高原鼢鼠和高原鼠兔心脏对低氧的适应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨高原鼢鼠和高原鼠兔心脏对低氧环境的适应机制,以Sprague-Dawley (SD)大鼠为对照,称重计算三者的心脏/体重比(HW/BW)、右心室/左心室+室间隔重量比[RV/(LV+S)];应用免疫组织化学方法测定心肌微血管密度(MVD);通过显微体视学技术比较心肌线粒体的面数密度(NA)、体密度(VV)、面密度(SV)、比表面(δ);用分光光度法测定心肌中的肌红蛋白(Mb)含量、乳酸(LD)含量和乳酸脱氢酶(LDH)活力;聚丙烯酰胺凝胶电泳观察心肌LDH同工酶谱;用real-time PCR检验低氧诱导因子-1α(HIF-1α)、Mb、血管内皮生长因子165(VEGF165)、LDH-A和LDH-B基因在心肌内mRNA水平的表达。结果显示:高原鼢鼠和高原鼠兔HW/BW显著大于SD大鼠(P<0.05),RV/(LV+S)显著小于SD大鼠(P<0.05)。高原鼢鼠、高原鼠兔和SD大鼠心肌线粒体NA依次递减(P<0.05);高原鼢鼠线粒体VV显著低于高原鼠兔和SD大鼠(P<0.05),高原鼠兔与SD大鼠之间没有明显差异;高原鼢鼠线粒体SV显著高于SD大鼠(P<0.05),与高原鼠兔相比无明显差异;高原鼠兔和SD大鼠的线粒体δ无显著差异,但均明显低于高原鼢鼠(P<0.05)。高原鼢鼠和高原鼠兔心肌HIF-1α在mRNA水平的表达无明显差异,高原鼠兔与SD大鼠无明显差异,高原鼢鼠的表达显著高于SD大鼠(P<0.05)。高原鼢鼠和高原鼠兔心肌Mb mRNA含量显著高于SD大鼠(P<0.05),二者无明显差异;高原鼢鼠和高原鼠兔心肌Mb含量显著高于SD大鼠(P<0.05)。高原鼢鼠心肌VEGF165 mRNA含量显著低于SD大鼠(P<0.05),高原鼠兔表达量居中,与二者无显著差异;高原鼢鼠、高原鼠兔和SD大鼠心肌微血管密度依次降低(P<0.05)。高原鼢鼠和高原鼠兔心肌LDH-A和LDH-B在mRNA水平的表达均显著高于SD大鼠,其中高原鼠兔LDH-B mRNA的表达显著高于高原鼢鼠。高原鼢鼠心肌LD含量显著高于高原鼠兔和SD大鼠(P<0.05);两种高原动物心肌LDH活力显著低于SD大鼠(P<0.05)。同工酶谱显示,高原鼢鼠、高原鼠兔和SD大鼠的LDH中H亚基所占比例依次递减。
     以上结果表明,高原鼢鼠和高原鼠兔心脏表现出一些相同或相似的特征,这些特征有利于在低氧条件下提高心脏泵血能力、增加氧气从血液到线粒体的弥散效率、氧气的利用效率和低氧应激能力。但是,部分指标又表现出明显的差异,可能是由不同生境和习性造成的。
Plateau zokor (Myospalax rufecens baileyi) and plateau pika (Ochotona curzniae) are native to the Qinghai-Tibet plateau. To study their adaptive mechanisms, the ratios of heart weight to body weight (HW/BW) and right to left ventricular plus septum weights [RV/(LV+S)] were determined; the microvessel density (MVD) of cardiac muscle were measured by immunohistochemical staining; the numerical density on area (NA), volume density (VV), specific surface (δ), and surface density (SV) of mitochondria were obtained by microscopy and stereology; the content of myoglobin (Mb), lactic acid (LD) and the activity of lactate dehydrogenase (LDH) in cardiac muscle were analyzed by spectrophotometer; the expression levels of gene Hypoxia-inducible factor-1α( HIF-1α) , Mb, Vascular endothelial growth factor 165(VEGF165), LDH-A and LDH-B were detected by real-time PCR.The results showed that the HW/BW of plateau zokor [(4.55±0.26)%] and plateau pika [(4.41±0.38)%] were significantly greater than that of Sprague-Dawley (SD) rat [(3.44±0.41)%] (P<0.05), but the RV/(LV+S) [(22.04±1.98)%, (25.53±3.41)%] were smaller than that of SD rat [(44.23±3.87)%] (P<0.05). The NA of cardiac muscle was 0.768±0.123 in SD rat, 0.868±0.159 in plateau pika and 1.012±0.133 in plateau zokor. The VV of mitochondria in plateau zokor (0.272±0.045) was significantly lower than those in plateau pika (0.343±0.039) and SD rat (0.321±0.048) (P<0.05), while theδof mitochondria in plateau zokor (9.409±1.238) was higher than those of plateau pika and SD rat (6.772±0.892 and 7.287±1.373) (P<0.05). The SV of mitochondria in plateau pika (2.322±0.347) was not obviously different from that of plateau zokor (2.468±0.380) and SD rat (2.227±0.377), but that of plateau zokor was significantly higher than that of SD rat (P<0.05). The expression level of gene HIF-1αin cardiac muscle of plateau pika (0.45±0.06) had no significant different from plateau zokor (0.51±0.08) and SD rat (0.38±0.05), but that of plateau zokor was obviously higher than that of SD rat (P<0.05). The expression level of Mb mRNA in cardiac muscle of plateau zokor (0.98±0.03) was notably lower than that of pika (1.15±0.39) which was also notably lower than that of SD rat (1.25±0.72) (P<0.05). The contents of Mb in cardiac muscle of plateau zokor [(763.33±88.73) nmol/g] and plateau pika [(765.96±28.47) nmol/g] were significantly higher than that of SD rat [(492.38±72.14) nmol/g] (P<0.05). The expression level of gene VEGF165 in cardiac muscle of plateau zokor (1.52±0.07) was significantly lower than that of SD