三个新的精子发生相关基因在人和小鼠睾丸中的表达特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的睾丸的精子发生是一个复杂的细胞分裂分化过程,是一系列基因按时空顺序表达与睾丸组织内外环境共同作用的结果。许多在睾丸中特异或高度表达的基因参与这一过程。本研究在实验室前期工作的基础上,选择三个差异表达的基因TSG23,T279和TSC21进行研究。通过对上述三种基因进行生物信息学,mRNA和蛋白质的表达特性,及在正常和无精症睾丸中的表达差异分析,探讨它们在精子发生过程中的作用,为男性不育症的诊断和治疗提供新的思路和方法。
     方法(1)应用芯片技术筛选精子发生相关基因。(2)应用生物信息学方法分析TSG23和T279基因和编码蛋白的理化结构。(3)应用PCR方法检测TSG23和T279基因在人和小鼠多组织中及在小鼠不同发育阶段睾丸组织和不同小鼠生殖细胞系中的表达特征;比较它们在正常睾丸及无精症睾丸中的表达差异。(4)制备TSG23、T279和TSC21基因的RNA探针,采用原位杂交的方法检测睾丸组织中mRNA的表达。(5)构建小鼠pEGFP-N1-T279重组质粒载体,转染细胞系,确定T279蛋白的亚细胞定位。(6)构建人pET32a-T279和TSC21表达载体,转化到感受态BL21细菌,诱导表达并纯化T279和TSC21蛋白;免疫小鼠,制备抗人的TSC21多克隆抗体和T279单克隆抗体;应用合成的人多肽抗原免疫小鼠制备TSG23多克隆抗体。(7) Western Blot检测TSG23和T279蛋白和抗体的特异性。(8)免疫荧光方法检测T279在人睾丸组织中的表达。(9)应用免疫组化方法检测TSG23、T279和TSC21蛋白在睾丸组织中的表达定位,并检测它们在正常人睾丸组织和生精阻滞患者睾丸组织中的表达差异。
     结果(1)表达谱芯片结果显示TSG23和T279基因在成人睾丸中高表达,在小鼠睾丸中于18日龄睾丸中开始表达,且随年龄逐渐升高。(2)人TSG23定位在20q13.12,cDNA全长752bp,编码227个氨基酸。小鼠TSG23定位在2H3,cDNA全长755bp,编码226个氨基酸。人T279定位于13q34,cDNA全长773 bp,编码195个氨基酸。小鼠T279定位于8A2,cDNA长度761bp,编码182个氨基酸。TSG23和T279皆为人—小鼠同源基因。(3) PCR结果显示TSG23和T279为睾丸组织特异性表达。小鼠TSG23和T279仅在出生后15天的睾丸组织中开始表达,且随着年龄的增加逐渐增强,TSG23在Sertoli细胞,精原细胞和精母细胞系中均没有表达,而T279仅在精母细胞系中表达。与正常睾丸组织比较,TSG23和T279基因在无精症睾丸组织的表达减弱或消失。(4)成功制备TSG23、T279和TSC21的正义和反义探针。原位杂交显示人和小鼠睾丸生精上皮的精母细胞和圆形精子细胞内存在TSG23的强阳性杂交信号,并呈现阶段特异性表达模式。小鼠T279mRNA主要定位于靠近管腔的精子细胞及精子中,精母细胞也有阳性信号,TSC21 mRNA定位于小鼠精母细胞和精子细胞的胞浆中。(5)荧光显微镜观察T279融合蛋白定位在精母细胞的内质网中。(6)成功制备人TSG23、T279和TSC21的鼠源性抗体。(7) Western Blot结果显示TSG23蛋白只在睾丸组织中识别出约23KD大小的特异性条带,T279蛋白在睾丸组织中识别出约22KD大小的特异性条带,而在其他组织中两者均为检测到条带。(8)免疫荧光结果表明T279蛋白主要在正常人睾丸组织的精母细胞和圆形精子细胞中表达。(9)免疫组化结果显示在正常睾丸中TSG23、T279和TSC21蛋白主要在精母细胞和圆形精子细胞中表达,且TSG23主要表达于生精过程中的Ⅲ和Ⅴ期,而在Ⅰ和Ⅱ期中表达很低。在生精阻滞的无精症患者中三个蛋白表达均减弱或消失。
     结论(1) TSG23、T279和TSC21均为睾丸特异性高表达基因,且是人—小鼠同源性基因。在小鼠睾丸组织中的表达呈年龄依赖性升高。(2) TSG23、T279和TSC21在无精子症患者睾丸组织的表达明显减少或消失。(3) TSG23、T279和TSC21基因对于睾丸发育和精子发生可能具有重要作用,其表达降低或消失可能是男性不育症发生的重要原因之一。
Objective Spermatogenesis is a highly ordered and complicated process of cellular proliferation and differentiation in the testis. Many genes specifically or highly expressed in the testis are involved in the process of spermatogenesis. According to the previous data in the lab, the present study choose three genes, TSG23, T279 and TSC21, to further investigate the expression characteristics in human and mouse testis, which may provide a new method for the diagnosis and treatment of male infertility and a target for male contraception.
