高原鼠兔组织乳酸脱氢酶同工酶的特异性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高原鼠兔(Ochotona curzoniae)是青藏高原高海拔地区特有的物种,为了研究其对高原环境的适应机制,用聚丙烯酰胺凝胶电泳观察心、肝、肺、肾、脑、骨骼肌和睾丸组织乳酸脱氢酶(Lactate dehydrogenase,LDH)同工酶谱,我们发现,在繁殖季节,高原鼠兔LDH同工酶谱在各组织中都表现出六条带,与睾丸和精子中的同工酶谱完全一样。而平原SD大鼠的体细胞组织中只有五条带,睾丸中却有六条带,其中从点样孔往下第三条为LDH-C4。我们推测,Ldh-c基因不仅在高原鼠兔精子中表达,而且在体细胞同样表达。为证明这一假设的可靠性,我们克隆了Ldh-c全长序列,分析了Ldh-c在体细胞中是否表达,以及海拔变化对睾丸中Ldh-c基因表达的影响。用聚丙烯酰胺凝胶电泳观察心、肝、肺、肾、脑、骨骼肌和睾丸LDH同工酶谱;用分子及生物信息学方法测定并分析高原鼠兔Ldh-c的cDNA序列;用Real-time PCR比较高原鼠兔睾丸内Ldh-c在不同海拔mRNA水平的表达。结果:同工酶谱显示,高原鼠兔各组织中均表现出位置一致的6条带。高原鼠兔Ldh-c基因全长1 624bp,包括106bp的5′端非编码区,519bp的3′端非编码区和一个999bp的编码区。开放式阅读框架起始于107位核苷酸起始密码子ATG,终止于1 105位核苷酸TAA终止密码子。高原鼠兔Ldh-c基因的编码区序列与牛,人,大鼠,小鼠分别有84.98,86.09,76.38和76.88%的同源性。玉树鼠兔睾丸中的Ldh-c在mRNA水平上的表达显著低于海北鼠兔(P<0.05),同时在体细胞组织中并未发现Ldh-c基因表达。
     以上结果表明,高原鼠兔Ldh-c基因并不在体细胞组织中表达。体细胞组织和睾丸中表达一致的六条带仍有待进一步研究。尽管高原鼠兔是一种对高原环境高耐受性的动物,低氧对其生理仍有一定的影响。我们推测,随着海拔的升高,高原鼠兔Ldh-c基因的表达受抑制,抑制精子获能,从而对其生殖造成影响。
Plateau pika (Ochotona curzoniae) is native to the Qinghai-Tibet plateau. To study their adaptive mechanisms, the expression patterns of lactate dehydrogenase (LDH) isoenzymes spectrum in their tissues were measured through polyacrylamide gel electrophoresis (PAGE). Our results indicated that, in mating season, six bands of LDH isoenzymes were showed in tissues of plateau pikas, the expression patterns were identical to that in testes and spermatozoa. It was showed that five bands of LDH isoenzymes in tissues of Sprague-Dawley rats, but six bands in testes. The third band in LDH isoenzymes spectrums in testes of Sprague-Dawley rats was LDH-C4. We speculated that, Ldh-c gene was not only expressed in testes of plateau pika, but also in somatic cells. To prove the inference, we cloned the full-length sequence of Ldh-c, determined whether Ldh-c was expressed in somatic cells, and explored the effects of elevation on the Ldh-c expression of plateau pika. The expression patterns of lactate dehydrogenase (LDH) isoenzymes spectrum were measured through polyacrylamide gel electrophoresis (PAGE); The Ldh-c gene was sequenced and analyzed by molecular and bioinformatics approach; the mRNA expression levels in different altitudes (3200 and 4266 m) were detected by real-time PCR.
     The results showed that six bands of LDH isoenzymes were showed in tissues of plateau pikas .The full-length pika Ldh-c cDNA was 1624 bp with a 999 bp open-reading frame encoding a peptide of 332 amino acids, a 106 bp 5' untranslated region (UTR), and a 519 bp 3' UTR. The coding sequence of pika Ldh-c cDNA and LDH-C subunit shared 77-86% and 74-88% homology to that of rat, mouse, cow and human, respectively. The mRNA expression level in 3200 m was obviously higher than that in 4266 m, while in somatic cells Ldh-c gene was not found.
