张掖市土壤母质、土壤与植被的景观多样性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据野外调查和室内分析,利用张掖市土壤图(1:200000)、甘肃省地质图(1:500000)、张掖市土壤志、张掖市土地利用现状调查资料,对土壤母质、土壤和植被进行了景观组分类型的划分。利用方格网法进行了数字化处理。采用景观生态学的原理与方法,对张掖市土壤母质、土壤、植被的景观多样性进行了研究。研究结果表明:
     张掖市土壤母质包括第四纪全新统风积物(Q_4~eol)、湖积物(Q_4~l)、洪积物(Q_4~pl)、冲积-洪积物(Q_4~al-pl)、上更新统洪积物(Q_3~pl)、冲积-洪积物(Q_3~al-pl)、中更新统酒泉组洪积物(Q_2~pl)、酒泉组冲积-洪积物(Q_2~al-pl)、下更新统玉门组洪积物(Q_1~pl)、中新统白杨河组河湖堆积(N_1)、下白垩统新民堡群河湖堆积(K_1)、上石炭统太原群海陆相-上二叠统大黄沟组河湖堆积(C3-P1)、中石炭统羊虎沟组海陆过渡相(C2)、上奥陶统斜湾组海陆过渡相(O3)14种类型(景观组分);其面积依次为:166.54、118.95、457.97、288.46、1650.47、41.63、27.76、71.37、23.79、68.40、603.68、95.16、115.98、38.66km2。其中上更新统洪积物(Q3pl)的面积最大(1650.47 km2),占土壤母质景观总面积的43.80%,是土壤母质景观系统的基质,其余景观组分均为斑块。
     张掖市土壤包括绿洲灌淤土、渐土、风沙土、灰棕漠土、栗钙土、灰钙土、沼泽土、草甸土、盐土、灰褐土、亚高山草甸土11种类型(景观组分),面积依次为:731.47、95.73、390.28、1315.67、115.37、657.83、9.82、304.37、103.09、24.55、19.64km2,其中灰棕漠土面积最大(1315.67km2),为土壤景观系统的基质,其余景观组分均为斑块。
     张掖市植被包括荒漠、栽培植被、无植被地段、高山草甸、山地草原、高山草原、高山灌丛、针叶林8种类型(景观组分),面积依次为:2229.27、1070.44、186.59、124.39、39.28、45.83、32.74、39.28 km2,植被类型中,以荒漠植被为主(2229.27 km2),占总面积的59.17%:其次为栽培植被(1070.44km2),为28.41%,最小的为高山灌丛(32.47km2),占0.87%。反映出在植被类型景观中,荒漠植被为基质。成因上,针叶林、高山灌丛、高
    
     山草原、山地草原、高山草甸、荒漠为环境资源型,栽培植被为引入型,无植被地段为干
     扰型。
     土壤母质景观系统由14种景观组分组成,最大景观多样性最大(从删-1.1461):土壤
     景观系统由11种景观组分组成,其最大多样性指数居中(凤删=I刀414):植被景观系统由
    .8种景观组分组成,其最大景观多样性指数最低(HIDax-0.903)。
     土壤母质景观系统的最大多样性指数最大,景观多样性指数也最大(Hm。一1.1461,
    “Hq.81 09);植被景观系统的最大景观多样性指数最小,景观多样性指数也最小
     (Hffindo.9031,H=0.4860);土壤景观系统的最大多样性指数和多样性指数居中
     (Hdl刀414,H=0厂828)。说明景观系统的最大景观多样性指数、景观多样性指数、景观
     组分类型数量之间具有正相关关系。
     土壤母质景观系统、土壤景观系统、植被景观系统分别包括28、46、16个斑块。斑
     块数量(NP)的变化趋势与最大景观多样性指数(Hm。)、景观多样性指数(厂)、景观组
     分类型数量(N.E)之间变化趋势不一致。说明景观多样性与斑块数量的关系不密切。
     在3类景观系统中,景观多样性与人类活动的强度成反比。因为植被景观系统的最大
     景观多样性指数、景观多样性指数最小,但受到人类活动的干扰最大;土壤母质景观系统
     的最大景观多样性指数和景观多样性指数最大,但人类活动干扰强度最小:土壤景观系统
     的最大景观多样性指数和景观多样性指数、人类活动的影响都处于中间位置。
     在张掖市的3类景观系统中,景观均匀度最高为的土壤景观系统(E=65.12),其次为
     土壤母质景观系统(E=53.50),植被景观系统的景观均匀度最低(E=40刀5)。由于不同的
     景观系统受人类活动的干扰强度不同:所以,景观均匀度同样与人类活动的影响密切有关。
     /
     景观均匀度的变化趋势与景观中斑块数量的变化趋势是一致的。总体上,3类景观系
     统的景观优势度都不高,反映出3类景观系统的景观多样性比较高。同时,景观多样性指
     数与景观优势度指数呈反比关系。依据这种关系,可以认为:在3类景观系统中,植被景
    .观系统的景观多样性最小,景观优势度最大;土壤母质景观系统的景观多样性最大,景观
     优势度最小;土壤景观系统的景观多样性和景观优势度都处子中间位置。说明受人类活动
    .
