磁控溅射制备氮化铜薄膜及其掺杂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu_3N薄膜是一种以共价键结合的亚稳态半导体材料,具有热分解温度低、电阻率高、在红外和可见光波段反射率低等特点,成为近年来光存储和微电子半导体等领域中备受瞩目的新型应用材料。Cu_3N晶体为反三氧化铼(anti-ReO_3)型简立方结构,由于Cu原子并未占据Cu_3N晶胞的体心位置,其它原子填充到其体心空位,将引起薄膜光学和电学性质的显著变化。
     本论文采用反应直流磁控溅射法在不同氮气流量下制备了Cu_3N薄膜,采用磁控双靶反应共溅射法制备了Ni掺杂的Cu_3N薄膜。用XRD、EDS、SEM、UV-VIS、表面轮廓仪、四探针和显微硬度仪等现代材料分析技术,研究了氮气流量和Ni掺杂对Cu_3N薄膜结构和性能的影响。结果表明:
     (1)氮气流量的改变影响了Cu_3N薄膜的晶体结构和择优生长取向。当氮气流量增高时,薄膜由Cu_3N (111)晶面择优生长转变为(100)面择优生长;薄膜的沉积速率在氮气流量为15sccm时有极大值,电阻率随流量的增长呈U型变化,显微硬度也受到一定影响。实验表明,5~10sccm的氮气流量是生长良好择优取向Cu_3N薄膜的最适宜流量条件。
     (2)Ni的掺入并未影响Cu_3N薄膜晶体结构和沿(111)晶面的择优生长,但使(111)衍射峰强度减弱,并向小角度偏移,薄膜晶格常数和晶粒尺寸变大、表面形貌更为粗糙,Ni的过量掺杂会导致薄膜无法形成Cu_3N相。紫外-可见反射谱表明,Ni的掺杂使薄膜在红外和可见光区域的反射率显著降低,与热分解后的铜镍合金膜有较大差异,显示出作为光存储材料的良好性质。此外,薄膜的电阻率也随Ni的掺入而迅速减小,实现从半导体向导体的过渡。
Copper nitride thin film (Cu_3N) is a metastable semiconducting material,which is formed through the covalent bonding between Cu and N atoms. With the low decomposition temperature, high resistivity and reflectance of infrared and visible band, Cu_3N has been attracting considerable attention as a new material applicable in optical storage and microelectronics. Moreover, Cu_3N is also an excellent host structure since it has the cubic anti-ReO_3 structure in which Cu atoms do not occupy the body center of the cubic unit cell, such that an additional atom can be inserted into the body center. This will cause remarkable changes in optical and electrical properties of this material.
     In this paper, Cu_3N films were deposited by reactive DC magnetron sputtering at various N_2-gas flow rates, Cu_3NixN films were prepared by co-sputtering of Ni and Cu targets. The films were characterized by XRD, EDS, SEM, UV-VIS, Profilometer, Four-probe and Microhardness Tester. From the experimental values, we studied the effects of doping Ni and N_2-gas flow rates on the structure and properties of Cu_3N films, the conclusions which have been made are as follows:
     (1) The N_2-gas flow rate affects the crystal structure and the preferred orientation of Cu_3N films. The deposited films prefer to being (111)-oriented at low N_2-gas flow rate but (100)-oriented at high one. The deposition rate of the films got a maximum when the N_2-gas flow rate was 15sccm. With the increasing of N_2-gas flow rate, the resistivity increased and then decreased, the microhardness was also affected. The optimum N_2-gas flow rate for producing high-quality and well-oriented Cu_3N films are 5~10sccm in this system.
     (2) The addition of Ni to Cu_3N films does not modify the film crystal structure and the preferred orientation, but the intensity of diffraction peak (111) reduced, and the position shifted a little angle with the contents of Ni to Cu_3N films increased, as also as the larger of the lattice constant. The Cu_3N phase disappeared when the contents of Ni excess. Furthermore, of infrared and visible, the alloy film of Cu and Ni obtained by the thermal decomposition showed a large difference in reflectance, which is applicable to the optical recording media. The electrical resistivity decreased greatly when the contents of Ni to Cu_3N films increased, which have made the films changed from semiconductor to conductor.
引文
[1] Asano M, Umeda K, Tasaki A. Cu3N Thin Film for a New Light Recording Media [J]. Jpn. J. Appl. Phys., 1990, 29(10): 1985-1986.