     Methods (1) Identified and screened the genes related to spermatogenesis by microarray. (2) Analyzed the construction of the genes and its protein by bioinformatics methods. (3) Detected the expression of TSG23 and T279 in human and mouse multi-tissues, in the mouse testis in different stages and in different germ cell lines by PCR; and compared the difference of these genes in normal and azoospermic testis. (4) Detected the localization of TSG23, T279 and TSC21 mRNAs in testis by in situ hybridization. (5) Detected the subcellular localization in mouse cells by the transfection of pEGFP-N1-T279 recombinant plasmid. (6) Generated the anti-T279 monoclonal antibody, and anti-TSC21 and anti-TSG23 polyclonal antibodies. (7) Detected the specific of TSG23 and T279 proteins by Western Blot analysis. (8) Detected the expression of T279 protein in human testis by immunofluorescence. (9) Detected the expression and localization of TSG23, T279 and TSC21 proteins in testis and the difference of expression in testis from fertile men and the patients with azoospermia by immunohistochemistry.
     Results (1) Affymetrix Genechip analysis showed that TSG23 and T279 were highly expressed in adult human and mouse testis. (2) Human TSG23 gene was mapped to chromosome 20q13.12. The full cDNA length of TSG23 was 752bp, which encoded a protein with 227 amino acids. Mouse TSG23 gene was mapped to chromosome 2H3. The full cDNA length was 755bp, which encoded a protein with 226 amino acids. Human T279 gene was mapped to 13q34. The full cDNA length of was 773bp, which encoded a protein with 195 amino acids. Mouse T279 gene was mapped to 8A2. The full cDNA length was 761bp, which encoded a protein with 227 amino acids. Both TSG23 and T279 are human-mouse homologous genes. (3) RT-PCR analysis from multiple human and mouse tissues indicated TSG23 and T279 mRNA was only expressed in the testis. Mouse TSG23 and T279 was detected after day 15 and gradually increased with the age. There was no expression or less expression of TSG23 and T279 in azoospermic testis compared with normal testis. (4) In situ hybridization revealed that TSG23 mRNA was located in spermatocytes and round spermatids of the seminiferous tubules in human and mouse testis, and the expression could be stage specific. Mouse T279 mRNA was mainly located in spermatids and sperms of the seminiferous tubules in mouse testis. Mouse TSC21 mRNA was located in spermatocytes and spermatids in mouse testis. (5) Immunofluorescent assay revealed T279 fusion protein located in endocytoplasmic reticulum of spermatocytes. (6) Generated successfully anti TSG23, T279 and TSC21 antibody. (7) Western blot analysis demonstrated that TSG23 was mainly expressed in human testis with molecular weight of about 23 KD. And T279 was mainly expressed in human testis with molecular weight of about 23 KD. (8) Immunofluorescence showed that T279 was predominantly located in spermatocytes and round spermatids. (9) Immunohistochemistry showed that TSG23, T279 and TSC21 were predominantly located in spermatocytes and round spermatids. And intense expression of TSG23 was observed in stages III and V, whereas it was lower at stages I and II of spermatogenesis. In the testis from patients with azoospermia, the expression of the three proteins were significantly decreased or disappeared in spermatocytes and round spermatids.
     Conclusions (1) TSG23, T279 and TSC21 were testis-specific/enriched expressed and human-mouse homologous genes. Moreover, expression of TSG23 mRNA in mouse testis was developmental dependent. (2) In the testis from patients with azoospermia, the expression of TSG23, T279 and TSC21 were significantly decreased or disappeared at mRNA and protein levels. (3) TSG23, T279 and TSC21 may participate in testicular development and spermatogenesis, and their abnormal expression may be one of the important factors in male infertility.
引文
1. Nishimune Y, Tanaka H. Infertility caused by polymorphisms or mutations in spermatogenesis-specific genes. Journal of Andrology, 2006(27): 326–334.
    2. Skakkebaek NE. Testicular dysgenesis syndrome. Hormone Research, 2003(60) (Suppl. 3): 49.
    3. Fisch H. Declining worldwide sperm counts: disproving a myth. Urol Clin North Am, 2008, 35(2):137-146.
    4. Ficorelli CT, Weeks B. Untangling the complexities of male infertility. Nursing, 2007, 37(1): 24-26.
    5. Carrell DT, De Jonge C, Lamb DJ. The genetics of male infertility: a field of study whose time is now. Arch Androl, 2006, 52(4): 269-274.