     干扰越强烈的景观,景观结构越简单,受单一或少数景观组分控制的程度越高。
     张掖市土壤母质景观
The diversity of soil parent material types, soil types and vegetation types are analyzed with the landscape ecology methods. The results show that:
    The soil parent materials in Zhangye can be divided into 14 landscape elements, they are Q_4~eol,Q_4~1, Q_4~pl, Q_4~al-pl, Q_3~pl, Q_3~al-pl, Q_2~pl, Q_2~al-pl, Q_1~pl, N_1, K_1,C_3-P_1,C_2 and O_3. Q_3~pl has the largest area (1650.47km2 ), it covers the 43.80% area, so it plays the role of matrix in the soil parent material landscape system, the others are the patches. The area of soil parent material in oder are: Q3pl, 1650.47 km2, 43.80%; K,, 603.68 km2, 16.02%; Q4pl, 457.97km2, 12.15%; Q/'"1, 288.46km2, 7.66%; Q4eo1, 166.54km2, 4.402%; Q4', 118.95km2, 3.16%; C2, 115.98km2, 3.08%; C3 -Ph 950.16km2, 2.53%; Q2ai'p\ 1.37km2, 1.89%; Nu 68.40km2, 1.82%; Qj^1", 41.63km2, 1.10%; O3, 38.66km2, 1.03%; Q2pl, 26.76km2, 0.71%; Q,"1, 23.79km2, 0.63%.
    The soil types in Zhangye are consisted of 11 landscape elements, that are oasis irrigative soil, wet soil, sand soil, desert grey soil, calcareous soil, grey calcareous soil, marsh soil, meadow soil, salt soil forest soil and sub-mountain meadow soil. The area of these 11 elements are 731.47km",
    95.73 km2, 390.28 km2, 1315.67 km2, 115.37 km2, 657.83, km2 98.2 km2, 304.37 km2 and
    103.09 km2 respectively. The desert grey soil covers 34.92%, 1315.67 km2. It is the matrix, the others are patches.
    The vegetation types in Zhangye are made of desert; cultivate vegetation, bare area, alpine meadow, mountain steppe, alpine steppe, alpine brush and coniferous forest, 8 landscape elements. The desert is matrix; it covers 59.17%, about 2229.27km2. The second one is the cultivate vegetation; it covers 28.41%, about 1070.44km2. The smallest one is alpine brush, it covers 0.87%, 2.74km2 From the result we can find that landscape vegetation types are different. Coniferous forest, alpine brush, steppe and desert are resource-environmental type. Meadow is survival type. Vegetation is introductive type, the bare areas is resource-environmental type.
    
    
    
    The soil parent landscape ecological system is made of 14 elements, and it has the biggest maximum landscape diversity (H max=1.1461). The vegetation landscape ecological system is made of 8 elements and has the lowest maximum landscape diversity (H nax^.9031) the soil landscape system is consisted of 11 elements; the maximum landscape diversity is in the middle of soil parent material and vegetation system (H max=l-0414).
    Soil parent amterisal has the biggest diversity index, both in diversity and in maximum diversity. (#max=1.1461, #=0.8109). While the vegetation type has the smallest index, both in maximum diversity and in diversity (H ,,^=0.9031, #=0.4860). Certainly, the soil landscape type is in the middle level. Now we can conclude that maximum diversity and diversity has the direct relation to the number of the elements.
    The total number of patches is 90, among which the soil parent material type is 28, the soil type is 46 and vegetation type is 16.There is a different changing trend among the patch number and maximum landscape diversity, landscape diversity and number of type elements. From this we can find that there is no close relation between landscape diversity and the number of patches.