    [2] Maruyama T, Morishita T. Copper Nitride and Tin Nitride Thin Films for Write-once Optical Recording Media [J]. Appl. Phys. Lett., 1996, 69(7): 890-891.
    [3] Zhenguo Ji, Yahong Zhang, Yuan Yuan, et al. Reactive DC magnetron deposition of copper nitride films for write-once optical recording [J]. Materials Letters, 2006, 60:3758-3760.
    [4] Nawel Kanoun-Bouayed, Mohammed Benali Kanoun, Souraya Goumri-Said. Structural stability, elastic constants, bonding characteristics and thermal properties of zincblende, rocksalt and fluorite phases in copper nitrides: plane-wave pseudo-potential ab initio calculations [J]. Central European Journal of Physics, 2010, 9:205-212.
    [5] Byoung Se Lee, Mihye Yi, So Young Chu, et al. Copper nitride nanoparticles supported on a super-paramagnetic mesoporous microsphere for toxic-free click chemistry [J]. Chem. Commum., 2010, 46:3935-3937.
    [6] Nosaka T, Yoshitakea M, Okamotoa A, et al. Thermal Decomposition of Copper Nitride Thin Films and Dots Formation by Electron Beam Writing [J]. Applied Surface Science, 2001, 169-170: 358-361.
    [7] Liu Z Q, Wang W J, Wang T M, et al. Thermal Stability of Copper Nitride Films Prepared by RF Magnetron Sputtering [J]. Thin Solid Films, 1998, 325: 55-59.
    [8] Maya L. Deposition of Crystalline Brandy Nitride Films of Ti, Copper and Nickel by Reactive Sputtering [J]. J. Vac. Sci. Technol. A, 1993, 11: 604-608.
    [9] Maruyama T, Morishita T. Copper Nitride Thin Films Prepared by Radio-frequency Reactive Sputtering [J]. J. Appl. Phys., 1995, 78 (6):4104.
    [10] R. Juza, H. Hahn, Z. Anorg. Crystal structure and pair potentials: A molecular-dynamics study [J]. Allg. Chem., 1939, 241:172.
    [11] Nosaka T, Yoshitakea M, Okamoto A. Copper nit ride thin films prepared by reactive radio frequency magnetron sputtering [J]. Thin Solid Films, 1999, 348:8-13.
    [12] Terada S, Tanaka H, Kubota K. Hetero Epitaxial Growth of Cu3N Thin Films [J]. J. Cryst. Growth, 1989, 94: 567-568.
    [13] Blucher J, Bang K, Giessen B C. Preparation of the metastable interstitial copper nitride, Cu4N, by d.c. plasma ion nitriding [J]. Materials Science and Engineering A, 1989, 117: 1-3.
    [14]吴志国,张伟伟,白利峰,等.纳米Cu3N薄膜的制备与性能[J].物理学报, 2005, 54:1687-1962.
    [15]岳光辉,闫鹏勋,刘金良,等.多晶氮化铜薄膜制备及性能研究[J].人工晶体学报, 2005, 34:344-34.
    [16] J. Wang, J.T. Chen, X.M. Yuan, et al. Copper nitride (Cu3N) thin ?lms deposited by RF magnetron sputtering [J]. Journal of Crystal Growth, 2006, 286:407-412.
    [17] A.L. Ji, R. Huang, Y. Du, et al. Growth of stoichiometric Cu3N thin ?lms by reactive magnetron sputtering [J]. Journal of Crystal Growth, 2006, 295: 79-83.
    [18] X.M. Yuan, P.X. Yan, J.Z. Liu. Preparation and characterization of copper nitride films at various nitrogen contents by reactive radio-frequency magnetron sputtering [J], Materials Letters, 2006, 60:1809-1812.
    [19] C. Gallardo-Vega, W. dela Cruz. Study of the structure and electrical properties of the copper nitride thin ?lms deposited by pulsed laser deposition [J]. Applied Surface Science, 2006, 252:8001-8004.
    [20] Terao N, Acad CR [J]. Sci. Paris. Ser. B, 1973, 277: 595-598.
    [21] Hahn U, Weber W. Electronic Structure and Chemical-bonding Mechanism of Cu3N, Cu3NPd, and Related Cu(I) Compounds [J]. Phys. Rev. B, 1996, 53:12684-12693.
    [22] U. Achwieja, H. Jacobs. Ammonothermalsynthese von kupfernitrid, Cu3N [J]. Journal of the Less-Common Metals, 1990, 161:175-184.