    6. Cram D, Lynch M, O'Bryan MK, et al. Genetic screening of infertile men. Reprod Fertil Dev, 2004, 16(5):573-580.
    7. Orstavik KH. [Genetic causes of male infertility]. Tidsskr Nor Laegeforen, 2008, 128(3):324-326.
    8. Sharpe RM, Irvine DS. How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health? British Medical Journal, 2004, 328(7437): 447–451.
    9. Cram DS, O'Bryan MK, de Kretser DM. Male infertility genetics-the future. J Androl, 2001, 22(5): 738-746.
    10.郭应禄,辛钟成。男子生殖医学。北京:科学出版社,2005.28-71
    11. Wolgemuth DJ, Laurion E , Lele KM. Regulation of the mitotic and meiotic cell cycles in the male germ line. Recent Prog Horm Res, 2002, 57:75-101.
    12. Eddy EM. Male germ cell gene expression. Recent Prog Horm Res, 2002, 57: 103-128.
    13. De Kretser DM, McLachlna RI, Robertson DM, et al. Control of spermatogenesis by follicle stimulating hormone and testosteorne. Baillieres Clin Endocrinol Metba, 1992, 6(2):335-354.
    14. MeLachlna RI, O’Donmell L, Meachem SJ, et al. Identification of specific sites of hormonalregulation in spermatogenesis in rats, monkeys, and man. Recent Prog Horm Res, 2002, 57:149-179.
    15. Walker WH, Cheng J. FSH and testosterone singaling in Sertoli cells. Reproduction, 2005, 130(l):15-28.
    16. Tenaka H, Baba T. Gene expression in spermatogenesis. Cell Mol Life Sci. 2005, 62(3):344-354.
    17. Kimmins S, Kotaja N, Davidson I, et al. Testis-specific transcription mechanisms promoting male germ-cell differentiation. Reproduction, 2004, 128(1):5-12.
    18. Sutton KA. Molecular mechanisms involved in the differentiation of spermatogenic stem cells. Rev Reprod, 2000, 5 (2):93-98.
    19. Wu S, Wolgemuth DJ. The distinct and developmentally regulated patterns of expression of members of the mouse Cdc25 gene family suggest differential functions during gametogenesis. Dev Biol, 1995, 170(l):195-206.
    20. Thomas KH,Wilkie TM,Tomashefsky P,et al. Differential gene expression during mouse spermatogenesis. Biol Reprod, 1989, 41(4):729-739.
    21. Cho C, Jung-Ha H, Willis WD, et a1. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod, 2003, 69(1):211-217.
    22. Sassone-Corsi P. Coupling gene expression to cAMP signalling: role of CREB and CREM. Int J Biochem Cell Biol, 1998, 30(l):27-38.
    23. Xing XW, Li LY, Liu G, et al. Identification of a novel gene SRG4 expressed at specific stages of mouse spermatogenesis. Acta Biochim Biophys Sin (Shanghai), 2004, 36(5):351-359.
    24. Miyamoto T, Sengoku K, Hasuike S, et al. Isolation and expression analysis of the human testis-specific gene, SPERGEN-1, a spermatogenic cell-specific gene-1. J Assist Reprod Genet, 2003, 20(2): 101-104.
    25. Zuercher G, Rohrbach V, Andres AC et al. A novel member of the testis specific serine kinase family, tssk-3, expressed in the Leydig cells of sexually mature mice. Mech Dev, 2000, 93(1-2):175-177.
    26. Zheng Z, Zheng H, Yan W. Fank1 is a testis-specific gene encoding a nuclear protein exclusively expressed during the transition from the meiotic to the haploid phase ofspermatogenesis. Gene Expr Patterns, 2007, 7(7): 777-783.
    27. Modarressi MH, Cameron J, Taylor KE, et al. Identification and characterisation of a novel gene, TSGA10, expressed in testis. Gene, 2001, 262(1-2): 249-255.
    28. Nie DS, Xiang Y, Wang J, et al. Identification of a novel testis-specific gene mtLR1, which is expressed at specific stages of mouse spermatogenesis. Biochem Biophys Res Commun, 2005, 328(4): 1010-1018.
    29. Fan J, Graham M, Akabane H, et al. Identification of a novel male germ cell-specific gene TESF-1 in mice. Biochem Biophys Res Commun, 2006, 340(1):8-12.