    On the other hand, the diversity has the inverse ration to the disturbance from human being. The vegetation type has the smallest maximum landscape diversity and landscape diversity, and suffer the biggest human being disturbuance. The soil parent material has the biggest maximum landscape diversity and landscape diversity, but human being have a little effect on soil parent material. Compare with soil parent material and vegetation, the soil type have the mediate position.
    From the 3 landscape ecological system, the evenness of soil landscape system, soil parent material system and vegetation system are 65.12,53.50,40.0.5. The soil type has the highest evenness (?65.12), the next is soil parent material system, and the smallest one is the vegetation system. As a result of differen
引文
[1] Jerzy Solon,Issues in Landscape Ecology,2000,25~30
    [2] 邬建国主编.景观生态学——格局、过程、尺度与等级.北京:高等教育出版社,2000
    [3] Forman and Godron,Landscape Ecology, 1986, New York:John Wiley &Sons;
    [4] Forman R T T.Land Mosaics:The Ecology of landscape and Regions.Cambridge;Cambridge University Press,1995
    [5] Forman R T T, Godron M. Landscape ecology. Quinn-Woodbine, Inc, USA, 1986, 11~461
    [6] 肖笃宁,李秀珍.当代景观生态学的进展和展望.景观生态学研究进展.长沙:湖南科学技术出版社,1999.1~7
    [7] 肖笃宁.论景观生态学的核心概念框架.景观生态学研究进展.长沙:湖南科学技术出版社,1999.8~14
    [8] 肖笃宁,布仁仓,李秀珍.生态空间理论与景观异质性.景观生态学研究进展.长沙:湖南科学技术出版社,1999.15~23
    [9] 邬建国,生态学范式变迁综论,生态学报,1996,16(5):449~460
    [10] 马克平.试论生物多样性的概念.生物多样性,1993,1(1):20~22.
    [11] Solbrig O T.生物多样性——有关的科学问题与合作研究建议.北京:科学技术出版社,1992.195~263
    [12] 李晓文 胡远满 肖笃宁.景观生态学与生物多样性保护[J].生态学报,1999,19(3)399~406.
    [13] Jerzy Solon.结合生态学和地理学的原理进行景观系统的研究.景观生态学论坛,2000
    [14] Ahem J. Integration of landscape ecology and landscape design: An evolutionary, process. In: Wiens J A,Moss M R, ed. Issues in landscape Ecology, Snowmass Village: International Association for Landscape Ecology, 1999b, 119~123.
    [15] Baker W L. A set of grass programs for the quantitative analysis of landscape structure[M]. Univ. of Wyo.Dept. of geography and recreation, Laramie, Wyo, 1994, 36~43.
    [16] 陈昌笃.景观生态学与生物多样性保护[J].介暨第二届景观生态学学术讨论会论文集[M],北京:1996.
    [17] 乌云娜 李政海.锡林郭勒草原景观多样性的时间变化[J].植物生态学报,2000,24(1):58~63.
    [18] 傅伯杰.景观多样性分析及其制图研究[J].生态学报,1995,15(4),345~350.
    [19] 李晓文 胡远满 肖笃宁.景观生态学与生物多样性保护[J].生态学报,1999,19(3)399~406.
    [20] Harris L D and Thomas S H. Landscape processes and their significance to biodviersity conservation[M].Gainesville, USA, 1996, 319~347.
    [21] 马克明,傅伯杰,周华峰.景观多样性测度:格局多样性的亲和度分析[J].生态学报,1998,18(1):76~81.
    [22] 陆杰
    [23] 王宪礼 肖笃宁 布仁仓等.辽河三角洲湿地的景观格局分析[J].生态学报,1997,17(3),317~323.
    [24] 布仁仓 王宪礼 肖笃宁.黄河三角洲景观组分判定与景观破碎化分析[J].应用生态学报,1999,10(3),321~324.
    
    
    [25] 陈利顶 傅伯杰.黄河三角洲地区人类活动对景观结构的影响分析[J].生态学报,1996,16(4),337~344.
    [26] 彭建 王仰麟.我国沿海滩涂景观生态初步研究[J].地理研究,2000,19(3):249~256.