    [23] J. Choi, E.G. Gillan. Solvothermal Synthesis of Nanocrystalline Copper Nitride from an Energetically Unstable Copper Azide Precursor [J]. Inorg. Chem., 2005, 44:7385-7893.
    [24] X.Y. Fan, Z.G. Wu, P.X. Yan, et al. Fabrication of well-ordered CuO nanowire arrays by direct oxidation of sputter-deposited Cu3N film [J]. Materials Letters, 2008, 63:1805-1808.
    [25] Ma. Guadalupe Moreno-Armenta, William Lopez Perez1, Noboru Takeuchi. First-principles calculations of the structural and electronic properties of Cu3MN compounds with M= Ni, Cu, Zn, Pd, Ag, and Cd [J]. Solid State Sciences, 2007, 9:166-172.
    [26] Fakhili Gulo, Arndt Simon, Jurgen Kohler, et al. Li-Cu Exchange in Intercalated Cu3N-With a Remark on Cu4N [J]. Angew. Chem. Int. Ed., 2004, 43:2032-2034.
    [27] Ma. Guadalupe Moreno-Armenta, Gerardo Soto. Stability and electronic structure of intrinsic and intercalated copper nitride alloys [J]. Solid State Sciences, 2008, 10:573-579.
    [28] X.Y. Fan, Z.G. Wu, G.A. Zhang, et al. Ti-doped copper nitride ?lms deposited by cylindrical magnetron sputtering [J]. Journal of Alloys and Compounds, 2007, 440:254-258.
    [29] A. Rahmati, H. Bidadi, K. Ahmadi, et al. Ti substituted nano-crystalline Cu3N thin films [J]. J. Coat. Technol. Res., 2011, 8(2):289-297.
    [30] J.F. Pierson, D. Horwat. Addition of silver in copper nitride ?lms deposited by reactive magnetron sputtering [J]. Scripta Materialia, 2008, 58:568-570.
    [31] Xing-Ao Li, Zu-Li Liu, Zuo-Bin Yuan, et al. Study on Cu-X-N (X= Al, Fe and La) films prepared by reactive magnetron sputtering [J]. Nanoscience, 2006, 11(4):276-280.
    [32] Li Xing’ao, Liu Zuli, Zuo Anyou, et al. Properties of Al-doped Copper Nitride Films Prepared by Reactive Magnetron Sputtering [J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2007, 22(3):446-449.
    [33] Li XA, Yang JP, Zuo AY, et al. La-doped Copper Nitride Films Prepared by Reactive Magnetron Sputtering [J]. Journal of Materials Science & Technology, 2009, 25:233-236.
    [34]李兴鳌,刘祖黎,左安友,等.磁控溅射制备铁掺杂氮化铜薄膜的研究[J].材料导报, 2006, 20(12):141-143.
    [35] Ailing Ji, Du Yun, Lei Gao, et al. Crystalline thin films of stoichiometric Cu3N and intercalated Cu3NMx (M = metals): Growth and physical properties [J]. Phys. Status Solidi A, 2010, 207(12): 2769-2780.
    [36] L. Gao, A.L. Ji, W.B. Zhang, et al. Insertion of Zn atoms into Cu3N lattice: Structural distortion and modification of electronic properties [J].Journal of Crystal Growth, 2011, 321:157-161.
    [37]陈小松,尹玉丽,张昌印,等. Ni掺杂对Cu3N薄膜结构与性能的影响[J].信息记录材料, 2010, 11(3):52-55.
    [38] Jun Wang, Jiang Tao Chen, Guang An Zhang. Structure, Electrical and Optical Properties of Ni-Doped Cu3N Films Deposited by Radio Frequency Magnetron Sputtering [J]. Advanced Materials Research, 2011, 150-151:72-75.
    [39] Shihong Zhang, Yinsheng He, Mingxi Li,et al. Synthesis and characterization of Cu3N-WC nanocomposite ?lms prepared by direct current magnetron sputtering [J]. Thin Solid Films, 2010, 518:5227–5232.
    [40] Y. Hayashi, T. Ishikawa, D. Shimokawa, et al. Modification of electrical and optical properties of metal nitride thin films by hydrogen inclusion [J]. Journal of Alloys and Compounds, 2002, 348:330-332.
    [41] Y. Hayashi. Hydrogen effect on the optical and electrical properties of metal oxide and nitride thin films [J]. International Journal of Hydrogen Energy, 2006, 31: 307-308.