rat (1.76±0.17), which of plateau pika (1.64±0.08) was slightly higher than plateau zokor and lower than SD rat but the MVD of the cardiac muscle of plateau zokor (2990.643±389.888) was notably higher than plateau pika (2002.888±367.466) which was also notably higher than SD rat (1688.631±250.253). Plateau zokor (1.423±0.031 and 1.167±0.079) and plateau pika (1.305±0.052 and 1.422±0.025) had great higher expression levels of gene LDH-A and LDH-B in cardiac muscle than those in SD rat (1.128±0.164 and 1.023±0.098) (P<0.05), while the contents of LDH-B mRNA in cardiac muscle of plateau pika was significantly higher than that of plateau zokor. The content of LD in plateau zokor [(0.57±0.06) mmol/L] was obviously higher than that of plateau pika [(0.45±0.06) mmol/L] and SD rat [(0.48±0.02) mmol/L] (P<0.05), and the activity of LDH in plateau zokor [(16.90±2.00) U/mL] and plateau pika [(20.55±2.46) U/mL] were significantly lower than that of SD rat [(38.26±6.78) U/mL] (P<0.05). The percentage of LDH-H in cardiac muscle decreased in order in plateau zokor, plateau pika and SD rat.
     In conclusion, there were some features were same or similar in the heart of plateau zokor and plateau pika, that made their heart could pump more blood, increase the diffusion efficiency of oxygen from blood to mitochondria, use the oxygen more effectively and have a higher stress ability. However, they were very differently from each other in some ways. It should because of their different habitats and habits.
引文
[1] Nevo E.. Adaptive convergence and divergence of subterranean mammals. Annual Review of Ecology and Systematics, 1979, 10:269-308.
    [2] Andersen D.C.. Below-ground herbivory in natural communities: a review emphasizing fossorial animals. Quarterly Review of Biology, 1987, 62(3): 261-286.
    [3] McNab B.K.. The metabolism of fossorial rodents: a study of convergence. Ecology, 1966, 47(5): 712-733.
    [4] Nevo E., Reig O.A.. Evolution of subterranean mammals at the organismal and molecular levels. New York: Wiley-Liss, 1990: 1-422.
    [5]张堰铭,刘季科.地下鼠生物学特征及其在生态系统中的作用[J].兽类学报, 2002, 22(5): 144-154.
    [6]周文扬,窦丰满.高原鼢鼠活动与巢区的初步研究[J].兽类学报, 1990, 10(1): 31-39.
    [7] Huntly N., Lnouye R.S.. Pocket gophers in ecosystems: patterns and mechanisms. Bioscience, 1988, 38: 786-793.
    [8] Arieli R.. The atmospheric environment of the fossorial mole rat (Spalax ehrenbergi), effects of season, soil texture, rain, temperature and activity. Comparative Biochemistry and Physiology, 1979, 63A: 569-575.
    [9] Lacey E.A., Patton J.L., Cameron G.N.. Underground: the biology of subterranean rodents. Chicago: University of Chicago press, 2000, 1-415.
    [10] Hobbs R.J., Mooney H.A.. Community and population dynamics of serpentine grassland annuals in relation to gopher disturbance. Oecologia, 1985, 67: 342-351.
    [11] Hooven E.F.. Pocket gopher damage on ponderosa pine plantations in southwestern Oregon. J. Wildl Manage, 1971, 35: 346-353.
    [12] Turner G.T., Hansen R.M., Rrid V.H., et al. Pocket gophers and Colorado mountain rangeland. Colorado State University Experiment Station Bulletin, 554S, Fort Collins, 1973.
    [13] Kennerly T.. Microenvironment conditions of the pocket gopher burrow. Tex..J. Sci., 1964, 16: 395-441.
    [14] Arieli R., Ar A.. Ventilation of a fossorial mammal (Spalax ehrenbergi) in hypoxic and hypercapnic conditions. J. Appl. Physiol., 1979, 47: 1011-1017.
    [15] Maclean G.. Factors influencing the composition of respiratory gases in mammal burrows. Comp. Biochem. Physiol. A, 1981, 84: 517-522.
    [16] Kuhnen G.. O2 and CO2 concentrations in burrows of enthermic and hibernating golden hamsters. Comp. Biochem. Physiol. A, 1986, 84: 517-522.
