逆能力。肌红蛋白有运输和暂时储存氧气的功能,并可携带氧在肌肉中运动,当动物急剧运动时肌红蛋白就把氧释放出来,以保障肌肉代谢对氧的强烈需求。在同样的氧分压下,肌红蛋白结合的氧量是血红蛋白结合氧量的6倍,因此,在高海拔地区氧分压低的环境下,肌红蛋白对动物体内氧气的运输和贮藏起着至关重要的作用。本论文对四川若而盖高原(平均海拔3,500米)的麦洼牦牛的肌红蛋白进行了cDNA序列和含量的测定及心肌肌红蛋白氧化和脂质氧化相关性的研究,并和成都平原上普通黄牛的肌红蛋白进行了比较,初步探讨了牦牛适应高原低氧环境的机理。对牦牛与黄牛肌红蛋白的cDNA序列进行测序并比较,发现二者只有2个碱基的差异(89位氨基酸由cac变为cat,91位氨基酸由gcc变为gct),但由于氨基酸密码子的简并性,两者的氨基酸序列没有差异,因而两者的肌红蛋白在蛋白质序列和结构上没有差异。牦牛的骨骼肌和心肌的肌红蛋白含量分别为488.3nmol/g和823.4nmol/g,而黄牛则分别为410.96±71.9nmol/g和510.7±29.5nmol/g,牦牛的骨骼肌和心肌的肌红蛋白含量比黄牛的分别高18.8%(P>0.05)和61.2%(P<0.05)。在4℃贮藏70小时过程中,不管是心肌还是骨胳肌,黄牛肌红蛋白氧化形成高铁肌红蛋白的量都大于牦牛,贮藏70小时后,黄牛心肌中和骨骼肌中高铁肌红蛋白的累积量比牦牛分别高出6.9%(P>0.05)和25.8%(P<0.05),即牦牛心肌和骨骼肌中肌红蛋白的氧化速率比黄牛均要慢。在4℃贮藏的6天中,牦牛和黄牛的硫代巴比妥酸反应物质(TBARS)值都随着贮藏时间的延长而缓慢升高,牦牛的TBARS值从第1天的0.021上升到第7天的0.266,平均每天上升0.04;而黄牛从0.017上升到0.435,平均每天上升0.07,氧化的速度是牦牛的近两倍。第7天时,黄牛的TBARS值比牦牛高出了63.5%(P<0.05),即牦牛肌肉中脂质氧化的速度显著低于黄牛(P<0.05)。
     对牦牛肌红蛋白的cDNA序列分析及其氧化性与脂质氧化相关性的研究表明,牦牛能够适应高原低氧分压和高氧化胁迫的低氧环境,并非通过改变其肌红蛋白氨基酸序列从而引起蛋白质结构的变化来实现的,而可能是通过提高肌红蛋白在体内的含量,以及减缓肌红蛋白氧化和脂质氧化的速率,达到降低肌红蛋白转变为高铁肌红蛋白的量的目的,从而使更多的肌红蛋白保持与氧结合的能力,满足牦牛在低氧条件下对氧气的需求。
     本论文开创性地研究了肉品中水活度对肉品中多个氧化品质的影响,并用核磁共振技术研究了水迁移率与脂质氧化的关系,这对于我们更好地理解肉品中水—蛋白质—脂质的相互作用提供了理论基础;同时,该论文首次将牦牛肌红蛋白对氧化的易感性与脂质氧化联系起来,发现了二者之间的相关性,以及肌红蛋白在牦牛适应高原低氧环境中所受到的保护作用。
The oxidative quality of foods is a critical factor influencing sensory acceptance. A variety of factors, including water activity, impact the potential for foods to undergo oxidative deterioration. Maximizing sensory and microbiological shelf life of intermediate moisture meat(IMM) may be approached by manipulating water activity(aw). The interactions between lipid oxidation, protein oxidation and Maillard reaction may play together to impair the oxidative quality of IMM. Understanding the molecular mobility of water and its relationship to lipid oxidation would provide critical information related to quality of dehydrated foods. Nuclear Magnetic Resonance(NMR) is a powerful technique that can measure the molecular dynamics of water and can be utilized to address the heterogeneity, be specifically, to measure moisture mobility and migration in rehydrated freeze-dried meat products of different water activity values.
     The objective of this part of study was to understand the effects of an important meat processing variable, water activity here, on oxidative deterioration of intermediate-moisture meats, and reveal water molecular mobility observed by Nuclear Magnetic Resonance(NMR) in rehydrated freeze-dried meat patties.
     To evaluate the effect of water activity on oxidative quality in beef, intermediate moisture mega sausage was prepared with glycerol as humectant to reach different water activity, and then subjected to storage at cold storage at 4℃and 49℃, an accelerated condition typical of storage studies for military ration components. Water activity(a_w), total moisture content(%), lipid oxidation(TBA test), protein oxidation, and non-enzymatic browning reaction at week 0, 4, and 8 were monitored. The values of water activity for fresh prepared samples treated with glycerol 0%, 25%, 40%, 60%were about 0.98, 0.92, 0.88, and 0.84 at week 0, with 0%as control. At both storage temperatures, TBARS532 consistently decreased with storage length and there was no significant difference(P>0.05) between control and treatments as well as among treatment. Interestingly, TBARS532 from control(higher aw) was even higher than those of treatments(lower a_w) at any time points, although there was no differences between treatments(P>0.05). At 4℃of storage, TBARS450 did not change with storage time or a_w(P>0.05), while significantly increased with storage time at 49℃(P<0.05), but no difference between control and treatments was found(P>0.05). The changes of Maillard reaction(MR@370) showed the same pattern as TBARS450. Protein oxidation decreased with storage time from week 0 to week 4 in samples stored at 4℃, but not further decreased after week 4. No difference between any control and treatments was found(P>0.05). At 49℃, protein oxidation significantly increased with storage length after week 4. There was no difference between any control and treatments at any time point. Accordingly, in IMF beef system with aw range from 0.98 to 0.84, water activity had no significant effect on lipid oxidation measured by TBARS450, Maillard reaction and protein oxidation. At the conditions described above, lipid-oxidation measured by TBARS450, Maillard reaction and protein oxidation were significantly influenced by accelerated storage condition(49℃) and storage time at this temperature.