    [42] Wang, J.Chen, J.T.Miao, et al. The effect of hydrogen on Cu3N thin films deposited by radio frequency magnetron sputtering [J]. Journal of Applied Physics, 2006, 100(10):3509-3515.
    [43] G. Zhang, P. Yan, Z. Wu, et al. The effect of hydrogen on copper nitride thin films deposited by magnetron sputtering [J]. Applied Surface Science, 2008, 254:5012-5015.
    [44] A. von Richthofen, R. Domnick, R. Cremer, et al. Preparation of a new tetragonal copper oxynitride phase by reactive magnetron sputtering [J]. Thin Solid Films, 1998, 317:282-284.
    [45] Y. Du, R. Huang, R. Song, et al. Effect of oxygen inclusion on microstructure and thermal stability of copper nitride thin films [J]. J. Mater. Res., 2007, 22:3052-3057.
    [46] F. Fendrych, L. Soukup, L. Jastrabk, et al. Cu3N films prepared by the low-pressure r.f. supersonic plasma jet reactor: Structure and optical properties [J]. Diamond and Related Materials, 1999, 8:1715-1719.
    [47] L. Soukup, M. Sicha, F. Fendrych, et al. Copper nitride thin films prepared by the RF plasma chemical reactor with low pressure supersonic single and multi-plasma jet system [J]. Surface and Coatings Technology, 1999, 116:321-326.
    [48] D.M. Borsa, D.O. Boerma. Growth, structural and optical properties of Cu3N films [J]. Surface Science, 2004, 548:95-105.
    [49] Kim K J, Kim J H, Kang J H. Structural and Optical Characterization of Cu3N Films Prepared by Reactive RF Magnetron Sputtering [J]. J. Cryst. Growth, 2001, 222: 767-772.
    [50] K. Venkata Subba Reddy, A. Sivasankar Reddy, P. Sreedhara Reddy et al. Copper nitride films deposited by dc reactive magnetron sputtering [J]. J. Mater. Sci.: Mater Electron, 2007, 18(10):1003-1008.
    [51] N. Gordillo, R. Gonzalez-Arrabal, M. Martin-Gonzalez, et al. DC triode sputtering deposition and characterization of N-rich copper nitride thin films: Role of chemical composition [J]. Journal of Crystal Growth, 2008, 310:4362-4367.
    [52] J.F. Pierson. Structure and properties of copper nitride films formed by reactive magnetron sputtering [J]. Vacuum, 2002, 66: 59-64.
    [53] J.F. Pierson, Influence of Bias Voltage on Copper Nitride Films Deposited by Reactive Sputtering [J]. Surface Engineering, 2003, 19(3): 67-69.
    [54] G.H. Yue, P.X. Yan, J. Z. Liu, et al. Copper nitride thin film prepared by reactive radio- frequency magnetron sputtering [J]. Journal of Applied Physics, 2005, 98(10): 3506-3513.
    [55] G.H. Yue, P.X. Yan, J. Wang. Study on the preparation and properties of copper nitride thin films [J]. Journal of Crystal Growth, 2005, 274:464-468.
    [56] J.F. Pierson, D. Wiederkehr, A. Billard. Reactive magnetron sputtering of copper, silver, and gold [J]. Thin Solid Films, 2005, 478:196-205.
    [57] G.H. Yue, J.Z. Liu, M. Li, et al. Hall effect of copper nitride thin films [J]. Phys. Stat. Sol., 2005, 10:1987-1993.
    [58] Y. Du, A.L. Ji, L.B. Ma, et al. Electrical conductivity and photoreflectance of nanocrystalline copper nitride thin films deposited at low temperature [J]. Journal of Crystal Growth, 2005, 280:490-494.
    [60] Borsa D M, Grachev S , Presura C, et al. Growth and properties of Cu3N films and Cu3N/γ′2 Fe4N bilayers [J ]. Appl. Phys. Lett., 2002, 80 (10) :1823.
    [61] Pereiran, Dupontl L, Tarascon JM, et al. Electrochemistry of Cu3N with lithium [J]. J Electrochemical Society, 2003, 150 (9):1273-1280.
    [62] S. Bach, J.P. Pereira Ramos, J. B. Ducrosand, et al. Structural and electrochemical properties of layered lithium nitridocuprates Li3?x Cu x N [J]. Solid State Ionics, 2009, 18: 231-235.
    [63]刘震,吴峰.氮化铜薄膜作为锂离子电池的负极材料[J].电源技术研究与设计, 2008, 03:0154-0158.