    30. Diatchenko L, Lukyanov S, Lau YF, et al. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol. 1999, 303:349-380.
    31. Anway MD, Johnston DS, Crawford D, et al. Identification of a novel retrovirus expressed in rat Sertoli cells and granulose cells. Biol Reprod. 2001, 65(4):1289-1296.
    32. Wrobel G, Primig M. Mammalian male germ cells are fertile ground for expression profiling of sexual reproduction. Reproduction, 2005, 129(1):1-7.
    33. He Z, Chan W-Y, Dym M. Microarray technology offers a novel tool for the diagnosis and identification of therapeutic targets for male infertility. Reproduction, 2006, 132(1):11-19.
    34. Williams CJ, Schultz RM. Transgenic RNAi: a tool to study testis-specific genes. Mol Cell Endocrinol, 2006, 247(1-2):1-3.
    35. Shoji M, Chuma S, Yoshida K et al. RNA interference during spermatogenesis in mice. Dev Biol, 2005, 282(2):524-534.
    36. Rao MK, Pham J, Imam JS, et al. Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and spermatogenesis. Genes Dev, 2006, 20(2):147-152.
    37. Roy A, Matzuk MM. Deconstructing mammalian reproduction: using knockouts to define fertility pathways. Reproduction, 2006, 131(2):207-219.
    38. Jin J, Jin N, Zheng H, et al. Catsper3 and Catsper4 are essential for sperm hyperactivated motility and male fertility in the mouse. Biol Reprod. 2007, 77(1):37-44.
    39. Zheng H, Stratton CJ, Morozumi K, et al. Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci U S A. 2007,104(16):6852-6857.
    40. Xiao P, Tang A, Yu Z, et al. Gene expression profile of 2058 spermatogenesis-related genes in mice. Biol Pharm Bull, 2008, 31(2): 201-206.
    41. Dieckmann KP, Linke J, Pichlmeier U, et al. Spermatogenesis in the contralateral testis of patients with testicular germ cell cancer: histological evaluation of testicular biopsies and a comparison with healthy males. BJU Int. 2007, 99(5):1079-1085.
    42. Yu Z, Tang A, Gui Y, et al. Identification and characteristics of a novel testis-specific gene, Tsc21, in mice and human. Mol Biol Rep, 2007, 34(2): 127-134.
    43. Tang A, Yu Z, Gui Y, et al. Identification and characteristics of a novel testis-specific gene, Tsc24, in human and mice. Biol Pharm Bull, 2006, 29(11): 2187-2191.
    44. Tang A, Yu Z, Gui Y, et al. Identification of a novel testis-specific gene in mice and its potential roles in spermatogenesis. Croat Med J, 2007, 48(1): 43-50.
    45. Ogawa T, Arechaga JM, Avarbock MR, et al. Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol, 1997, 41(1):111-22.
    46. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A, 1994, 91(24):11298-302.
    47. Amann RP. The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl, 2008, 29(5): 469-487.
    48. Clermont Y. The cycle of the seminiferous epithelium in man. Am J Anat, 1963, 112: 35-46.
    49. Krausz C, Giachini C. Genetic risk factors in male infertility. Arch Androl, 2007, 53(3): 125-133.
    50. Yao YQ, Xu JS, Lee WM, et al. Identification of mRNAs that are up-regulated after fertilization in the murine zygote by suppression subtractive hybridization. Biochem Biophys Res Commun, 2003, 304(1): 60-66.
    51. Yu SS, Takenaka O. Molecular cloning, structure, and testis-specific expression of MFSJ1, a member of the DNAJ protein family, in the Japanese monkey (Macaca fuscata). Biochem Biophys Res Commun, 2003, 301(2): 443-449.
    52. Nie DS, Xiang Y, Wang J, et al. Identification of a novel testis-specific gene mtLR1, which is expressed at specific stages of mouse spermatogenesis. Biochem Biophys Res Commun, 2005, 328(4): 1010-1018.
    53. Hong S, Choi I, Woo JM, et al. Identification and integrative analysis of 28 novel genes specifically expressed and developmentally regulated in murine spermatogenic cells.J Biol Chem, 2005, 280(9): 7685-7693.
    54. Baek N, Woo JM, Han C, et al. Characterization of eight novel proteins with male germ cell-specific expression in mouse. Reprod Biol Endocrinol, 2008, 24 (6):32-44.
    55. Choi E, Lee J, Oh J, et al. Integrative characterization of germ cell-specific genes from mouse spermatocyte UniGene library. BMC Genomics, 2007, 28(8):256-270.
    56. Bonilla E, Xu EY. Identification and characterization of novel mammalian spermatogenic genes conserved from fly to human. Mol Hum Reprod, 2008, 14(3):137-142.
    57. Feig C, Kirchhoff C, Ivell R, et al. A new paradigm for profiling testicular gene expression during normal and disturbed human spermatogenesis. Mol Hum Reprod, 2007, 13(1): 33-43.