    [17] Shams I., Avivi A., Nevo E.. Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rat indicate tolerance to hypoxic-hypercapnic stress. Comp. Biochem. Physiol. A, 2005, 142: 376-382.
    [18] Widmer H.R., Hoppeler H., Nevo E., et al. Working underground: respiratory adaptations in the blind mole rat. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94 (5): 2062-2067.
    [19] Weibel E.R.. Understanding the limitation of O2 supply through comparative physiology. Respiration Physiology, 1999, 118: 85-93.
    [20] Avivi A., Resnik M.B., Joel A., et al. Adaptive hypoxic tolerance in the subterranean mole rat Spalax ehrenbergi: the role of vascular endothelial growth factor. FEBS. Lett., 1999, 452: 133-140.
    [21]杨静,李金钢,何建平,等.甘肃鼢鼠血象及其与低氧适应的关系[J].动物学杂志, 2006, 41 (2): 112-115.
    [22]魏登邦,张建梅,魏莲,等.高原鼢鼠对低氧高二氧化碳环境适应的相关生理指标的季节性变化[J].动物学报, 2006, 52(5): 871-877.
    [23]彭先文,欧阳熙.野牦牛(Bos mutus)的生态适应性[J].家畜生态, 1999, 20(3): 20-23.
    [24]叶润蓉,曹伊凡,白琴华.高原鼠兔的血象及其低氧适应的关系[J].中国实验动物学报, 1994, 2(2):115-120.
    [25] Arieli R., Heth G., Nevo E., et al. Hematocrit and hemoglobin concentration in four chromosomal species and some isolated populations of actively speciating subterranean mole rat in Israel. Experientia., 1986, 42 (4): 441-443.
    [26] Arieli R, Ar A. Heart rate responses of the mole rat (Spalax ehrenbergi) in hypercapnic, hypoxic, and cold conditions. Physiological zoology, 1981, 54(1): 14~21.
    [27]顾浩平,杨之,滕国奇,等.高原鼠兔血红蛋白氧亲和力P50的测定[J].中国应用生理学杂志, 1991, 7 (4): 365-367.
    [28] Van Aardt W.J., Bronner G., Buffenstein R.. Hemoglobin-oxygen-affinity and acid-baseproperties of blood from the fossorial mole-rat Cryptomys hottentotus pretoriae. Comp. Biochem. Physiol. A, 2007, 147(1): 50~56.
    [29] Ar A., Arieli R., Shkolnik A.. Blood-gas properties and function in the fossorial mole rat under normal and hypoxic-hypercapnic atmospheric conditions. Respiration Physiology, 1977, 30 (1-2): 201-218.
    [30]杨静,李金钢.甘肃鼢鼠心血管系统对低氧的适应[D].陕西西安:陕西师范大学, 2006.
    [31] Gurnett A.M., O’Connell J., Harris D.E., et al. The myoglobin of rodents: Lagostomus maximus (viscacha) and Spalax ehrenbergi (mole rat). J. Protein. Chem., 1984, 3: 445-454.
    [32] Yang H., Nevo E., Tashian R.E.. Unexpected expression of carbonic anhydrase I and selenium-binding protein as the only major non-heme proteins in erythrocytes of the subterranean mole rat (Spalax ehrenbergi). FEBS. Lett., 1998, 430: 343-347.
    [33] Kleinschmidt T., Nevo E., Braunitzer G.. The primary structure of the hemoglobin of the mole rat (Spalax ehrenbergi, rodentia, chromosome species 60). Hoppe-Seyler's Zeitschrift fur Physiologische Chemie, 1984, 365 (5): 531-537.
    [34] Nevo E., Ben-Shlomo R., Maeda N.. Haptoglobin DNA polymorphism in subterranean mole rat of the spalax ehrenbergi superspecies in Israel. Heredity, 1989, 62 (1): 85-90.
    [35]刘华仁.中国鼢鼠的分类及地理区划[J].国土与自然资源研究, 1995, 3: 54-55.
    [36]罗泽珣,陈卫,高武等.中国动物志.兽纲第六卷.啮齿目下册.仓鼠科[M].北京:科学出版社, 2000.
    [37]王权业,周文扬,张堰铭,等.高原酚鼠挖掘活动的观察[J].兽类学报, 1994, 14(3): 203–208.
    [38]曾缙祥,王祖望,师治贤.高山地区高原鼢鼠的代谢特点及若干生理指标的观察[J].高原生物学集刊, 1984, 3: 163-171.
    [39]樊乃昌,古守勤.中华鼢鼠(MYOSPALAX FONTANIERI)的洞道结构[J].兽类学报, 1981, 1 (1): 67-71.
    [40]王晓君,魏登邦,魏莲,等.高原鼢鼠和高原鼠兔肺细叶结构特征[J].动物学报, 2008, 54(3): 531-539.
    [41] Tucker A, McMurtry IF, Reeves JT, Alexander AF, Will DH, Grover RF. Lung vascular smooth muscle as a determinant of pulmonary hypertension at high altitude. Am. J. Physiol.,1975, 288 (3): 762-766.