     To study water mobility related to lipid oxidation with using NMR, freeze-dried beef patties were adjusted from 0 to 0.75 a_w and stored at 4℃and 49℃. During 16 weeks of storage, lipid oxidation was monitored by TBARS at 450 and 532 nm, and water mobility by wide-line, solid-state proton NMR. The results showed that water and lipid protons contributed to two peaks; both water and lipid protons spectra showed a line narrowing effect at increasing moisture. ~1H intensity and water T_2 increased with increasing a_w, temperature and storage time. The LW dispersion (decrease with moisture content) occurred at around 0.3 a_w at shorter storage time (0-30 days) and disappeared after extended storage, indicating a complex dynamic behavior even when equilibrium moisture content has been reached. The TBARS increase with decreasing a_w was probably related to the observed molecular and structural changes. The results above indicated the importance of hydration dynamics and its effect on lipid oxidation in muscle foods. A better understanding of water-protein-lipid interaction and the roles of water and lipid mobility in affecting lipid oxidation could also provide the basis for improving product quality and shelf life.
     Due to the comprehensive study of the effect of lipid oxidation on protein oxidation, especially the specific oxygen-transportative myoglobin oxidation, in fresh meats, this study on the oxidative quality in fresh meat would be focused on myoglobin in yak, including its cDNA sequence, its content and oxidation with related to lipid oxidation, in order to discover the mechanism by which yak adapts to hypoxia condition on high attitude.
     The mechanism by which yak(Bos grunniens) adapts to the hypoxia environment, especially myoglobin(Mb) kept its role for oxygen transportation and storage in this extreme condition, have not been fully understood. The cDNA sequence of yak Mb, as well as Mb content and oxidation related to lipid oxidation in yak skeletal and cardiac muscle, were investigated to examine the relationship of myoglobin to yak's adaptation to hypoxia environment. The cDNA sequence of yak myoglobin showed that, in the open reading frame coding 153 amino acids of Mb, there was a two-base-difference (cac→cat and gcc→gct, at the 89th and 91th amino acids) between cattle(Bos taurus) and yak, although their protein sequence after translation was the same due to code degeneracy. Mb contents in yak skeletal and cardiac muscles were 488.3 nmol/g and 823.4 nmol/g, respectively, which were 18.8%and 61.2%higher than those of cattle. During the storage at 4℃, oxidation of yak Mb was slower by 10%in skeletal and 30%in cardiac muscle compared with cattle, while thiobarbituric acid-reactive substance(TBARS) in yak skeletal muscle was 63.5%lower than that of cattle after 6 days of storage. Our data indicated that yak adapted to hypoxia environment not by the change of cDNA sequence of myoglobin thus the modification of its structure during evolution, but at least partially by the increased content of myoglobin and its improved resistance to oxidation stress, as well as the potential protection effect of lipids in yak muscle.
引文
1. Gray, J. I., Gomaa, E. A., and Buckley, D. J. 1996. Oxidative quality and shelf life of meats. Meat Science. 43: S111-S121.
    2. St. Angelo, A. J. 1996. Lipid oxidation in foods. Crit. Rev Food Sci Nutr. 36(3): 175-224.
    3. Frankel, E. N. 1984. Chemistry of autoxidation: mechanism, products and flavor significance. In Flavor Chemistry of Fats and Oils, D. B. Min, and T. H. Smouse (Ed.), p. 1-37. American Oil Chemists' Society.
    4. Chirfe, J, Scorza, O. C, Vigo, M. S, Betoni, M. H. an dCattaneo, P. 1979. Preliminary studies on the storage stability of intermediate moisture beef formulated with various water binding agents. J. Fd, Technol. 14: 421.
    5. Labuza, T. P, Tannenbaum, S. R. and Karel, M. 1970. Water content and stability of low-moisture and intermediate moisture foods. Food Technol. 24(5): 35.
    6. Richardson, M, Briggs, J, Senecal, A, Dunne, P and Lee, C. 1955. Development of intermediate moisture meats for use in military shelf-stable sandwiches. PROCEED. 45~(TM) Int. Comg. Meat Sci. Technol, 2: 463.
    7. Sedlak, J. and Lindsay, R.H.1968. Estimation of todal protein-bound, and non protein sulfhydryl groups in tissue with Ellman's reagent. Anal.Biochem.25:192
    8. Smith, D.M, Noormarji, S.H., Price, J.F., Bennink, M.R. and Herald, T.J. 1990. Effect of lipid oxidation on the functional and nutritional properties of washed chicken myofibrils stored at different water activities. J. Agric. Food Chem. 38:1307-1312
    9. Heldman, D.R., Bakker-Arkema, F.W., Naoddy, P.O., Reidy, GA., Paltnicker, M.P., and Thompson, D.R. 1972. Investigation of the energetics of water binding in dehydrated foods at very low moisture levels in relation to quality parameters. U.S. Army Natick Lab. Tech. Rep. 72-10-FL.
    10. Obanu, Z.A., Ledward, D.A., and Lawrie, R.A. 1975. The protein of intermediate moisture meat stored at tropical temperature. J. Fd. Technol. 10:657-666.
    11. Smith, D.M, Noormarji, S.H., Price, J.F., Bennink, M.R. and Herald, T.J. 1990. Effect of Lipid Oxidation on the Functional and Nutritional Properties of Washed Chicken Myofibrils Stored at Different Water Activities. J. Agric. Food Chem. 38:1307-1312
    12. Smith, D.M. 1987. Functional and biochemical changes in deboned turkey due to frozen storage and lipid oxidation. J. Food Sci. 52: 22-24
    13. Sikorski, Z. E. 1978. Protein changes in muscle foods due to freezing and frozen storage Internationa! J. of Refrigeration, l(3):173-180
    14. Jenkins, W.T. 1998. Three solutions of the protein solubility problem. Protein Sci. 7(2): 376-382.
    15. Love, J.D. and Pearson, A.M. 1971. Lipid oxidation in meat and meat products - a review. J. Amer. Oil Chem. Soc. 48: 547-549.
    16. Areas, J. A. G. 1986. Hydrophobic and electrostatic interactions in extrusion of protein isolates. J. Food Sci. 51:1311-1313, 1322.