    58. Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A, 2003, 100(21):12201-12206.
    59. Guo R, Yu Z, Guan J, et al. Stage-specific and tissue-specific expression characteristics of differentially expressed genes during mouse spermatogenesis. Mol Reprod Dev, 2004; 67(3): 264-272.
    60. Rossi P, Dolci S, Sette C, et al. Analysis of the gene expression profile of mouse male meiotic germ cells. Gene Expr Patterns, 2004, 4(3):267-281.
    61. Sha J, Zhou Z, Li J, et al. Identification of testis development and spermatogenesis-related genes in human and mouse testes using cDNA arrays. Mol Hum Reprod, 2002, 8(6):511-517.
    62. Xiao J, Xu M, Li J, et al. NYD-SP6, a novel gene potentially involved in regulating testicular development/spermatogenesis. Biochem Biophys Res Commun, 2002, 291(1):101-110.
    63. Xu M, Xiao J, Chen J, et al. Identification and characterization of a novel human testis-specific Golgi protein, NYD-SP12.Mol Hum Reprod, 2003, 9(1): 9-17.
    64. Cheng LJ, Li JM, Chen J, et al. NYD-SP16, a novel gene associated with spermatogenesis of human testis. Biol Reprod, 2003, 68(1): 190-198.
    65. Zhou Z, Ren X, Huang X, et al. SMYD3-NY, a novel SMYD3 mRNA transcript variant,may have a role in human spermatogenesis. Ann Clin Lab Sci, 2005, 35(3): 270-277.
    66. Yu Z, Guo R, Ge Y, et al. Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. Biol Reprod, 2003, 69(1):37-47.
    67. Ma P, Wang H, Guo R, et al. Stage-dependent Dishevelled-1 expression during mouse spermatogenesis suggests a role in regulating spermatid morphological changes. Mol Reprod Dev, 2006, 73(6):774-783.
    68.辛钟成,刘武江,田龙,等。老年人睾丸组织退化的基因表达谱研究。北京大学学报(医学版)。2003,35(4):364-368.
    69. Lin YH, Lin YM, Teng YN, et al. Identification of ten novel genes involved in human spermatogenesis by microarray analysis of testicular tissue. Fertil Steril, 2006, 86(6):1650-1658.
    70. Bellve AR, Cavicchia JC, Millette CF, et al. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol, 1977, 74:68-85.
    71.唐爱发,周永翠,余振东,等。Mm.158494基因在白消安引起的无精子症小鼠中的表达。中国男科学杂志,2008,22(9):1-4.
    72. Izard JW, Doughty MB, Kendall DA. Physical and conformational properties of synthetic idealized signal sequences parallel their biological function. Biochemistry, 1995, 34(31):9904-9912.
    73. Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature, 2005, 437(7062):1173-1178.
    74. Bai S, He B, Wilson EM. Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol Cell Biol., 2005, 25(4):1238-1257.
    1. Wolgemuth DJ, Laurion E, Lele KM. Regulation of the mitotic and meiotic cell cycles in the male germ line. Recent Prog Horm Res, 2002, 57:75-101.
    2. Eddy EM. Male germ cell gene expression. Recent Prog Horm Res, 2002, 57: 103-128.
    3. de Kretser DM, McLachlan RI, Robertson DM, et al. Control of spermatogenesis by follicle stimulating hormone and testosteorne. Baillieres Clin Endocrinol Metba, 1992, 6(2):335-354.
    4. Tanaka H, Baba T. Gene expression in spermatogenesis. Cell Mol Life Sci. 2005, 62(3):344-354.
    5. Kimmins S, Kotaja N, Davidson I, et al. Testis-specific transcription mechanisms promoting male germ-cell differentiation. Reproduction, 2004, 128(1):5-12.
    6. Chauvinistgenes.‘Chauvinist genes’of male germ cells: gene expression during mouse spermatogenesis. Reprod Fertil Dev, 1995, 7(4):695-704.
    7. Scieglinska D, WidlakW, KonopkaW, et al. Structure of the 5’region of the Hst70 gene transcription unit: presence of an intron and multiple transcription initiation sites. Biochem J, 2001, 359 (Pt 1): 129-137.
    8. Eddy EM. Role of heat shock protein HSP70-2 in spermatogenesis. Rev Reprod, 1999,4(1):23-30.
    9. Zhu D, Dix DJ, Eddy EM. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development, 1997, 124(15):3007-3014.
    10. Govin J, Caron C, Escoffier E, et al. Post-meiotic shifts in HSPA2/HSP70.2 chaperone activity during mouse spermatogenesis. 2006, 281(49):37888-37892.