    [42] Howell K., Ooi H., Preston R., et al. Structural basis of hypoxic pulmonary hypertension: the modifying effect of chronic hypercapnia. Exp. Physiol., 2004, 89 (1): 66-72.
    [43] Weibel E.R., Knight B.W.. A morphometric study on the thickness of the pulmonary air-blood barrier. The Journal of Cell Biology, 1964, 21: 367-384.
    [44]俞红贤.藏羊肺组织形态测量指标及其与高原低氧的关系[J].中国兽医科技, 1999, 29 (7): 15-16.
    [45]孙宏夫,石雪君.平原地区狗进入高原后对其主要脏器组织形态学的光镜和电镜观察[J].高原医学杂志, 1982, 1: 53-55.
    [46]贾荣莉.低氧适应动物喜马拉雅旱獭[J].解剖科学进展, 1997, 3 (1): 74-76.
    [47]魏登邦,马建宾.高原鼢鼠和小白鼠心肌及骨胳肌肌红蛋白含量和乳酸脱氢酶活性的比较研究[J].青海大学学报, 2001, 19 (2): 20-21.
    [48]施银柱,樊乃昌.草原鼠害及其防治[M].西宁:青海人民出版社, 1980. 67-105.
    [49]王晓君,魏登邦.高原鼢鼠和高原鼠兔氧传输系统部分特征的比较[D].青海西宁:青海大学, 2008.
    [50] Vannucci R.C., Towfighi J., Heitjan D.F., et al. Carbon dioxide protects the perinatal bram from hypoxic-ischcmic damage: an experimental study in the immature rat. Pediatrics, 1995, 95: 868-874.
    [51]谢永宏,钱贵生,金发光,等.不同气体吸入对高原缺氧犬血流力学及血气的影响[J].第四军医大学学报, 2005, 26 (6): 537-540.
    [52] Ooi H., Cadogan E., Sweeney M., et al. Chronic hypercapnia inhibits hypoxic pulmonary vascular remodeling. Am. J. Physiol., 2000, 278: H 331-338.
    [53]朱世海,齐新章,王晓君,等.高原鼢鼠和高原鼠兔骨骼肌摄氧功能差异研究[J].生理学报, 2009, 4: XXX-XXX.
    [54]张建梅,魏登邦.高原鼢鼠HIF-1α及HO-1在组织中的季节性表达[D].青海西宁:青海大学, 2007.
    [55]赵新全,祁得林,杨洁.青藏高原代表性土著动物分子进化与适应研究[M].北京:科学出版社, 2008, 162-190, 192-217.
    [56]钟光辉,起光勇,字向东,等.九龙牦牛产肉性能的研究(初报)[J].西南民族学院学报(畜牧兽医版), 1989, 3: 1-17.
    [57]陆天才,崔刚,李洪安,等.牦牛心、肺组织学结构及特点[J].中国牦牛, 1991, (2) : 33-35.
    [58]魏青,俞红贤. 180日龄高原牦牛和平原牦牛肺泡组织结构的比较研究[J].青海大学学报, 2008, 26(4): 36-39.
    [59]张勤文.不同海拔地区牦牛的肺组织形态学比较[J].中国兽医科技, 2004, 34 (2): 73-74.
    [60]陈秋生,冯霞,姜生成.牦牛肺脏高原适应性的结构研究.中国农业科学, 2006, 39 (10): 2107-2113.
    [61] Meban C.. Thickness of the air - blood barriers in vertebrate lungs. Journal of Anatomy, 1980, 131 (2): 299-3071.
    [62] Sun S.F., Sui G.J., Liu Y.H., et al. The pulmonary circulation of the Tibetan snow pig (Marmota himalayana). Journal of Zoology, 1989, 217(1): 85-91.
    [63]王建新,陈秋红.藏系绵羊心肺血液动力学研究[J].中华实用中西医杂志, 2007, 20(1): 78-81.
    [64]马兰,格日立.高原鼠兔低氧适应分子机制的研究进展[J].生理科学进展, 2007, 38(2): 143-146.
    [65] Howell K., Preston R.J., McLoughlin P.. Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. J. Physiol., 2003, 547 (1): 133-145.
    [66] Durmowicz A.S., Hofmeister S., Kadyraliev T.K., et al. Functional and structural adaptation of the Yak pulmonary circulation to residence at high altitude. J. Appl. Physiol., 1993, 74: 2267-2285.
    [67] Ahima R.S., Flier J.S.. Adipose tissue as an endocrine organ. Trends. Endocrinol. Metab., 2000, 11: 327-332.
    [68] Yang Y.Z., Cao Y., Jin G.E., et al. Molecular cloning and characterization of hemoglobinαandβchains from plateau pika (Ochotona curzoniae) living at high altitude. Gene, dio: 10. 1016/j. gene. 2007. 07. 31.
    [69]俞诗源,尤启斌.鼠兔肺毛细血管铸型的扫描电镜观察[J].西北师范大学学报, 1996, 32: 115-117.
    [70]贾荣莉.不同海拔绵羊肺部血管的比较观察[J].中国兽医科技, 1997, 27 (10): 44.