    17. Funes, J., and Karel, M. Free radical polymerization and lipid, binding of lysozyme reacted with peroxidizing linoleic acid, Lipids, 16 (1981) 347-350.
    18. Funes, J. A., Weiss U., and Karel M. 1982. Effects of Reaction Conditions and Reactant Concentrations on Polymerization of Lysozyme Reacted with Peroxidizing Lipids. J. Agric. food Chem. 30:1204-1208
    19. Chay B. Pham and Jean C. Cheftel Influence of salts, amino acids and urea on the non-enzymatic browning of the protein-sugar system Food Chemistry, Volume 37, Issue 4, 1990, Pages 251-260
    20. Schricker, B. R., D. D. Miller and J. R. Stouffer. 1982. Measurement and content of nonheme and total iron in muscle. J. Food Sci. 47: 740~743.
    21. Erickson, P. M., R. L. P. Kleinmann and P. S. A. Campion, 1982. Reducing oxidation of pyrite through selective reclamation practices. In: Proceedings of the 1982 Symposium on Surface Mining Hydrology, Sedimentology, and Reclamation, D. H. Graves (ed.), University of Kentucky, Lexington, KY, pp. 97-102.
    22. Richardson, M, Briggs, J, Senecal, A, Dunne, P and Lee, C. 1955. Development of intermediate moisture meats for use in military shelf-stable sandwiches. PROCEED. 45TH Int. Comg. Meat Sci. Technol, 2: 463.
    23. Janero, D. R. 1990. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology & Medicine, 9: 515-540.
    24. Wilkinson, A. L., Sun, Q., Senecal, A., and Faustman, C. 2001. Antioxidant effects on TBARS and fluorescence measurements in freeze-dried meats. Food Chemistry and Toxicology. 66: 20-24.
    25. Sun, Q., Faustman, C., Senecal, A., Wilkinson, A. L., and Furr, H. 2001. Aldehyde reactivity with 2-thiobarbituric acid, and TBARS in freeze-dried beef during accelerated storage. Meat Sci. 57: 55-60.
    26. Havens, A. L, Faustman, C, Senecal, A. and Riesen, J. W. Use of thiobarbituric acid reactive substances at 450 nm to measure oxidation in freeze-dried meats. 1996 Annual IFT Meeting New Orleans, LA.
    27. Sun, Q., Senecal, A., and Faustman, C. 2002. Effect of water activity on lipid oxidation and protein solubility in freeze-dried beef during storage. J. Food Sci. 67(7): 2512-2516.
    28.范康年.谱学导论.北京:高等教育出版社,2001.
    29.方桂珍,李坚,崔永志.1998.固体核磁CP/MASl3C NMR在木材科学中的应用.四川农业大学学报.16 (1):170-173
    30.刘传富,孙润仓,叶君.2005.固体核磁CP/MAS 13C-NMR在植物纤维原料研究中的应用.中国造纸学报.20(2):184-188
    31. Seefeldt, H.F., van den Berg, F, Kfckenberger, W., Engelser, S.B. and Wollenweber, B. 2007. Water mobility in the endosperm of high beta-glucan barley mutants as studied by nuclear magnetic resonance imaging. Magnetic Resonance Imaging 25: 425-432
    32. Mateus, M.L., Champion, D., Llardon, R., and Voilley, A. 2007. Characterization of water mobility in dry and wetted roasted coffee using low-field proton nuclear magnetic resonance. Journal of Food Engineering 81:572- 579
    33. Salomonsena, T., Sejersena, M.T., Vierecka, N, Ipsenb, R., and Engelsena, S.B. 2007. Water mobility in acidified milk drinks studied by low-field 1H NMR. International Dairy Journal 17:294-301
    34. AOAC. 1980. Water activity: Canned products method 32.004-32.009. Association of Official Analytical Chemists, Washington, DC.
    35. Witte, V.C, Krause, G.F., and Bailey, M.E. 1970. A new extraction method for determining 2-thiobarbituric aeid values for pork and beef during storage. J. Food Sci. 35: 582-585.
    36. Hu, M-L. and Tappel, A.L. 1992. Potentiation of oxidative damage to proteins by ultraviolet and protection by antioxidants. Photochem. Photobiol.56:357.
    37. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem.y, 72:248-254
    38. Buckle K. A .and Purnomo H. 1986. Measurement of non-enzymic browning of dehydrated and intermediate moisture meat. J. sci. food agric. 37(2): 165-172
    39. Kamarei, A.R. and Karel, M. 1984. Assessment of autoxidation in freeze-dried meats by a fluorescence assay. J. Food Sci .49:1517.
    40. Hunter S, Harold W,The Measurement Of Appearance [M], Wiley Interscience Publication, NEWYDRK, 1987:334-339
    1.周兆年.低氧与健康研究应受生物学和医学界关注.香山科学会议低氧与健康(摘要汇编)2003:1-7
    2. Soutrere SE, Tankersley CG. Challenges implicit to gene discovery research in the control of ventilation during hypoxia. High Alt Med Biol. 2001, 2(2): 191-200.
    3.《中国牦牛学》编写委员会.中国牦牛学.成都:四川科学技术出版社,1989
    4.俞红贤.高原低氧与家畜.青海畜牧兽医杂志,2000,30 (2):41—42
    5.柴口,周兆年.急性低氧对体外培养乳鼠心肌细胞肌红蛋白的影响[J].生理学报,1997,49(5):497-503.