    [64] T.Wang, X.J.Pan, X.M.Wang, et al. Field emission property of copper nitride thin film deposited by reactive magnetron sputtering [J]. Applied Surface Science, 2008, 254:6817-6819.
    [65] http://webofknowledge.com
    [66] LIU Zuli, LI Xing’ao, ZUO Anyou, et al. E?ect of N2-Gas Partial Pressure on the Structure and Properties of Copper Nitride Films by DC Reactive Magnetron Sputtering [J]. Plasma Science and Technology, 2007, 9: 147-151.
    [67]肖剑荣,徐慧,李燕锋,等.氮分压对氮化铜薄膜结构及光学带隙的影响[J].物理学报, 2007, 56(7):4169-4174.
    [68] D. Dorranian, L. Dejam, A. H. Sari, et al. Structural and optical properties of copper nitride thin films in a reactive Ar/N2 magnetron sputtering system [J]. Eur. Phys. J. Appl. Phys., 2010, 50: 20503-20510.
    [69] F. Hadian, A. Rahmati, H. Movla, et al. Reactive DC magnetron sputter deposited copper nitride nano-crystalline thin films: growth and characterization [J]. Vacuum, 2011, 11:337.
    [70] Hui Li, Yan Feng Liu, Ming Guo, et al. Copper Nitride Films Prepared by Reactive Radio-Frequency Magnetron Sputtering [J]. Advanced Materials Research, 2011, 374-377: 1515-1518.
    [71] Jianrong Xiao, Yanwei Li, Aihua Jiang. Structure, Optical Property and Thermal Stability of Copper Nitride Films Prepared by Reactive Radio Frequency Magnetron Sputtering [J]. J. Mater. Sci. Technol., 2011, 27(5):403-407.
    [72]肖剑荣,蒋爱华.氮化铜薄膜的研究[J].材料导报, 2009, 23(11):115-117.
    [73]岳光辉,闫鹏勋.氮化铜薄膜的制备及其物理性能[J].人工晶体学报.2005, 34:149-154.
    [74]张昌印,陈小松,尹玉丽. Cu3N薄膜制备及其性能研究[J].信息记录材料, 2010, 11(4):60-64.
    [75]李兴鳌,杨建平,左安友,等.基底温度对直流磁控溅射制备氮化铜薄膜的影响研究[J].材料导报, 2010, 24(2):90-93.
    [76]左安友,袁作彬,杨建平,等.磁控溅射制备氮化铜薄膜的热稳定性研究[J].材料导报, 2007, 21(12):141-144.
    [77] R. Gonzalez-Arrabal, N. Gordillo, M. S. Martin-Gonzalez . et al. Thermal stability of copper nitride thin films: The role of nitrogen migration [J]. J. Appl. Phys., 2010, 107(103513):1-7.
    [78] CUI Zeng-li, HUANG Zhi-xin, GUO Ji-hua. Studies on Preparation and Properties of Cu3N Thin Films [J]. Nanoscience & Nanotechnology, 2009, 47:1812-1918.
    [79] QIAN Xianyi, HUANG Zhixin, CUI Zengli. et al. Effect of the Sputtering Parameters on the Structure and Properties of Cu3N Thin Film Materials [J]. Journal of Wuhan University of Technology-Mater, 2010, 25(6): 935-937.
    [80] Maria G.Moreno-Armenta, GerardoSoto, Noboru Takeuchi. Ab initio calculations of non- stoichiometric copper nitride, pure and with palladium [J]. Journal of Alloys and Compounds, 2011, 509(5):1471-1476.
    [81]李世娜,刘永. Cu3N弹性和热力学性质的第一性原理研究[J].物理学报,2010, 59(10):6882-6888.
    [82]王明旭,岳光辉,范晓彦,等. Cu3N薄膜的制备及其霍尔效应研究[J].人工晶体学报, 2006, 35(5) :1108-1112.
    [83] Shihong Zhang, Yinsheng He, Mingxi Li. Synthesis and characterization of Cu3N-WC nanocomposite films prepared by direct current magnetron sputtering [J]. Thin Solid Films, 2010, 518:5227–5232.
    [84] Klug P, Alexander L E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials [M]. Second edition, Wiley, New York, 1974: 687-708.
    [85] YANG L X, ZHAO J G, YU Yong, et al. Metallization of Cu3N Semiconductor under High Pressure [J]. Chinese Phys. Lett., 2006, 23(2):426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700