    11. Sasaki T, Marcon E, McQuire T, et al. Bat3 deficiency accelerates the degradation of Hsp70-2/HspA2 during spermatogenesis. J Cell Biol. 2008, 182(3):449-458.
    12. Wid?ak W, Benedyk K, Vydra N, et al. Expression of a constitutively active mutant of heat shock factor 1 under the control of testis-specific hst70 gene promoter in transgenic mice induces degeneration of seminiferous epithelium. Acta Biochim Pol. 2003, 50(2):535-541.
    13. Kallio M, Chang Y, Manuel M, et a1. Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J, 2002, 21(11):2591-2601.
    14. Son WY, Hwang SH, Han CT, et a1. Specific expression of heat shock protein HSPA2 in human male germ cells. Mol Hum Reprnd, 1999, 5(12):1l22-1126.
    15. Son WY, Han CT, Hwang SH, et a1. Repression of hspA2 messenger RNA in human testes with abnormal spermatogenesis. Fertil Steril, 2000, 73(6):1138-1144.
    16. Feng HL, Sandlow JI, Sparks AE. Decreased expression of the heat shock protein HSP70-2 is associated with the pathogenesis of male infertility. Fertil Steril, 2001, 76(6):1136-1139.
    17. Govin J, Caron C, Lestrat C, et al. The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem. 2004, 271(17):3459-3469.
    18. Lin Q, Sirotkin A, Skoultchi AI. Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol Cell Biol. 2000, 20(6):2122-2128.
    19. Rabini S, Franke K, Saftig P, et al. Spermatogenesis in mice is not affected by histone H1.1 deficiency. Exp Cell Res, 2000, 255(1):114-124.
    20. Grimes SR. Testis-specific transcriptional control. Gene, 2004, 343(1):l1-22.
    21. Wilkerson DC, Wolfe SA, Grimes SR. TE2 and TE1 sub-elements of the testis-specific histone Hlt promoter are functionally different. J Cell Biochem, 2003, 88(6):1177-1187.
    22. Wolfe SA, Wilkerson DC, Prado S, et a1. Regulatory factor X2 (RFX2) binds to the Hlt/TEl promoter element and activates transcription of the testis-specific histone Hlt gene. J Cell Biochem, 2004, 91(2):375-383.
    23. Wolfe SA, Vanwert JM, Grimes SR. Transcription factor RFX4 binding to the testis-specific histone H1t promoter in spermatocytes may be important for regulation of H1t gene transcription during spermatogenesis. J Cell Biochem, 2008, 105(1):61-69.
    24. Wilkerson DC, Wolfe SA, Grimes SR. Spl and Sp3 activate the testis-specific histone H1t promoter through the H1t/GC-box. J Cell Biochem, 2002, 86(4):716-725.
    25. Wolfe SA, Grimes SR. Transcriptional repression of the testis-specific histone H1t gene mediated by an element upstream of the H1/AC box. Gene, 2003, 308:129-138.
    26. Kroft TL, Jethanandani P, McLean DJ, et a1. Methylation of CpG dinucleotides alters binding and silences testis-specific transcription directed by the mouse lactate dehydrogenase C promoter. Biol Reprod, 2001, 65(5):1522-1527.
    27. Sarg B, Chwatal S, Talasz H, et al. Testis-specific linker histone H1t is multiply phosphorylated during spermatogenesis. Identification of phosphorylation sites. J Biol Chem, 2009, 284(6):3610-3618.
    28. Rose KL, Li A, Zalenskaya I, et al. C-terminal phosphorylation of murine testis-specific histone H1t in elongating spermatids. J Proteome Res, 2008, 7(9):4070-4078.
    29. Taylor-Harris P, Swift S, Ashworth A. Zfyl encodes a nuclear sequence-specific DNA binding protein.FEBS Lett, 1995, 360(3):315-319.
    30. Weissig H, Narisawa S, Sikstrom C, et a1.Three novel spermatogenesis-specific zinc finger genes. FEBS Lett, 2003, 547(1-3):61-68.
    31. Yan W, Burns KH, Ma L, et al. Identification of Zfp393, a germ cell-specific gene encoding a novel zinc finger protein. Mech Dev, 2002, 118(1-2):233-239.
    32. Zhang SZ, Qiu WM, Wu H, et a1. The shorter zinc finger protein ZNF230 gene message is transcribed in fertile male testes and may be related to human spermatogenesis. Biochem, 2001, 359(PT3): 721-727.
    33. Qiu W, Zhang S, Xiao C, et a1. Molecular cloning and characterization of a mouse spermatogenesis related ring finger gene znf230. Biochem Biophys Res Commun, 2003, 306(2):347-353.