    6.孙京新,周光宏,徐幸莲.猪肉微粒体脂肪酸氧化产物对氧合肌红蛋白氧化的影响.南京农业大学学报,2004,27(1):101—104
    7. Hutchins, B. K., Liu, T. H. P., & Watts, B. M. Effect of additives and refrigeration on reducing activity, metmyoglobin and malonaldehyde in raw ground beef. Journal of Food Science, 1967, 32: 214—217
    8. Kwoh, T. L. Catalysts of lipid peroxidation in meat. J. Am. Oil Chem. Soc. 48 (1971), 550-554
    9.马玉红,马志杰.RFLP和PCR-RFLP标记与牦牛遗传育种研究.中国牛业科学,2006,32(5):48-51
    10.卢福山,张才骏.高原型牦牛8项血液指标的测定.青海畜牧兽医杂志,2006,36(4):3-4
    11.J.萨姆布鲁克.D.W.分子克隆实验指南(第三版),科学出版社,2002
    12.李莉,沈明华,俞红贤.含1/4野血犊牦牛血红蛋白、肌红蛋白含量的测定[J].青海大学学报(自然科学版).2005,23(6):42—44 李庆芬.人与动物的呼吸系统对高海拔低氧的适应.生物学通报,1991,(10):19-20
    13. Stewart, M. R., Zipser, M. W., and Watts, B. M. 1965. The use of reflectance spectrophotometry for the assay of raw meat pigments. J. Food Sci. 30: 464-469
    14. Faustman C, Specht S M, Malkus L A, et al. Pigment oxidation in ground veal: Influence of lipid oxidation, iron and zinc. Meat Sci., 1992, 31: 351
    15.陈婷方,白振忠,侯冰等.青藏高原高原鼠兔肌红蛋白(MGB)基因编码区的克隆与分析.高原医学.2005,15(4):4-7
    16. Gu Z L, Zhao X B, Li N, et al. Complete sequence of the yak (Bos grunniens) mitochondrial genome and its evolutionary relationship with other ruminants. Mol. Phylogenet. Evol. 2007, 42: 248-255
    17.崔建华,张西洲,何富文等.海拔4300 m世居藏族和移居汉族心肌酶及肌红蛋白活性对比观察.临床医学杂志,2000,28(3):51-52.
    18.柴旦,周兆年.急性低氧对体外培养乳鼠心肌细胞肌红蛋白的影响.生理学报,1997,49(5):497-503.
    19.刘国富,溢得启.胡晓梅.高娘鼠兔和商原鼢鼠乳酸脱氢酶间功酶的初步研究兽类学报1985,5(3):223—227
    20. Yin, M. C. & Faustman, C. Influence of temperature, pH, and phospholipid composition upon the stability of myoglobin and phospholipid liposome model, J. Agric. Food Chem. 1993, 41: 853-857
    21. Anton, M., Gatellier, P. and Renene, M. Microsomal lipid peroxidation in relation with oxidation of bovine myoglobin. Proc. 37th International Congress of Meat Science and Technology, Kulmbach, Germany, 1991: 320-323
    22. LaBrake, C. C. and Fung, L. W. M. Phospholipid vesicles promote human hemoglobin oxidation. J. Biol. Chem. 1992, 15: 16703-16711
    23. Hutchins, B. K., Liu, T. H. P., and Watts, B. M. Effect of additives and refrigeration on reducing activity, metmyoglobin and malonaldehyde in raw ground beef. J. Food Sci. 1967, 32: 214-217
    24. Kwoh, T. L. Catalysts of lipid peroxidation in meat. J. Am. Oil Chem. Soc. 1971, 48: 550-554
    25.孙京新,周光宏,徐幸莲.猪肉微粒体脂肪酸氧化产物对氧合肌红蛋白氧化的影响[J].南京农业大学学报,2004,27(1):101—104
    26. Greene B E. Lipid oxidation and pigment changes in raw beef. J. Food Sci. 1969, 34, 1 10-113
    27. Lee A L, Phillips DC. Porcine oxymyoglobin and lipid oxidation in vitro. Meat Science, 2003, 63: 241-247
    28. Yin M C, Faustman C. The influence of temperature, pH, and phospholipids composition upon the stability of myoglobin phospholipids oxidation. J. Agric. Food Chem. 1993, 41: 853-857
    29. Claude G. Characterization and stability during storage of liposome made of muscle phospholipids. Lebensmittel - Wissenschaflund Technologic, 1999, 32(3): 167-174
    1. Gray, J.I., Gomaa, E.A., and Buckley, D.J. 1996. Oxidative quality and shelf life of meats. Meat Science. 43: 111-121.
    2. St. Angelo, A.J. Spanier, A.M., and Bett, K.L. 1992. Chemical and sensory evaluation of flavor in untreated and antioxidant-treated meat. In Lipid Oxidation in Food, St. Angelo, A.J. (Ed.), p 140-145. ACS Symposium Ser. 500, American Chemical Society, Washington, D.C.
    3. Frankel, E.N. 1984. Chemistry of autoxidation: mechanism, products and flavor significance. In Flavor Chemistry of Fats and Oils, D.B. Min, and T.H. Smouse (Ed.), p. 1-37. American Oil Chemists' society.
    4. Ward, D.D. 1985. The TBA assay and lipid oxidation: an overview of the relevant literature. Milchwissenschaft. 40(10): 583-588.
    5. Gutteridge, J.M.C., and Halliwell B. 1990. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. 15:129-135.
    6. Halliwell, B., and Chirico, S. 1993. Lipid peroxidation: its mechanism, measurement, and significance. Am. J. Clin. Nutr. 57 (5 Suppl): 715S-724S.
    7. Fennema O.R. 1996. Water and Ice. In Food Chemistry, third edition, O.R. Fennema (Ed.), p. 17-94. Marcel Dekker, New York and Basel.
    8. Simic, M.G., and Taylor, K.A. 1987. Free radical mechanisms of oxidation reactions, in Warmed-Over Flavor of Meat, A.J. St. Angelo, and M.E. Bailey (Ed.), p 69-72. Academic Press, Orlando, FL.
    9. Frankel, E.N. 1987. Secondary products of lipid oxidation. Chem. Phys. Lipids. 44(2-4): 73-85.
    10. Enser, M. 1987. What is lipid oxidation. Fd. Sci. Technol. Today. 1: 151-153.
    11. Ladikos, D. and Lougovois, V. 1990. Lipid oxidation in muscle foods: a review. Food Chem. 35:295-314.
    12. Love, J. 1987. Mechanism of iron catalysis of lipid oxidation in warmed-over flavor of meat. In Warmed-Over Flavor of Meat, St. Angelo, A.J. and Bailey, M.E. (Ed.), p 19-24. Academic Press, Orlando, FL.
    13. Sakai, T., Kuwazuru, S., Yamauchi, K., and Uchida, K. 1995. A lipid peroxidation-derived aldehyde, 4-hydroxy-2-nonenal and ω6 fatty acids contents in meats. Biosci. Biotech. Biochem. 59(7): 1379-1380
    14. Requena, J.R., Fu, M-X., Ahmed, M.U., Jenkins, A.J., Lyons, T.J., and Thorpe, S.R. 1996. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol. Dial Transplant. 1 l(Suppl 5): 48-53.