    [71]袁青妍,谢庄.动物对高原低氧环境的适应性研究进展[J].生理科学进展, 2005, 36(2): 179-182.
    [72]蔡全林.西藏绵羊、山羊、黄牛、牦牛生理指标测定[J].中国兽医杂志, 1980, (2): 44-46.
    [73] Moor L.G., Armaza F., Villena M., et al. Comparative aspects of high-altitude adaptation in human populations. Adv. Exp. Med. Biol., 2000, 475: 45-62.
    [74] Beall C.M., Decker M.J., Brittenham G.M., et al. An ethiopian pattern of human adaptation to high-altitude hypoxia. Proc. Natl. Acad. Sci. USA, 2002, 99: 17215-17218.
    [75]叶智彰,白寿昌.关于猕猴(Macaca mulatta)血象和骨髓象的研究[J].实验生物学报, 1978, 11(2): 150-155.
    [76]高云芳.秦岭川金丝猴对高海拔栖息地的某些生理适应[J].应用生态学报, 2004, 15(2): 331-334.
    [77]扬之,滕国奇,龙雯,等.青海牦牛肺动脉压及相关参数的比较性研究[J].青海医药杂志, 1987, (1): 1-4.
    [78] Velarde F.L., Espinoza D., Monge C., et al. A genetic respinse to high altitude hypoxia: high hemoglobin-oxygen affinity in chicken (Gallus gallus) from the Peruvian Andes. C. R. Acad. Sci.Ⅲ, 1991, 313(9): 401-406.
    [79]程守科,于军以,司本辉,等.高原低氧环境下红细胞增多和血液粘度间关系的研究.中国应用生理学杂志, 2001, 17(3): 231-235.
    [80]马志军,王晋青,王可,等.高原鼠兔和灰尾鼠红细胞的形态计量研究[J].兽类学报, 1995, 15(3): 215-217.
    [81] Heath D., Williams D.R.. In Man at High Altitude, 2 nd ed. New York: Churchill Livingstone, 1981. page 269-281.
    [82] Hoppeler H., Vogt M., Weibel E.R., et al. Response of skeletal muscle mitochondria to hypoxia. Exp. Physiol., 2003, 88: 109-119.
    [83] Sahach V.F., Doloman L.B. Kotsiuruba A.V., et al. Increased level of nitric oxide stable metabolites in the blood of high-landers. Fiziol. Zh., 2002, 48: 3-8.
    [84] Beall C.M., Laskowski D., Strohl K.P., et al. Pulmonary nitric oxide in mountain dwellers. Nature, 2001, 22414(6862): 411-412.
    [85]张容昶.中国的牦牛[M].兰州:甘肃科学技术出版社, 1989.
    [86]李庆芬.人与动物的呼吸系统对高海拔低氧的适应[J].生物学通报, 1991, 10: 19-31.
    [87] Reynafarje C., Faura J., Villavicencio D., et al. Oxygen transport of hemoglobin in high-altitude animals (Camelide). J. Appl. Physiol., 1975, 38: 806-810.
    [88]董宏彬,洪欣.血红蛋白与高原低氧适应[J].国外医学卫生学分册, 2004, 31 (4): 220-223.
    [89]李经才.高山动物对低氧的生理适应[J].生理科学进展, 1981, 12 (3): 243-249.
    [90] Jiang J.C., Gama R.Z., He M.L.. Comparison of the Tibetan plateau yak blood physiology value from different altirude. Chinese J. Animal Veter, Science, 22: 20-26.
    [91]冯祚建,郑昌琳.中国鼠兔属(ochorona)的研究——分类与分布[J].兽类学报, 1985, 5 (4): 269-290.
    [92] Smith A.T., Ivins B.L.. Colonization in a pika population: dispersal vs philopatry. Behav. Ecol. Sociobiol, 1983, 13: 37-47.
    [93]梁杰荣.高原鼠兔的家庭结构[J].兽类学报, 1981, 1(2): 159-165.
    [94]王学高.高原鼠兔交配期及交配行为模式的研究[J].兽类学报, 1990, 10(1): 60-65.
    [95]王晓君,魏登邦,魏莲,等.高原鼢鼠和高原鼠兔肺细叶结构特征[J].动物学报, 2008, (54) 3: 531-539.
    [96] Groves B.M., Droma T., Sutton J.R., et al. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3 685m. J. Appl. Physiol., 1993, 74: 312-318.
    [97] Ge R.L., Kubo K., Kobayashi T., et al. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am. J. Physiol., 1998, 274 (Heart cire physiol 43): H 1792-1799.
    [98]阮宗海,陈华伟,陈秋红,等.不同海拔高原鼠兔、大白鼠血红蛋白电泳及血液学对比观察[J].中国应用生理学杂志, 2000, 16: 91-95.
    [99] Heath D.. Mast cell in the human lung at high altitude. Int .J. Biometeorol., 1992, 36: 210-231.
    [100] Tucker A., McMurtry I.F., Alexander A.F., et al. Lung mast cell density and distribution in chronically hypoxic animals. J. Appl. Physiol., 1977, 42: 174-178.