    34. Tseden K, Topaloglu O, Meinhardt A, et al. Premature translation of transition protein 2 mRNA causes sperm abnormalities and male infertility. Mol Reprod Dev, 2007, 74(3):273-279.
    35. Yu YE, Zhang Y, Unni E, et al. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci U S A, 2000, 97:4683–4688.
    36. Zhao M, Shirley CR, Yu YE, et a1. Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol, 2001, 21(21): 7243-7255.
    37. Adham IM, Nayernia K, Burkhardt-G?ttges E, et al. Teratozoospermia in mice lacking the transition protein 2 (Tnp2). Mol Hum Reprod, 2001, 7(6):513-520.
    38. Zhao M, Shirley CR, Mounsey S, et al. Nucleoprotein transitions during spermiogenesis in mice with transition nuclear protein Tnp1 and Tnp2 mutations. Biol Reprod, 2004, 71(3):1016-1025.
    39. Zhao M, Shirley CR, Hayashi S, et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis, 2004, 38(4):200-213.
    40. Shirley CR, Hayashi S, Mounsey S, et al. Abnormalities and reduced reproductive potential of sperm from Tnp1- and Tnp2-null double mutant mice. Biol Reprod. 2004, 71(4):1220-1229.
    41. Saunders PT, Gaughan J, Saxty BA, et a1. Expression of protamine P2 in the testis of the common marmoset and man visualized using non-radioactive in-situ hybridization. Int J Androl, 1996, 19(4):212-219.
    42. Wykes SM, Visscher DW, Krawetz SA. Haploid transcripts persist in mature human spermatozoa. Mol Hum Reprod, 1997, 3(1):15-19.
    43. Steger K, Pauls K, Klonisch T, et al. Expression of protamine-1 and -2 mRNA during human spermiogenesis. Mol Hum Reprod. 2000, 6(3):219-225.
    44. Grzmil P, Boinska D, Kleene KC, et al. Prm3, the fourth gene in the mouse protamine gene cluster, encodes a conserved acidic protein that affects sperm motility. Biol Reprod. 2008, 78(6):958-967.
    45. Cho C, Willis WD, Goulding EH, et al. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet, 2001, 28(1):82-86.
    46. Song GJ, Lee H, Park Y, et a1. Expression pattern of germ cell-specific genes in the testis of patients with nonobstructive azoospermia: usefulness as a molecular marker to predict the presence of testicular sperm. Fertil Steril, 2000, 73(6):1104-1108.
    47. Cho C, Jung-Ha H, Willis WD, et a1. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod, 2003, 69(1):211-217.
    48. Tanaka H, Miyagawa Y, Tsujimura A, et al. Single nucleotide polymorphisms in the protamine-1 and -2 genes of fertile and infertile human male populations. Mol Hum Reprod, 2003, 9: 69–73.
    49. Rossi P, Sette C, Dolei S, et a1. Role of c-kit in mammalian spermatogenesis. J Endocrinol Invest, 2000, 23(9):609-615.
    50. Vigodner M, Lewin LM, Shochat L, et a1. Spermatogenesis in the golden hamster: the role of c-kit. Mol Reprod Dev, 2001, 60(4): 562-568.
    51. Nagao Y. Definitive expression of c-mos in late meiotic prophase leads to phosphory1ation of a 34 kda protein in cultured rat spermatocytes. Cell Bio1 Int, 2002, 26(2):193-201.
    52. Kharbanda S, Pandcy P, Morris PL, et a1. Functiona1 role for the c-Abl tyrosine kinase in meiosis I. Oncogene, 1998, 16(14):1773-1777.
    53. Wolfes H, Kogawa K, Millette C F, et al. Specific expression of nuclear proto-oncogenes before entry into meiotic prophase of spermatogenesis. Science, 1989, 245(4919):740-743.
    54. Kodaira K, Takahashi R, Hirabayashi M, et a1. Over-expression of c-myc induces apoptosis at the prophase of meiosis of rat primary spermatocytes. Mo1 Reprod Dev, 1996, 45(4):403-410.
    55. Latham KE, Litvin J, Orth JM, et a1. Temporal patterns of A-myb and B-myb gene expression during testis development. Oncogene, 1996, 13(6):1161-1168.
    56. Fujisawa M, Shirakawa T, Fujioka H, et al. Adenovirus-mediated p53 gene transfer to rat testis impairs spermatogenesis. Arch Androl, 2001, 46(3):223-331.
    57.黄海燕,吴燕婉,李伟雄。哺乳动物精子发生过程中的调节信号。国外医学:计划生育分册,2002,21(3):169-172.