    15. Esterbauer, H., Jurgens, G., Quehenberger, O., and Koller, E. 1987. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehyde. J. Lipid Res. 28: 495-509
    16. Jurgens, G., Lang, J., and Esterbauer, H. 1986. Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochim. Biophys. Acta. 875: 103-114.
    17. Pearson, A.M., Love, J.D., and Shorland, F.B. 1977. 'Warmed-over' flavor in meat, poultry and fish. Adv. Fd Res., 23:1-74.
    18. Decker, E.K., and Xu Z-M. 1998. Minimizing rancidity in muscle foods. Food Technology. 52(10): 54-59.
    19. Faustman, C. and Cassens, R.G. 1990. The biochemical basis for discoloration in fresh meat: a review. J. Muscle Foods. 1: 217-243.
    20. Labuza, T.P. 1971. Kinetics of lipid oxidation in foods. Crit. Rev.Food Technol. 2:355-402.
    21. Benedict, R.C., Strange, E.D., and Swift, C.E. 1975. Effect of lipid antioxidants on the stability of meat during storage. J. Agric. Fd Chem. 23: 167-173.
    22. Yin, M.C., Faustman, C, Riesen, J.W., and Williams, S.N. 1993. a-Tocopherol and ascorbate delay oxymyoglobin and Phospholipid oxidation in vitro. J. Food Sci. 58: 1273-1276, 1281.
    23. Benzie, L.E.E. 1996. Lipid peroxidation: a review of causes, consequences, measurement and dietary influences. International Journal of Food Sciences and Nutrition. 47:233-261.
    24. Ranken, M.D. 1987. The use of antioxidants in meat and meat products. Fd Sci. Technol. Today. 1: 166-168.
    25. Gray, J.I. 1978. Measurement of lipid oxidation: a review. J. Amer. Oil Chem. Soc. 55: 539-546.
    26. Melton, S.L. 1983. Methodology for following lipid oxidation in muscle foods. Food Technol. 6: 105-116.
    27. Esterbauer, H. 1996. Estimation of peroxidative damage, a critical review. Path. Biol. 44: 25-2828.
    28. Johnsen, P.B., and Civille, G.V. 1986. A standardized lexicon of meat WOF descriptors. J. Sensory Studies. 1:99-104.
    29. Love, J. 1988. Sensory analysis of warmed-over flavor in meat. Food Technol. 42(6): 140-143.
    30. Tappel, A.L. 1956. Freeze-dried meat. II. The mechanism of oxidative deterioration of freeze-dried beef. Food Res. 21: 195-206
    31. 31 Chipault, J.R., and Hawkins, J.M. 1971. Lipid autoxidation in freeze-dried meats. J. Agr. Food Chem., 19: 495-499.
    32. Seo, C. W. 1976. Hydrocarbon production from freeze-dried meats. J. Food Sci., 41: 594-597.
    33. 33 Havens, A.L. 1996. Thesis: The effect of different antioxidants in a liposome model system and freeze-dried meats. University of Connecticut, Storrs, CT.
    34. Kamarei, A.R., and Karel, M. 1984. Assessment of autoxidation in freeze-dried meats by a fluorescence assay. J. Food Sci. 49: 1517-1524.
    35. Bird, R.P., Hung, S.S.O., Hadley, M., and Draper, H.H. 1983. Determination of malonaldehyde in biological materials by high-pressure liquid chromatography. Anal. Biochem.,128:240-244. .
    36. Richard, M.J., Guiraud, P., Meo, J., and Favier A. 1992. High-performance liquid chromatographic separation of malondialdehyde-thiobarbituric acid adduct in biological materials (plasma and human cells) using a commercially available reagent. J. Chromatogr. 577:9-18.
    37. Kinter, M. 1995. Analytical technologies for oxidation products analysis. J. Chromatogr. 671: 223-236.
    38. Reindl, B., and Stan H-J. 1982. Determination of volatile aldehydes in meat as 2,4-dinitrophenylhydrazones using reversed-phase high-performance liquid chromatography. J. Agric. Food Chem. 30: 849-854.
    39. Kohn, H.I., and Liversedge, M. 1944. On a new aerobic metabolite whose production by brain is inhibited by apomorphine, emetine, ergotamine, epinephrine, and menadione. J. Pharmacol. Exp. Ther. 82: 292-300.
    40. Janero, D.R. 1990. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology & Medicine, 9: 515-540.
    41. Guillen-Sans, R., and Guzman-Chozas, M. 1998. The thiobarbituric acid (TBA) reaction in foods: a review. Crit. Rev. Food Sci. Nutr. 38(4): 315-330.
    42. Patton, S., and Kurtz, G.W. 1951. 2-Thiobarbituric acid as a reagent for detecting milk lipid oxidation. J. Dairy Sci., 34: 669-674.
    43. Dahle, L.K., Hill, E.G., and Holman, R.T. 1962. The thiobarbituric acid reaction and the autoxidation of polyunsaturated fatty acid methyl esters. Arch. Biochem. Biophys. 98: 253-267.
    44. Witte, V.C., Krause, G.F., and Bailey, M.E. 1970. A new extraction method for determining 2-thiobarbituric acid values for pork and beef during storage. J. Food Sci. 35: 582-585.
    45. Rosmini, M.R., Perlo, F., and Perez-Alvarez J.A. 1996. TBA test by an extractive method applied to 'pate'. Meat Science. 42: 103-110.
    46. Ohya, T. 1993. Reactivity of alkanals towards malondialdehyde (MDA) and the effect of alkanals on MDA determination in a thiobarbituric acid test. Biol. Pharm. Bull. 16(11): 1078-1082.
    47. Kosugi, H., and Kikugawa, K. 1989. Potential thiobarbituric acid-reactive substances in peroxidized lipids. Free Radic. Biol. Med. 7(2): 205-207.
    48. Poli, G., Dianzani, M.U., Cheeseman, K.H., Slater, T.F., Lang, J., and Esterbauer, H. 1985. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by carbon tetrachloride or ADP-iron in isolated rat hepatocytes and rat liver microsomal suspensions. Biochem. J. 227(2):629-38.