    [101] Batney M.D., Bahadori L., Gold L.I.. Vascular remodeling in primary pulmonary hypertension. Potentional role for transforming growth factor-β. Am. J. Pathol., 1994, 144: 285-295.
    [102]王晓勤,王占刚,陈秋红,等.高原鼠兔肺动脉压与NO的变化[J].高原医学杂志,2001, 11 (1): 2-6.
    [103]王晓勤,王占刚,陈秋红,等.慢性缺氧大鼠肺血管结构与NO的变化[J].高原医学杂志, 2001, 11 (1): 5-8.
    [104]杜继增,李庆芬.模拟高原低氧对高原鼠兔和大鼠器官与血液若干指标的影响[J].兽类学报, 1982, 2 (1): 35-41.
    [105]佘海如,格日力,陈秋红,等.高原鼠兔红细胞2, 3-DPG含量的测定.高原医学杂志[J]. 1997, 7 (1): 38-40.
    [106] Beall C.M., Reichsman A.B.. Hemoglobin level in a Himalayan high altitude population. Am. J. Phys. Anthropol., 1980, 63: 301-306.
    [107] Adams W., Graves I.L., Pyakural S.. Hemotologic observation on the Yak. Proc. Soc. Exp. Biol. Med., 1975, 148: 701-708.
    [108]马志军,王可,张先钧.高原灰尾兔和高原鼠兔骨髓红细胞Feret’s直径研究[J].高原医学杂志, 2000, 10 (3): 6-7.
    [109]王晓君,魏登邦,魏莲,张建梅,于红妍.高原鼢鼠和高原鼠兔红细胞低氧适应特征.四川动物, 2008, 27(6): 1100-1103.
    [110]张彦博.人与高原[M].第一版.青海人民出版社, 1996, 81-89, 51-60, 292-296.
    [111]叶润蓉,曹伊凡.高原鼠兔血清无机元素含量的分析[J].兽类学报, 1999, 19 (1): 43-47.
    [112]何加强,许存和,孟宪法,等.鼠兔与平原大鼠血液携氧能力的比较研究[J].解放军预防医学杂志, 1994, 12 (6): 431-435.
    [113] Ackers G.K.. Link function in allosteric, an exact theory for the effect of organic phosphates on oxygen affinity of hemoglobin. Biochemistry, 1979, 18: 373-378.
    [114] Maibaurl H., Oelz O., Bartsch P.. Interaction between Hb Mg, DPG, and determine the change in HbO2 affinity at high altitude. J. Appl. Physiol., 1993, 74: 40-48.
    [115] Maibaurl H., Schobersberger W., Oelz O., et al. Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2, 3-diphosphoglycerate. J. Appl. Physiol., 1990, 68: 1186-1194.
    [116] Carlone S., Serra P., Farber M.O., et al. Red blood cell alkalosis and deceased oxyhemoglobin affinity. Am. J. Med. Sci., 1982, 284: 8-16.
    [117]佘海如,格日力,陈秋红,等.高原红细胞增多症患者2, 3-DPG和氧亲和力变化的探讨[J].中国应用生理学杂志, 1995, 11: 205-207.
    [118]刘荔,王彦.大白鼠骨骼肌的肌纤维型研究[J].中国医科大学学报, 1988, 17(2): 107-109.
    [119] Barnard R.J. Histochemical, biochemical and contraction properties of red, white and intermideate fibers. Am. J. of Physiol., 1970, 220: 411-416.
    [120] Frederick J. Phenotypic difference between the actomyosin ATPase of the three fiber types of mammalian skeletal muscles. Exp. Neurology, 1970, 26: 120-123.
    [121]刘国富,温得启,胡晓梅.高原鼠兔和高原鼢鼠乳酸脱氢酶同工酶的初步研究[J].兽类学报, 1985, 5 (3): 223-228.
    [122]刘国富,温得启,韩思梗,等.高原鼠兔乳酸脱氢酶同工酶对低氧环境的应答[J].兽类学报, 1988, 1: 60-64.
    [123] Zhao T.B., Ning H.X., Zhu S.S., et al. Cloning of hypoxia-inducible factor 1αcDNA from a high hypoxia tolerant mammal-plateau pika (Ochotona curzoniae). Biochemical and Biophysical Research Communications, 2004, 316: 565-572.
    [124]周兆年.低氧心血管生理学的研究[J].生理通讯, 1996, 15(suppl): 282-286.
    [125]陈婷方,白振忠,侯冰,等.青藏高原高原鼠兔肌红蛋白(MGB)基因编码区的克隆与分析[J].高原医学杂志, 2005, 15(4): 4-7.
    [126] Dene H., Goodman M., McKenna M.C., et al. Ochotona princes (pika) myoglobin: an appraisal of lagomorgh phylogeny. Proc. Natl. Acad. Sci. USA, 1982, 79(6): 1917-1920.
    [127]龙超良,周智,尹昭云,等.急、慢性缺氧对大鼠心功能的影响[J].航天医学与医学工程, 1999, 12(4): 267-269.
    [128] Hudlicka O., Brown M.N., Weiss J.B., et al. Factors involved in capillary growth in heart. Mol Cell Bioch, 1995, 147: 57-68.