     In conclusion, these results suggested that the plateau pika Ldh-c gene is not expressed in somatic cells. Six bands of LDH isoenzymes in all tissues Needs for further research. Although plateau pika is a high hypoxia tolerate mammal with high ration of oxygen utilization to cope with plateau hypoxia, hypoxia has some effects on the fertility of plateau pika. We speculated that, with the elevation increasing, the plateau pika Ldh-c gene expression was inhibited, which affected their reproduction.
引文
[1]冯祚建,郑昌琳.中国鼠兔属(Ochotona)的研究——分类与分布.兽类学报,1985,5(4):269~290
    [2]马兰,格日立.高原鼠兔低氧适应分子机制的研究进展.生理科学进展,2007,38(2):143~146
    [3] Smith AT, Ivins BL. Colonization in a pika population: dispersal vs philopatry. Behav. Ecol. Sociobiol. 1983, 13: 37~47
    [4]梁杰荣.高原鼠兔的家庭结构.兽类学报,1981,1(2):159~165
    [5]王学高.高原鼠兔交配期及交配行为模式的研究.兽类学报,1990,10(1):60~65
    [6]王晓君,魏登邦,魏莲,等.高原鼢鼠和高原鼠兔肺细叶结构特征.动物学报,2008,54(3):531~539
    [7] Durmowicz AS, Hofmeister S, Kadyraliev TK, et al. Functional and structural adaptation of the Yak pulmonary circulation to residence at high altitude. J. Appl. Physiol, 1993, 74: 2267~2285
    [8] Groves BM, Droma T, Sutton JR, et al. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3 685m. J. Appl. Physiol, 1993, 74: 312~318
    [9] Ge RL, Kubo K, Kobayashi T, et al. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am. J. Physiol, 1998, 274 (Heart cire physiol 43): H 1792~1799
    [10]阮宗海,陈华伟,陈秋红,等.不同海拔高原鼠兔、大白鼠血红蛋白电泳及血液学对比观察.中国应用生理学杂志,2000,16:91~95
    [11] Heath D. Mast cell in the human lung at high altitude. Int .J. Biometeorol. 1992, 36: 210~231
    [12] Tucker A, McMurtry IF, Alexander AF, et al. Lung mast cell density and distribution in chronically hypoxic animals. J. Appl. Physiol, 1977, 42: 174~178
    [13] Batney MD, Bahadori L, Gold LI. Vascular remodeling in primary pulmonary hypertension. Potentional role for transforming growth factor-β. Am. J. Pathol, 1994, 144: 285~295
    [14]王晓勤,王占刚,陈秋红,等.高原鼠兔肺动脉压与NO的变化.高原医学杂志,2001,11(1):2~6
    [15]王晓勤,王占刚,陈秋红,等.慢性缺氧大鼠肺血管结构与NO的变化.高原医学杂志,2001,11(1):5~8
    [16]杜继增,李庆芬.模拟高原低氧对高原鼠兔和大鼠器官与血液若干指标的影响.兽类学报,1982,2(1):35~41
    [17]佘海如,格日力,陈秋红,等.高原鼠兔红细胞2,3-DPG含量的测定.高原医学杂志,1997,7(1):38~40
    [18] Beall CM, Reichsman AB. Hemoglobin level in a Himalayan high altitude population. Am. J. Phys. Anthropol, 1980, 63: 301~306
    [19] Adams W, Graves IL, Pyakural S. Hemotologic observation on the Yak. Proc. Soc. Exp. Biol. Med, 1975, 148: 701~708
    [20]马志军,王可,张先钧.高原灰尾兔和高原鼠兔骨髓红细胞Feret’s直径研究.高原医学杂志,2000,10(3):6~7
    [21]王晓君,魏登邦,魏莲,张建梅,于红妍.高原鼢鼠和高原鼠兔红细胞低氧适应特征.四川动物,2008,27(6):1100~1103
    [22] Nevo E, Ben-Shlomo R, Maeda N. Haptoglobin DNA polymorphism in subterranean mole rat of the spalax ehrenbergi superspecies in Israel. Heredity, 1989, 62(1): 85~90