    49. Esterbauer, H. 1982. Aldehydic products of lipid peroxidation. In Free Radicals, Lipid Peroxidation and Cancer, D.C.H. McBrien and T.F. Slater (Ed.), p. 101-123. Academic Press.51. Marcuse, R., and Johansson. L. 1973. Studies on the TBA test for rancidity grading: TBA reactivity of different aldehyde classes. J. Amer. Oil Chem. Soc. 50: 387-391.
    50. Patton, S., and Kurtz, G.W. 1955. A note on the thiobarbituric acid test for milk lipid oxidation. J. Dairy Sci. 38: 901
    51. Marcuse, R., and Johansson. L. 1973. Studies on the TBA test for rancidity grading: TBA reactivity of different aldehyde classes. J. Amer. Oil Chem. Soc. 50: 387-391.
    52. Guillen-Sans, R., and Guzman-Chozas, M. 1995. Aldehydes in food and its relation with the TBA test for rancidity. Fat Sci. Technol. 7: 285-286.
    53. Kosugi, H., Kojima, T., and Kikugawa, K. 1991. Characteristics of the thiobarbituric acid reactivity of oxidized fats and oils. J. Amer. Oil Chem. Soc. 68: 51-55.
    54. Kosugi, H., Kojima, T., and Kikugawa, K. 1993. Characteristics of the thiobarbituric acid reactivity of human urine as a possible consequence of lipid peroxidation, Lipids, 28: 337-343.
    55. Kojima, T., Kikugawa, K., and Kosugi, H. 1990. Is the thiobarbituric acid-reactivity of blood plasma specific to lipid peroxidation? Chem. Pharm. Bull. (Tokyo). 38(12): 3414-3418.
    56. Crawfold, D.L. 1966. Reaction of malonaldehyde with glycine. J. Agric. Food Chem. 14(2): 182-185
    57. Dillard, C.J. and Tappel, A.L. 1971. Fluorescent products of lipid peroxidation of mitochondria and microsomes. Lipids 6: 715-719.
    58. Leake, L., and Karel, M. 1985. Nature of fluorescence compounds generated by exposure of protein to oxidizing lipids. J. Food Biochem. 9:117-136.
    59. Selim, S. 1977. Separation and quantitative determination of traces of carbonyl compounds as their 2,4-dinitrophenylhydrazones by high-pressure liquid chromatography. J. Chromatogr. 136:271-277.
    60. Pradel, G., and Adda, J. 1980. Peroxides as a source of error in the quantitative determination of monocarbonyls in cheese. J. Food Sci. 45: 1058-1059.
    61. Bodrero, K.O., Pearson, A.M., and Magee, W.T. 1981. Evaluation of the contribution of flavor volatiles to the aroma of beef by surface response methodology; J. Food Sci., 26: 26-31.
    62. Ajuyah, A.O., Fento, T.W., Hardin, R.T., and Sim J.S. 1994. Measuring lipid oxidation volatiles in meats. J. Food Sci. 58: 270-277.
    63. Sakai, T., Kuwazuru, S., Yamauchi, K., and Uchida, K. 1995. A lipid peroxidation-derived aldehyde, 4-hydroxy-2-nonenal and ω6 fatty acids contents in meats. Biosci. Biotech. Biochem. 59(7): 1379-1380.
    64. Spanier, A.M., Miller, J.A. 1993. Molecular analysis and design. In Food Flavor & Safety, A.M. St. Angelo, A.J. 1996. Lipid oxidation in foods. Crit. Rev Food Sci Nutr. 36(3): 175-224.
    5 Kakuda, Y., Stanley, D.W., van de Voort, F.R. 1981. Determination of TBA number by high-pressure liquid chromatography. J. Am. Oil Chem. Soc. 774: 773-775.
    66. Trailer, J.A., and Christian, J.H.B.1978. Water Activity and Food, p1-11. Academic Press. New York. 67. Scott, W. J. 1962. Available water and microbial growth. Proc. Low Temp. Microbiol. Symp. 89-105.
    67. Scott, W.J. 1962. Available water and microbial growth. Proc. Low Temp. Microbiol. Symp. 89-105.
    68. Gailani, M.B. and Fung, D.Y. 1986. Critical review of water activities and microbiology of drying of meats. Crit. Rev. Food Sci Nutr. 25(2): 159-183.
    69. Unterman, F., and Muller, C. 1992. Influence of aw value and storage temperature on the multiplication and enterotoxin formation of staphylococci in dry-cured raw hams. Int. J. Food Microbiol. 16(2): 109-115.
    70. Wijtzes, T., van't Riet, K., Huis in't Veld J.H., and Zwietering, M.H. 1998. A decision support system for the prediction of microbial food safety and food quality. Int. Food Microbiol. 42(1-2): 79-90.
    71. Rastovaki, A. 1980. Humidity control in stores for food crops. Prog. Fd. Nutr. Sci. 4(3-4): 55-60.
    72. Karel, M. and Yong, S. 1981. Autoxidation-initiated reactions in foods. In Water Activity: Influences on Food Quality, L.B. Rockland, and G.F. Stewart (Ed.), p 511-529. Academic Press. New York.
    73. Slade, L., and Levine, H. 1991. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev Food Sci Nutr. 30(2-3): 115-360.
    74. Labuza, T.P., Tannenbaum, S.R., and Karel, M. 1970. Water content and stability of low-moisture and intermediate-moisture foods. Food Technol. 24(5): 35-42.
    75. Kahl, J.L., Artz, W.E., and Schanus, E.G. 1988. Effects of relative humidity on lipid autoxidation in a model system. Lipids. 23(4): 275-279.
    76. Pimpo, M.T., and Seri, S. 1992. Study of lipid changes in freeze-dried fish during storage. I. The interaction of relative humidity and tissue lipids. Boll. Soc. It. Biol. Sper. 68: 735-739.
    77. Gopala K.A.G., and Prabhakar, J.V. 1992. Effect of water activity on secondary products formation in autoxidizing methyl linoleate. JAOCS. 69(2): 178-183.
    78. Potthast, K, Hamm, R., and Acker, L. 1976. Influence of water activity on the enzymatic changes in freeze-dehydrated muscle. II. Reactions of carbohydrates. 162(2): 139-148.