    58. Gottlieb B, Pinsky L, Beitel LK, et a1. Androgen insensitivity. Am J Med Genet, 1999, 89(4): 210-217.
    59. Wang RS, Yeh S, Tzeng CR, et al. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev. 2009, 30(2):119-132.
    60. Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res, 1994, 22(15): 3181-3186.
    61. Choong CS, Kemppainen JA, Zhou ZX, et a1. Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol, 1996, 10(12):1527-1535.
    62. Patrizio P, Leonard DG, Chen KL, et al. Larger trinucleotide repeat size in the androgen receptor gene of infertile men with extremely severe oligozoospermia.J Androl, 2001, 22(3):444-448.
    63. Badran WA, Fahmy I, Abdel-Megid WM, et al. Length of Androgen Receptor-CAG Repeats in Fertile and Infertile Egyptian Men.J Androl. 2009, Jan 22. [Epub ahead of print]
    64. Westerveld H, Visser L, Tanck M, et al. Fertil Steril. CAG repeat length variation in the androgen receptor gene is not associated with spermatogenic failure. 2008, 89(1):253-259.
    65. Vornberger W, Prins G, Musto NA, et a1. Androgen receptor distribution in rat testis: new implications for androgen regulation of spermatogenesis. Endocrinology, 1994, 134(5):2307-2316.
    66. Zhou X, Kudo A, Kawakami H, et al. Immunohistochemical localization of androgen receptor in mouse testicular germ cells during fetal and postnatal development. Anat Rec, 1996, 245(3):509-518.
    67. Merlet J, Racine C, Moreau E, et al. Male fetal germ cells are targets for androgens that physiologically inhibit their proliferation. Proc Natl Acad Sci U S A. 2007, 104(9):3615-3620.
    68. Chang C, Chen YT, Yeh SD, et al. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci USA, 2004, 101(18):6876–6881.
    69. De Gendt K, Swinnen JV, Saunders PT, et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci USA, 2004, 101(5):1327–1332.
    70. Holdcraft RW, Braun RE. Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development, 2004, 131(2):459–467.
    71. Xu Q, Lin HY, Yeh SD, et al. Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine, 2007, 32(1):96-106.
    72. Tsai MY, Yeh SD, Wang RS, et al. Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc Natl Acad Sci U S A, 2006, 103(50):18975-80.
    73. Parmentier M, Libert F, Maenhaut C, et a1. Molecular cloning of the thyrotropin receptor. Science, 1989, 246(4937):1620-1622.
    74. Heckert L, Griswold MD. Expression of the FSH receptor in the testis. Recent Prog Horm Res. 1993, 48:61-77.
    75. Kliesch S, Penttil? TL, Gromoll J, et a1. FSH receptor mRNA is expressed stage-dependently during rat spermatogenesis. Mol Cell Endocrinol, 1992, 84(3): R45-R49.
    76.陈雪雁,陈实平,金淑敏,等。雄激素受体和卵泡刺激素受体在成年大鼠睾丸中的期依赖性表达。解剖学报,2001,32(4):365-369.
    77. Huhtaniemi I, Alevizaki M. Gonadotrophin resistance. Best Pract Res Clin Endocrinol Metab. 2006, 20(4):561-576.
    78. Sipil? K, Aula P. Database for the mutations of the Finnish disease heritage. Hum Mutat, 2002, 19(1):16-22.
    79. Yao YQ, Xu JS, Lee WM, et al. Identification of mRNAs that are up-regulated after fertilization in the murine zygote by suppression subtractive hybridization. Biochem Biophys Res Commun, 2003, 304(1): 60-66.
    80. Yu SS, Takenaka O. Molecular cloning, structure, and testis-specific expression of MFSJ1, a member of the DNAJ protein family, in the Japanese monkey (Macaca fuscata). Biochem Biophys Res Commun, 2003, 301(2): 443-449.
    81. Bonilla E, Xu EY. Identification and characterization of novel mammalian spermatogenic genes conserved from fly to human. Mol Hum Reprod, 2008, 14(3):137-142.
    82. Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A, 2003, 100(21):12201-12206.
    83. Guo R, Yu Z, Guan J, et al. Stage-specific and tissue-specific expression characteristics of differentially expressed genes during mouse spermatogenesis. Mol Reprod Dev, 2004, 67(3):264-272.
    84. Rossi P, Dolci S, Sette C, et al. Analysis of the gene expression profile of mouse male meiotic germ cells. Gene Expr Patterns, 2004, 4(3):267-281.
    85. Williams CJ, Schultz RM. Transgenic RNAi: a tool to study testis-specific genes. Mol Cell Endocrinol, 2006, 247:1-3.
    86. Shoji M, Chuma S, Yoshida K et al. RNA interference during spermatogenesis in mice. Dev Biol, 2005, 282:524-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700