生长因子及表观修饰对牛卵泡发育的调控及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物在胚胎时期有数十万个原始卵母细胞,但一生只能生产几个到几百个后代,卵母细胞利用率极低。迄今,有关有腔卵泡发育的调控机制基本清楚,有腔卵泡体外成熟的技术相对成熟。然而,有关腔前卵泡发育的调节机制虽然报道很多,但尚无定论,以致腔前卵泡体外培养与体成熟的技术还不完善,成为世界级研究热点和难点。为探讨腔前卵泡发育的调节机制,促进腔前卵泡体外培养、体外成熟、幼畜超排等技术的发展,提高卵泡利用率,本研究应用Q-PCR、West-blot、CHIP、BSP和基因免疫等技术,从DNA甲基化和组蛋白乙酰化角度分析了牛卵泡发育的表观遗传修饰作用;从基因表达模式和表观修饰调控两方面分析了生长因子GDF9(生长分化因子-9)和BMP15(骨形态发生蛋白-15)对卵泡发育的调控规律;从基因表达模式、DNA甲基化和组蛋白乙酰化等方面系统研究了抑制素对牛卵泡发育的调控及其分子机制;另从基因免疫角度通过体内、体外两种途径分析了生长抑素(SS)对牛卵泡发育的调控作用。主要研究内容和结果如下:
     1.DNA甲基化和组蛋白乙酰化表观修饰对牛卵泡发育的调控作用研究
     应用Q-PCR方法分析表观修饰相关酶类(DNMTs、HDACs、HAT1)在卵泡发育过程的变化规律,揭示在卵泡发育不同时期的表观修饰调节作用;通过体外添加甲基化转移酶抑制剂5-氮脱氧胞苷(5-aza-dc)及去乙酰化酶抑制剂丁酸钠(NaB),分析这两种抑制剂对卵母细胞和颗粒细胞相关表观修饰酶类的调控及卵母细胞成熟率的影响。研究结果如下
     (1)DNA甲基化和组蛋白乙酰化作用参与调节牛卵泡发育。DNA甲基化转移酶基因DNMT1、DNMT3a和DNMT3b的表达量随着卵泡的发育逐渐增高(P<0.05);去乙酰化酶HDAC1和乙酰化转移酶HAT1的表达量也随着卵泡发育逐渐增高(P<0.05),而HDAC2仅在中卵泡阶段显著表达(P<0.05);所有表观修饰酶类的表达量在即将排卵前卵泡都有所回落。表观修饰酶类的时空特异性表达揭示牛卵泡发育不同阶段的调控作用有差异。
     (2)DNA甲基化和组蛋白乙酰化作用参与卵母细胞成熟的调控。抑制剂5-aza-dc和NaB通过下调DNMT1、DNMT3b、HDAC1和HDAC2的表达(P<0.05),抑制DNA甲基化和组蛋白去乙酰化作用的发生,显著提高卵母细胞的成熟率(P<0.05)。
     2.GDF9和BMP15对牛卵泡发育的调控作用研究
     将牛卵泡按直径大小分为5个级别(<0.2mm;0.2-2mm;2-5mm;5-8mm;>8mm),即腔前卵泡、小卵泡、中卵泡、大卵泡及排卵前卵泡,应用Q-PCR及West-blot方法从mRNA及蛋白两个水平阐述不同时期卵泡中GDF9和BMP15基因的表达规律;分析经抑制剂5-aza-dc和NaB处理后COCs中GDF9和BMP15基因的表达变化。研究结果如下:
     (1)GDF9和BMP15在腔前卵泡、小卵泡、中卵泡、大卵泡和排卵前卵泡呈差异转录。GDF9和BMP15在小卵泡和大卵泡时期表达量显著增高(P<0.05)这种时空特异性表达揭示其参与调控牛的卵泡发育,主要在腔前卵泡期、排卵和黄体形成时发挥重要作用。
     (2)GDF9和BMP15蛋白在腔前卵泡、小卵泡、中卵泡、大卵泡和排卵前卵泡呈差异表达。GDF9和BMP15的表达量随着卵泡的发育不断增高(P<0.05),但在即将排卵前又有所下降。