    79. Heldman, D.R., Bakker-Arkema, F.W., Naoddy, P.O., Reidy, G.A., Paltnicker, M.P., and Thompson, D.R. 1972. Investigation of the energetics of water binding in dehydrated foods at very low moisture levels in relation to quality parameters. U.S. Army Natick Lab. Tech. Rep. 72-10-FL.
    80. Kaanane, A. and Labuza, T.P. 1985. Change in available lysine loss reaction rate in fish flour due to an aw change induced by a temperature shift. J. Food Sci. 50: 582-584+.
    81. Labuza, T.P. 1974. Storage stability and improvement of intermediate moisture foods. Final Rep., NAS Contract 9-124-60, Phase II, pp. 10-81. Natl. Acad. Sci., Washington, D.C.
    82. Kirk, J.R. 1981. Influence of water activity on stability of vitamins in dehydrated foods. In Water Activity: Influences on Food Quality, L.B. Rockland and F.F. Stewart (Ed.), p531-533. Academic Press. New York.
    1.陆仲磷.中国的牦牛资源.中国草食动物,1999,1:42-46
    2.《中国牦牛学》编写委员会.中国牦牛学.成都:四川科学技术出版社,1989
    3.周兆年.低氧与健康研究应受生物学和医学界关注.香山科学会议低氧与健康(摘要汇编).2003:1-7
    4.陈秋红.高原鼠兔肺动脉血管功能及形态变化.中国应用生理学杂志,2001.17:178-181
    5.石云,杜军保,汤秀英,唐朝枢.慢性缺氧性肺动脉高压大鼠肺血管显微结构研究,实用儿科临床杂志,2002,17(1):1-4.
    6.许欣,曾凡星.间歇性常压低氧训练研究进展,中国运动医学杂志,2002,21(5):490-494.
    7. Koistinen P O. EPO red cells and serum transferrin receptor in continuous and intermittent hypoxia, Med Sci Sports Exerc, 2000, 32(4): 800-804.
    8.Guyton A C,Hall J E,医学生理学,第十版(美),英文影印班,北京:北京医科大学出版社,2002,498-500.
    9.何加强,许存和,孟宪法,李海玲,王玉蓉.高原鼠兔与平原大鼠血液携氧能力的比较研究,解放军预防医学杂志,1994,12(6):431-435.
    10.吴天一.模拟高原低氧对高原鼠兔和大鼠若于生理效应的对比研究,生理通讯,1993,(10),5-6.
    11.柴旦,周兆年.急性低氧对体外培养乳鼠心肌细胞肌红蛋白的影响.生理学报,1997,49(5):497-503
    12.李庆芬.人与动物呼吸系统对高海拔低氧的适应.生物学通报,1991,10:19-31
    13. Reynafarje, C. et al., Kinetics of red cell fomation and destruction in high altitude adated animals, 23th International Congress of Physiological Scienses, 1965, 182.
    14.魏登邦,魏莲.高原鼢鼠的红细胞、血红蛋白及肌红蛋白的测定结果.青海大学学报(自然科学版).2001,19(4):1-2
    15.崔建华,张两洲,周新梅等.高原低氧血.清肌红蛋白及乳酸代谢的变化.西北国防医学杂志,2000,21:246—247
    16. Gnaiger E. Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen andadenosine diphosphate supply. Respir. Physiol., 2001, 128: 277-297
    17. Harris P, Y Castillo, K. Gibson, et al. Succinic and lactic dehydrogenase activity in myocardial homogenates from animals at high and low altitude. Mol. Cell Cardiol., 1970, 1: 189-193
    18. Ou L. C. and S. M. TenneY. Properties of mitochondria from hearts of cattle acclimatizaed to high altitude. Respir. Physiol., 1970, 8: 151-159
    19. Fandry J. Hypoxia-inducible gene expression. Respir. Physiol., 1995, 101: 1-10
    20. Wu R. S. S. Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin, 2002, 45: 35-45
    21. Guillemin K. and M. A. Krasnow. The hypoxic response: Huffing and HIFing. Cell, 1997, 89: 9-12
    22. Wenger RH, Gassmann M. Oxygen and the hypoxia-inducible factor-1. Biol Chem. 1997, 378(7): 609-16.
    23. Ragusa CA, Guinot SL, Janssens JP, et al. Chronic hypoxia: ncommon traits between chronicobstructive pulmonary disease and altitude. Curr Opin Clin Nutr Metab Care, 2004, 7(4): 411-7.
    24.张西洲,崔建华,陈占诗等.海拔4300m世居藏族和移居汉族青年氧自由基代谢对比研究.高原医学杂志,2000,10:9-11
    25.白海波,杜继曾,郑筱祥.低氧下HPA轴应激系统的变化.浙江大学学报 (工学版),2002,35:190-192
    26. Kendrew JC, Bodo G, Dinzis HM, et al. A three dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature, 1958. 181: 662-666.
    27. Kendrew JC, Dickerson RE, Strandberg BE, et al. Structure of myoglobin. A three dimensional Fourier synthesis at 2 A resolution. Nature. 1960. 185:422-427.
    28. Chu K, Vojtechovsky J, McMahon BH, et al. Structure of aligand-binding intermediatein wild type carbonmonoxy myoglobin.Nature.2000. 403: 921-923.
    29. Wittenberg BA, Wittenberg JB. Transport of oxygen in muscle. Annu Rev Physiol; 51:857-878.
    30. Blanchetot A. Price M, Jeffreys AJ: The mouse myoglobin gene: characterization and sequence comparison with other mammalian myoglobin genes. Eur J Biochem 1986, 159:469-474.