    [129] Antezana A.M., Richalet J.P., Antezana G., et al. Adrenergic system in high altitude esidents. Int. J. Sports Med., 1992, 13: s96-s100.
    [130] Browne V.A., Stiffel V.M., Pearce W.J., et al. Activator calcium and myocardial contractivity in feta 1 sheep exposed to long term high-altitude hypoxia. Am. J. Physiol., 1997, 272(3 Pt 2): 1196-1204.
    [131] Ohtsuka T., Gilbert R.D.. Cardiac enzyme activities in fetal and adult pregnant and nonpregnant sheep exposed to high altitude hypoxemia. J. Appl. Physiol., 1995, 79(4): 1286-1289.
    [132]王细文,仇玉福,陈意生.慢性缺氧大鼠右心房的超微病理变化及血浆ANF含量改变的实验研究[J].第三军医大学学报, 2000, 3: 44-47.
    [133] Costa L.E., Boveris A., Koch O.R., et al. Liver and heart mitochondria in rat submitted to chronic hypobaric hypoxia. Am. J. Physiol. Cell Physiol. 1988; 255(1): C123-C129.
    [134]孙小华,许豪文.模拟5 000m海拔时不同暴露时间对大鼠肌肉结构和功能的影响[J].武汉体育学院学报, 1999, 33(2): 23-27.
    [135]黄庆愿,高钰琪,史景泉,等.缺氧大鼠心肌毛细血管密度与VEGF变化的研究[J].第三军医大学学报, 2001, 23(6): 633-636.
    [136] Avivi A., Shams I., Joel A., et al. Increased blood vessel density provides the mole rat physiological tolerance to its hypoxic subterranean habitat. FASEB. J., 2005; 19(10): 1314-1316.
    [137] Semenza G.L.. Expression of hypoxia-inducible factor 1, mechanisms and consequences. Biochem Pharmacol, 2000, 59(1): 47-53.
    [138] Semenza G.L., Roth P.H., Fang H.M., et al. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem., 1994, 269(38): 23757-23763.
    [139] Wang G.L., Semenza G.L.. Purification and characterization of hypoxia-inducible factor-1. J. Biol. Chem., 1995, 270: 1230-1237.
    [140] Wang G.L., Semenza G.L.. Characterization of hypoxia-dinducible factor-1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem., 1993, 268, 21513-21518.
    [141] Peter B., Monika S., Andreas O., et al. Expression of hypoxia-inducible fator 1 & in epithelial ovarian tumor, its impact on prognosis and on response. Clin. Cancer Res., 2001, 7: 1661-1668.
    [142] Christine C.H., Mei L., Gary G.C., et al. Regulation of hypoxia-inducible factor 1αexpression and function by the mammalian target of rapamycin. Mol. and Cell Biol., 2002,22(20): 7004-7014.
    [143]陈莉芬,胡常林.低氧诱导因子-1于脑血管病变关系的研究进展[J].国外医学内科学分册, 2002, 29(7): 308-310.
    [144]邹飞,许豪文.缺氧诱导因子1对糖酵解的调节[J].安徽体育科技, 2004, 25(1):44-46.
    [145]Wang G.L., Semenza G.L.. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction . Blood, 1993, 82(12): 3610-3615..
    [146]敖启林,郝春荣,熊密,等.低氧诱导因-1α和内皮素-1基因在大鼠低氧性肺动脉高压中的表达[J].中华病理学杂志, 2002, 31(2): 140-142.
    [147]诸兰艳,陈平,蒋云生. HIF-1α和VEGF在非小细胞肺癌组织中的表达及其与肿瘤血管生成的关系[J].中国现代医学杂志, 2005, 15(7): 1017-1019.
    [148]Lee P.J., Jiang B.H., Chin B.Y., et al. Hypoxia-inducible Factor-1 Mediates Transcriptional Activation of the Heme Oxygenase-1 Gene in Response to Hypoxia. Biochemistry, 1997, 272(9): 5375–5381.
    [149]陈林,赵玲.转基因小鼠技术与HIF-1α功能的研究[J].外医学生理病理科学与临床分册, 2004, 24(2): 132-135.
    [150]Semenza G.L.. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J. Appl. Physiol., 2004, 96: 1173–1177.
    [151]Bunn H.F., Poyton R.O.. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev., 1996, 76: 839–885.
    [152]张蓓,吴海琴.低氧诱导因子-1与其靶基因[J].医学综述, 2005, 11(5): 436-438.
    [153] Millikan D.A.. Muscle hemoglobin. Physiol. Rev., 1937, 19: 503-523.
    [154] Livingston D.J., La Mar G.N., Brown W.D.. Myoglobin diffusion in bovine heart muscle. Science, 1983 , 220(4592): 71 - 73.
    [155]柴旦,周兆年.急性低氧对体外培养乳鼠心肌细胞肌红蛋白的影响[J].生理学报, 1997, 49 (5): 497-503.
    [156]崔建华,张西洲,周新海.高原低氧血清肌红蛋白及乳酸代谢的变化[J].西北国防医学杂志,2000, 21(4): 246-247.