    [23]张彦博.人与高原[M].第一版.青海人民出版社,1996.81~89,51~60,292~296
    [24]叶润蓉,曹伊凡.高原鼠兔血清无机元素含量的分析.兽类学报,1999,19(1):43~47
    [25]顾浩平,杨之,滕国奇,等.高原鼠兔血红蛋白氧亲和力P50的测定.中国应用生理学杂志,1991,7(4):365~367
    [26]何加强,许存和,孟宪法,等.鼠兔与平原大鼠血液携氧能力的比较研究.解放军预防医学杂志,1994,12(6):431~435
    [27] Heath D, Williams DR. In Man at High Altitude, 2 nd ed. New York: Churchill Livingstone, 1981. 269~281
    [28] Ackers G.K. Link function in allosteric, an exact theory for the effect of organic phosphates on oxygen affinity of hemoglobin. Biochemistry, 1979, 18: 373~378
    [29] Maibaurl H, Oelz O, Bartsch P. Interaction between Hb Mg, DPG, and determine the change in HbO2 affinity at high altitude. J. Appl. Physiol, 1993, 74: 40~48
    [30] Maibaurl H, Schobersberger W, Oelz O, et al. Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2, 3-diphosphoglycerate. J. Appl. Physiol, 1990, 68: 1186~1194
    [31] Carlone S, Serra P, Farber MO, et al. Red blood cell alkalosis and deceased oxyhemoglobin affinity. Am. J. Med. Sci, 1982, 284: 8~16
    [32]佘海如,格日力,陈秋红,等.高原红细胞增多症患者2, 3-DPG和氧亲和力变化的探讨.中国应用生理学杂志,1995,11:205~207
    [33]俞诗源,尤启斌.鼠兔肺毛细血管铸型的扫描电镜观察.西北师范大学学报,1996,32:115~117
    [34]王晓君,魏登邦.高原鼢鼠和高原鼠兔氧传输系统部分特征的比较.青海西宁:青海大学,2008
    [35]刘荔,王彦.大白鼠骨骼肌的肌纤维型研究.中国医科大学学报,1988,17(2):107~109
    [36] Barnard RJ. Histochemical, biochemical and contraction properties of red, white and intermideate fibers. Am. J. of Physiol, 1970, 220: 411~416
    [37] Frederick J. Phenotypic difference between the actomyosin ATPase of the three fiber types of mammalian skeletal muscles. Exp. Neurology, 1970, 26: 120~123
    [38]朱世海,齐新章,王晓君,等.高原鼢鼠和高原鼠兔骨骼肌摄氧功能差异研究.生理学报,2009,61(4):373~378
    [39]刘国富,温得启,胡晓梅.高原鼠兔和高原鼢鼠乳酸脱氢酶同工酶的初步研究.兽类学报,1985,5(3):223~228
    [40]刘国富,温得启,韩思梗,等.高原鼠兔乳酸脱氢酶同工酶对低氧环境的应答.兽类学报,1988,1:60~64
    [41]赵新全,祁得林,杨杰.青藏高原代表性土著动物分子进化与适应研究.北京:科学出版社,2008.162~190,192~217
    [42] Zhao TB, Ning HX, Zhu SS, et al. Cloning of hypoxia-inducible factor 1αcDNA from a high hypoxia tolerant mammal-plateau pika (Ochotona curzoniae). Biochemical and Biophysical Research Communications, 2004, 316: 565~572
    [43]周兆年.低氧心血管生理学的研究.生理通讯,1996,15(suppl):282~286
    [44]陈婷方,白振忠,侯冰,等.青藏高原高原鼠兔肌红蛋白(MGB)基因编码区的克隆与分析.高原医学杂志.2005,15(4):4~7
    [45] Dene H., Goodman M., McKenna M.C., et al. Ochotona princes (pika) myoglobin: an appraisal of lagomorgh phylogeny. Proc. Natl. Acad. Sci. USA, 1982, 79(6): 1917~1920
    [46] Markert CL, Shaklee JB, Whitt GC. Evolution of gene. Science, 1975, 189: 102~114
    [47] Cahn RD, Kaplan, NO, Levine L, Zwilling E. Nature and development of lactic dehydrogenases. Science, 1962, 136: 962~969.