    31. Weller P, Jeffreys AJ, Wilson V, Blanchetot. Organization of the human myoglobin gene. EMBO J A:1984; 3:439-446.
    32. Guillemette JG Expression in Escherichia coli of a synthetic gene coding for horse heart myoglobin. Protein Eng. 1991; Jun, 4(5)
    33. Dodson G, Roderick E. Hubbard, Tom J. Oldfield, Stephen J. Smerdon, and Anthony J. Wilkinson. Apomyoblobin as a molecular recognition surface:expression, reconstitution and crystallization of recombinant porcine myoglobin in Escherichia coli. Protein Eng. 1988 2: 233-237
    34. Sidell BD Variable expression of myoglobin among the hemoglobinless Antarctic icefishes Proc. Nati Acad Sci U S A. 1997 Apr 1; 94(7):3420-4
    35. Blanchetot, A, Price M, and Jeffreys AJ. The mouse myoglobin gene. Characterisation and sequence comparison with other mammalian myoglobin genes. European J. Biochem., 1986, 159:469-474
    36. Flogel U, Merx MW, Godecke A. Myoglobin: a scavenger of bioactive NO. Proc Natl Acad Sci USA 2001b. 98:735-740.
    37. Brunori M. Nitric oxide moves myoglobin center stage.Trends Biochem Sci 2001. 26:209-210.
    38.周光宏.肉品学.北京:中国农业科技出版社,1999
    39. Renerre M. Review: Factors involved in the discoloration of beef meat. Int. J. Food Sci.Technol. 1990,25:613-630.
    40. Ledward D A. Myoglobin oxidation in pork stored in oxygen- and carbon dioxide-enriched atmospheres. J. Food Sci. 1971, 36:138
    41. O'Keefe and Hood D E. Anoxic storage of fresh beef. 1: Nitrogen and carbon dioxide storage atmospheres. Meat Sci. 1980. 5:27-32
    42. Ledward D A .Post-slaughter influences on the formation of metmyoglobin in beef muscles. Meat Sci. 1985,15:149-171
    43. Renerre M. and Labas R. Biochemical factors influencing metmyoglobin formation in beef muscles.Meat Sci. 1987, 19:151-165
    44. Faustman C and Cassens R G. The biochemical basis for discoloration in fresh meat: a review. J. Mus. Foods. 1990, 1:217-243
    45. Bendall J R and Taylor A A. Variability in rates of pH fall and OCR in the muscles on cooling beef carcasses. J.Sci.Food Agri., 1972, 23:707-709
    46. Atkinson J Land Follet M. Mutton and beef color stability J. Food Technol., 1973,8:51
    47. Reddy I M and Carpenter C E. Determination of metmyoglobin reductase activity in bovine skeletal muscles. J.Food Sci. 1991, 56:1161-1164
    48. Feldhusen F, Wamatz A, Erdman R, et al. Influence of storage time on parameters of color stability of beef. Meat Sci.. 1995,40:235-243
    49. Renerre.M and Labadie. Relationships between muscle type and some traits influencing veal colour.J. Proc.39th ICoMST, 1993, Review paperCalgary,361.
    50. Giddings G G. Reduction of ferrimyoglobin in meat. CRC Crit. Rev.Food Sci.Nutri.,1974, 5(2):143-173
    51. Georges P and Stratman C J. The oxidation of myoglobin to metmyoglobin by oxygen.2. the relation between the first order rate constant and the partial pressure of oxygen.Biochem.J. 1952,51:418-420
    52. Antonini E. Interrelationship between structure and function in hemoglobin and myoglobin. Physiol.Rev., 1961,45:123-125
    53. Livingston D J and Brown W D. The chemistry of myoglobin and its reactions. Food Technol. 1981, 35(5): 244-267
    54. Brantley R E, Smerdon S J,Wilkinson A J., et al. J.Biol.Chem. 1993, 268:6995
    55. Wazawa T, Matsuoka A, Tajima Qet al. Biophys.J. 1992, 63:544
    56. Bruun-Jensen L., Sosniecki L, and Skibsted L F. Pressure effects on acid-catalysed autoxidation of oxymyoglobin. Zeit Lebensmit. Untersuch. Forsh., 1997, 2:405-407
    57. Brown W D and Mebine L B. Autoxidation of oxymyoglobins. J. Biol. Chem. 1969, 244:6696-6701
    58. McMillin K M. Lipid oxidation and meat color discoloration .Proc.49h Recip.Meat Conf, AMSA, 1996, 53.
    59. Shikama K and Sugawara Y Autoxidation of native oxymyoglobin: kinetic analysis of the pH profile. Eur. J.Biochem. 1978, 91: 407-413
    60. Yin M C and Faustman C. The influence of temperature, pH, Phospholipid composition upon the stability of myoglobin Phospholipid oxidation. J.Agri. Food Chem.,1993,41:853 - 857
    61. Sugawara Y, Matsuoka A, Kaino A et al. Role of globin moiety in the autoxidation reaction of oxymyoglobin: effect of 8 M urea. Biophys.J. 1995, 69:583-592
    62. Trout G R and Gutzke D A. A simple, rapid preparative method for isolating and purifying oxymyoglobin. Meat Sci. 1996, 43:1-13
    63. Faustman C. Cassens R G and Greaser M L. Reduction of metmyoglobin by extracts of bovine liver and cardiac muscle. J.Food Sci. 1988,53:1065-1067
    64. Stewart MR, Zipser MW, and Watts BM.The use of reflectance spectrophotometry for the assay of raw meat pigments. J. Food Sci. 1965, 30:464.
    65. Watts B M, Kendrick J Z, Zipser M W et al. Enzymatic reducing pathways in meat. J.Food Sci. 1966,32:855
    66. Ledward D A.Metmyoglobin reduction and formation in beef during aerobic storage at 4 ℃. J.Food Sci.1972, 37:634
    67. Liu G and Xiong Y L. Contribution of lipid and protein oxidation to rheological differences between white and red chicken muscle myofibrillar proteins. J.Agric.Food Chem., 1996, 44:779-784
    68. Gray J 1 and Pearson A M.in F.Shahidi (ed): Flavor of meat and meat Products, Blackie Academic and Professional, Glasgow, 1987, p.116.
    69. Faustman C, Specht S M, Malkus L A. Pigment oxidation in ground veal: Influence of lipid oxidation, iron and zinc. Meat Sci., 1992, 31:351-362
    70. Chan W K M., Faustman C and Renerre M.et al. Model systems of studying pigment and lipid oxidation relevent to muscle-based foods, in Shahidi F.ed. Natural Antioxidants; Chemistry, Health effects and applications, AOAS Press, nc; Champaign, 1997, 319-331
    71. Lee B J, Hendricks D G and Comforth D.P. Antioxidant effects of camosine and phytic acid in a model beef system. J.Food Sci. 1998, 63:394-398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700