    [157] Veikkola T., Karkkainen M., Claesson-Welsh L., et a1 . Regulation of angiogenesis via vascular endothelial growth factor receptors.Cancer Res,2000,60:202—212
    [158] Yamazaki Y., Morita T.. Molecular and functional diversity of vascular endothelial growth factors. Mol. Divers, 2006, 10: 515-527.
    [159] Gerber H.P., Condorelli F., Park J., et al. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes, Fil-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem., 1997, 272(38): 23659-23667.
    [160] Vincent K.A., Shyu K.G., Luo Y., et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by maked DNA encoding an HIF-1alpha/VP16 hybrid transcription factor. Circulation, 2000, 102(18): 2255-2261.
    [161] Zhang H.B., Tian Y.P.. VEGF and substantial tumor. Foreign Midical Sciences of Pathophysiology and Clicial Medicine, 1998, 18(2): 117-120.
    [162] Ferrara N.. Vascular endothelial growth factor. Trends Cardiovasc Med, 1993, 3: 224-250.
    [163] Banai S., Shweiki D., Pinson A., et al. Upregulation of Vascular endothelial growth factor expression induced by myocardial ischaemia, implicationgs for coronary angiogenenesis. Cardiovasc Res., 1994, 28: 1176-1179.
    [164] Bauters C., Asahar T., Zhang L.D., et al. Recoverys of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation, 1995, 91: 2801-2809.
    [165] Bauters C., Asahar T., Zhang L.D, et al. Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J. Vasc. Surg., 1995, 21: 314-324.
    [166] Pierce E.A., Avery R.L., Folaey E.D., et al. Vascular endothelial growthe factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Pro. Natl. Acad. Sci. USA, 1995, 92: 905-909.
    [167] Peters, K.G., De Vries, C.,Williams, L.T. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proceedings of the National Academy of Sciences ofthe United States of America, 1993, 90 (19): 8915-8919.
    [168] Shweiki, D., Itin, A., Soffer, D., et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992, 359 (6398): 843-845.
    [169]曾际斌,洪敏.血管内皮生长因子研究进展[J].国外医学分子生物学分册. 2000, 22(1): 87-92.
    [170]钱孝贤,吴伟康.血管内皮生长因子及其相关蛋白的研究进展[J].国外医学免疫学分册, 1998, 21(4): 192-195.
    [171] Goldberg M.A., Schneider T.J.. Smiliarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J. Biol. Chem., 1994, 269: 4355-4361.
    [172]王祖望,曾缙祥,韩永才.高原鼠兔和中华鼢鼠气体代谢的研究[J].动物学报, 1979, 25 (1): 75-85.
    [173]周虞灿,刘国富,温得启.高原鼠兔和高原鼢鼠红细胞2, 3-二磷酸甘油酸含量的初步研究[J].高原生物学集刊, 1984, 2: 133-137.
    [174]陈秋红,刘凤云.高原鼠兔低氧适应机制的研究概况[J].动物学杂志, 2003, 38 (5): 109-113.
    [175]樊乃昌,施银柱.中国鼢鼠(Eospalax)亚属分类研究[J].兽类学报, 1982, 2: 180-199.
    [176] Shams I., Avivi A., Nevo E.. Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1α. Proc. Natl. Acad. Sci. USA., 2004, 101: 9698-9703.
    [177] Shams I., Nevo E., Avivi A.. Ontogenetic expression of erythropoietin and hypoxia- inducible factor-1 alpha genes in subterranean blind mole rat. FASEB. J., 2004, 19: 307-309.
    [178] Ri-li G.E., Kubo K., Kobayashi T., et al. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pike) at high altitude. Am. J. Physiol., 1998,274 (Heart cire physiol 43): H 1792-1799.
    [179] Sakai A., Ueda G., Yanagidaira Y. et al. Physiological Characteristics of Pike, Ochotona, as high altitude adapted animals. In: Ueda G., Kusama S., Boelkel N.V., Edited. High Altirude Medical Science. Matsumato, Japan: Shinshu Univ, 1988, 99-107.
    [180] Harris E., Heath D., Smith P., et al. Pulmonary circulation of the llama at high and lowaltitudes. Thorax., 1982, 37: 38-45.
    [181] Anand I.S., Harris E., Ferrari R., et al. Pulmonary haemody-namics of the Yak, Cattle, and cross breeds at high altitude. Thorax, 1986, 41: 696-700.
    [182]吴维光,陈亚琼,王玉萍,等.不同缺氧方法诱导BeWo细胞缺氧诱导因子1α表达的实验研究[J].武警医学院学报, 2005, 14(2): 86-89.
    [183] Wagner P.D.. Skeletal muscle angiogenesis: a possible role for hypoxia. Adv. Exp. Med. Biol., 2001, 502: 21-38.
    [184]张幸,余斌,蔡保塔.不同运动强度对大鼠骨骼肌中低氧诱导因子-1αmRNA表达的影响[J].中华创伤骨科杂志, 2006, 8(5): 453-457.
    [185]马森.肌红蛋白的研究进展[J].南平师专学报, 2004, 23(2): 41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700