    [48] Fine IH, Kaplan NO, Kuftinec D. Developmental changes of mammalian lactic dehydrogenases. Biochemistry, 1963, 2: 116~121
    [49] Goldberg E. Reproductive implications of LDH-C4 and other testisspecific isozymes. Exp Clin Immunogenet, 1985, 2: 120~124
    [50] Wheat TE, Goldberg E. An allelic variant of the sperm-specific lactate dehydrogenase C4 (LDH-X) isozyme in humans. J. Exp. Zool, 1977, 202: 425~430
    [51] Odet F, Duan CW, Willis WD, Eugenia H, Goulding EH, Kung A, Eddy EM, Goldberg E. Expression of the gene for mouse lactate dehydrogenase C (Ldhc) is required for male fertility. Biol. Reprod, 2008, 79: 26~34
    [52] Coonrod S, Vitale A, Duan C, Bristol-Gould S, Herr J, Goldberg E. Testisspecific lactate dehydrogenase (LDH-C4; Ldh3) in murine oocytes and preimplantation embryos. J. Androl, 2006, 27: 502~509
    [53] Koslowski M. Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer. Cancer Res, 2002, 62: 6750~6755
    [54] Li SS, O’Brien DA, Hou EW, Versola J, Rockett DL, Eddy EM. Differential activity and synthesis of lactate dehydrogenase isozymes A (muscle), B (heart), and C (testis) in mouse spermatogenic cells. Biol. Reprod, 1989, 40: 173~180
    [55] Bradley MP, Geelan A, Leitch V. Cloning , sequencing , and characterization of Ldh-C4 from a fox testis cDNA library. Mol. Reprod. Dev, 1996, 44(4): 452~459
    [56] Battellino LJ, Ramos Jaime F, Blanco A. Kinetic properties of rabbit testicular lactate dehydrogenase isozyme. J. Biol. Chem, 1968, 243: 5185~5192
    [57] Blanco A, Burgos C, Gerez de Burgos NM, Montamat EE. Properties of the testicular lactate dehydrogenase isoenzyme. Biochem. J, 1976, 153(2): 165~172
    [58] Goldberg E. Amino Acid Composition and Properties of Crystalline Lactate Dehydrogenase X from Mouse Testes. J. Biol. Chem, 1972, 247(7): 2044~2048
    [59] Williams KR, Reddigari S, Patel GL. Identification of a nucleic acid helix-destabilizing protein from rat liver as lactate dehydrogenase-5. Proc. Natl. Acad. Sci. USA, 1985, 82: 5260~5264
    [60] Gupta GS, Syal N. Immune responses of chemically modified homologous LDH-C4 and their effect on fertility regulation in mice. Am. J. Reprod. Immunol, 1997, 37(2): 206~211
    [61] Goldberg E. Immunochemical Specificity of Lactate Dehydrogenase-X. Proc. Natl. Acad. Sci. USA, 1971, 68(2): 349~352
    [62] Goldman-Leikin RE, Goldberg E. Characterization of monoclonal antibodies to the sperm-specific lactate dehydrogenase isozyme. Proc. Natl. Acad. Sci. USA, 1983, 80(12): 3774~3778
    [63] Li SS, Feldmann RJ, Okabe M, Pan YC. Molecular features and immunological properties of lactate dehydrogenase C4 isozymes from mouse and rat testes. J. Biol. Chem, 1983, 258(11): 7017~7028
    [64] Goldberg E, VandeBerg JL, Mahony MC, Doncel GF. Immune response of male baboons to testis-specific LDH-C4. Contraception, 2001, 64(2): 93~98
    [65] Gupta GS, Syal N. Newly exposed immunochemically cross-reactive epitopes in sperm-specific LDH after glucosylation and gossypol interaction. Am. J. Reprod. Immunol, 2000, 44(5): 303~309
    [66]郭玉佳,李叔庚,王铁霞,等.不育症精子乳酸脱氢酶同工酶的细胞化学定位、定量研究.中国组织化学与细胞化学杂志,1998,7(4):443~449
    [67] Burgos C, Maldonado C, Gerez de Burgos NM, Aoki A, Blanco A. Intracellular localization of the testicular and sperm-specific lactate dehydrogenase isozyme C-4 in mice. Biol. Reprod, 1995, 53: 84~92