    [27] 贾宝全、兹龙骏等.石河子莫索弯垦区绿洲景观格局变化分析.生态学报,2001,21(1):34~40
    [28] 王教育、王成吉黄土高原沟壑区土地景观空间格局遥感分析.干旱环境监测,1997,11(4):203~207)
    [29] 李朝生等.内蒙古乌拉盖草原地区土地开发对景观格局的影响.干旱区资源与环境,2000,14(2):53~58
    [30] 周华峰,马克明.人类活动对北京东灵山地区景观格局影响分析.自然资源学报,1999,14(2):117~122
    [31] Kimberly A.With.国际景观生态学会第五届世界大会论文集.景观生态学论坛.湖南科学技术出版社,2000.82~86
    [32] 全国首届景观生态讨论会论文集.景观生态学理论、方法及应用
    [33] 任继周.草业科学研究方法.中国农业出版社,1998
    [34] 胡自治.草地分类学概论.中国农业出版社,1997
    [35] 吴征镒主编.中国植被[M].北京:科学出版社,1980.
    [36] 王国宏,任继周,张自和..河西山地荒漠绿洲植物群落多样性研究.草业学报,2002(1):31~37
    [37] 陈昌笃.论地生态学[J].生态学报,1986,6(4):289~294.
    [38] 王宪礼 布仁仓 胡远满.辽河三角洲湿地的景观破碎化分析[J].应用生态学报,1996,7(3),299~304.
    [39] 陈昌笃.景观生态学与生物多样性保护[J].暨第二届景观生态学学术讨论会论文集[M],北京:1996.
    [40] Harris L D and Thomas S H. Landscape processes and their significance to biodviersity conservation[M]. Gainesville, USA, 1996, 319~347.
    [41] 马克明,傅伯杰,周华峰.景观多样性测度:格局多样性的亲和度分析[J].生态学报,1998,18(1):76~81.
    [42] Miline B T. Measuring the fractal dimension of landscapes [J]. Applied Mathematics and Computation,1988, 27: 67~69.
    [43] Morse D R, Lawton J H, Dodson M M. Fractal dimension of vegetation and the distribution of arthropod body lengths[J].Nature, 1985, 314 (25), 731~733.
    [43] 李志强 刘学录.甘肃地貌区划与地貌条件的农业评价[J].甘肃农业大学学报,1994,30(4),444~449.
    [44] 裴相斌.从景观学到景观生态学[J].见:肖笃宁主编.景观生态学:理论、方法及应用[M].北京:中国林业出版社,1991:82~85.
    [45] 武汉地质学院主编.地貌学及第四纪地质学[M].北京:地质出版社,1988,5~223.
    [46] 杨森楠 杨巍然主编.中国区域大地构造学[M].北京:地质出版社,1985,60~166.
    [47] 中国科学院《中国自然地理》编辑委员会编.中国自然地理——地貌[M].北京:科学出版社,1980.
    [48] 中国科学院《中国自然地理》编辑委员会编.中国自然地理——气候[M].北京:科学出版社,1984.
    
    
    [49] 中央气象局编制.中华人民共和国气候图集[M].北京:地图出版社,1979,5~223.
    [50] 中国科学院《中国自然地理》编辑委员会编.中国自然地理——土壤地理[M].北京:科学出版社,1981.
    [51] 林成谷主编.土壤学(北方本)[M].北京:农业出版社,1983,223~250.
    [52] 邬建国.岛屿生物地理学理论:模型与应用[J].生态学杂志,1989,8(6):34~39.
    [53] 邬建国.自然保护区学说与麦克阿瑟—威尔逊理论[J].生态学报,1990,10(2):187~191.
    [54] 邬建国.耗散结构、等级系统理论与生态系统[J].应用生态学报,1991,2(2):181~186.
    [55] 任继周.甘肃中部的草原类型[J].甘肃农业大学学报,1959,No.2,1~15.
    [56] 任继周 胡自治等.草原的综合顺序分类法及其草原发生学意义[J].中国草原,1980,No.1,12~24.
    [57] 任继周 主编.草原调查与规划[M].北京:农业出版社,1985,56~82.
    [58] 胡自治等.甘肃省的草原类型[J].甘肃农业大学学报,1978,No.1,1~27.
    [59] 胡自治.我国西北荒漠区天然草原的资源和经营[J].甘肃农业大学学报,1982,17(1):1~10.
    [60] 任继周.我国草原类型第一级分类的生物气候指标[J].甘肃农业大学学报,1965,No.2,48~64.
    [61] 胡自治等.草原综合顺序分类法的新改进——类的划分指标及其分类检索图[J].草业学报,1995,No.3,1~7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700