    [68] Sakai I, Sharief FS, Li SS. Molecular cloning and nucleotide sequence of the cDNA for sperm- specific lactate dehydrogenase-C from mouse. Biochem. J, 1987, 242(2): 619~622
    [69] Zhou W, Xu J, Goldberg E. A 60-bp core promoter sequence of murine lactate dehydrogenase C is sufficient to direct testis-specific transcription in vitro. Biol. Reprod, 1994, 51(3): 425~432
    [70] Olsson PG, Tsujioka H, Narisawa S, et al. Abundance of repetitive sequence elements in the mouse testis-specific lactate dehydrogenase-C gene. J. Androl, 2003, 24(6): 918~920
    [71] Kroft TL, Jethanandani P, McLean DJ, et al. Methylation of CpG dinucleotides alters binding and silences testis-specific transcription directed by the mouse lactate dehydrogenase C p romoter. Biol. Reprod, 2001, 65(5): 1522~1527
    [72] Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod, 2004, 71: 540~547
    [73] Duan C, Goldberg E. Inhibition of lactate dehydrogenase C4 (LDH-C4) blocks capacitation of mouse sperm in vitro. Cytogenet. Genome Res, 2003, 103: 352~359
    [74] O’Flaherty C, Breininger E, Beorlegui N, et al. Acrosome reaction in bovine spermatozoa: Role of reactive oxygen species and lactate dehydrogenase C4. Biochim. Biophys. Acta, 2005, 1726(1): 96~101
    [75] Cordoba M, Pintos LN, Beconi MT. Heparinand quercitin generate differential metabolic pathways that involve aminotransferases and LDH-X dehydrogenase in cryopreserved bovine spermatozoa. Theriogenology, 2007, 67(3): 648~654
    [76] Bangham CR, Sachener JM. Fertility of Nepalese Sherpas at moderate altitudes: Comparison with high-altitudes data. Ann. Hum. Biol, 1980, 4: 323~330
    [77] Saxena DK. Effect of hypoxia by intermittent altitude exposure on semen characteristics and testicular morphology of male rhesus monkeys. Int. J. Biometeorol, 1995, 38(3): 137~140
    [78]史小军,杜继增.低氧对雄性高原鼠兔性腺的影响.兽类学报,1997,17(1):62~66
    [79] Binette P, Pragay D, Rekate A. Reversibility of the lactate dehydrogenase isozyme shift induced by lowoxygen tension. Life Sciences, 1977, 20: 1809~1814
    [80] Penney DG. Lactate dehydrogenase subunit and activity changes in hypertrophied heart of the hypoxically exposed rat. Biochem. Biophys. Acta, 1974, 258: 21~24
    [81]廖卫公,高钰琪,蔡明春,蒋春花,吴艺,陈建.低氧对大鼠睾丸部分生化指标的影响.中国公共卫生,2007,23(6):729~731
    [82] Gupta G.S. LDH-C4: a unique target of mammalian spermatozoa. Crit. Rev. Biochem. Mol. Biol, 1999, 6: 361~385
    [83]张庆朝,陈鑫磊,杨景芝,张万福,秦孜娟,杨世钺.青山羊精子中乳酸脱氢酶同工酶的研究.畜牧兽医学报,1995,26(6):496~499
    [84]邓顺美,李叔庚,文建国,王铁霞,高建华.不育症精子乳酸脱氢酶同工酶LDHX活性测定及其定位研究.中国组织化学与细胞化学杂志,2001,10(1):8~13
    [85]魏莲,魏登邦,王晓君,蔡琦.高原鼢鼠、鼠兔及大鼠心肌和骨骼肌乳酸脱氢酶活力及同工酶谱.四川动物,2009,28(1):64~68
    [86]薛国雄.乳酸脱氢酶(LDH)同工酶研究进展。生物工程进展,1992,12(5):29~32
    [87] Farias JG, Bustos Obregon E, Orellana R, et al. Effects off chronic hypobaric hypoxia on testis histology and round spermatid oxidative metabolism. Androiogra, 2005, 37(1): 47~52
    [88]廖卫公,高钰琪,蔡明春,黄碱,陈建.低氧对雄性大鼠睾酮分泌及其合成相关蛋白和酶表达的影响.中华航空航天医学杂志,2006,17(3):191~195
    [89]史小军,杜继增,熊忠.低氧对雄性大鼠性腺的影响.中国病理生理杂志,1998,2:162~165
    [90]邓旭辉,张荣华,廖卫国,高钰琪,刘福玉.养精种子汤对缺氧雄性大鼠生殖机能损伤的保护作用.广东药学院学报,2008,24(1):82~84
    [91]廖卫国,高钰琪,蔡明春,吴艺,黄碱,范有明.低氧对大鼠睾丸生殖细胞凋亡的影响.中华男科学杂志,2007,13(6):487~491
    [92]廖卫国,高钰琪,蔡明春,蒋春华,吴艺,陈建.低氧对大鼠睾丸部分生化指标影响.中国公共卫生,2007,23(6):629~731

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700