     (3)抑制剂5-aza-dc和NaB通过下调DNMT1、DNMT3b、HDAC1和HDAC2的表达量(P<0.05),抑制DNA甲基化和组蛋白去乙酰化作用的发生,从而提高COCs中GDF9和BMP15基因的转录水平(P<0.05)。
     3.INHα对牛卵泡发育的调控作用及机制研究
     应用Q-PCR及、Vest-blot方法从mRNA及蛋白两个水平阐述不同时期卵泡中INHa基因的表达规律;分析抑制剂5-aza-dc和NaB处理后GCs中INHa基因的表达变化;利用活性分析筛选INHa的核心启动子;构建完全甲基化的启动子载体和P300结合位点突变载体,分析启动子活性,确定DNA甲基化和P300乙酰化的调节作用;用CHIP方法验证乙酰化作用对启动子的调控机制;用BSP法分析4个级别牛卵泡(0.2-2mm;2-5mm;5-8mm;>8mm)中CpG岛区的甲基化状态,最终阐明表观修饰作用对INHα启动子的调控机制。研究结果如下:
     (1)INHa在腔前卵泡、小卵泡、中卵泡、大卵泡和排卵前卵泡呈差异转录和表达(P<0.05)。INHa的转录水平在中卵泡和排卵前卵泡中显著增高(P<0.05),其蛋白表达随着卵泡的发育持续增高(P<0..05)。INHα在卵泡发育过程中的差异表达揭示其对FSH刺激产生应答,并负反馈调控GDF9和BMP15的表达,对优势卵泡形成和排卵有重要作用。
     (2)DNA甲基化和组蛋白乙酰化作用通过启动子调控INHα基因的转录。牛颗粒细胞INHa的核心启动子长度为1294bp(-1017bp-+277bp),抑制剂5-aza-dc和NaB抑制DNA甲基化和组蛋白去乙酰化作用的发生,能显著增强INHα的启动子活性(P<0.05),提高INHα基因的转录水平(P<0.05)。启动子区CpG位点完全甲基化可以显著降低INHa的启动子活性(P<0.05)。
     (3)DNA甲基化作用抑制转录因子AP2a对INHa启动子-907--804和-345--197区段的激活作用。抑制DNA甲基化作用,能够显著提高AP2a转录因子同-907--804和-345--197两区段的结合率(P<0.05)。
     (4)组蛋白乙酰化作用介导P300对INHα启动子-345--197区段的调控作用。抑制组蛋白去乙酰化作用,可以显著提高INHα启动子-907--804和-345--197区段组蛋白H3的乙酰化水平(P<0.05);同时提高P300转录因子与-345--197区段的结合率(P<0.05)。
     (5)P300以桥梁或支架的形式发挥其乙酰化作用,参与-345--197区段的调控。-345--197区段结合位点突变能够显著增强INHa的启动子活性(P<0.05),显著增强P300同该区段的结合率(P<0.05),提高该区段组蛋白H3的乙酰化水平(P<0.05)。
     (6)INHα基因在卵泡发育中的表达变化不受近端启动子CpG岛DNA甲基化的影响。INHα启动子区CpG岛(大小131bp,位于-970bp到-840bp之间)在整个卵泡发育阶段的甲基化水平都极低(P>0.05),卵泡发育阶段INHα基因的表达变化同近端启动子CpG岛甲基化水平无关。
     4.SS对卵泡发育的调控作用研究
     从个体和细胞两个水平,分别用含生长抑素SS的pGM-CSF/SS质粒免疫雌鼠和转染颗粒细胞,分析SS对动物卵泡发育的调控作用。结果如下:
     (1)SS促进颗粒细胞凋亡,抑制卵泡发育。牛颗粒细胞过表达SS,可以诱导促凋亡基因Bax和P53的表达(P<0.05),下调凋亡抑制基因Bcl-2的表达(P<0.05),和雌激素分泌水平(P<0.05),促进颗粒细胞凋亡(P<0.05),抑制卵泡发育。
     (2)SS基因免疫可改善雌鼠的繁殖性能。小鼠免疫SS基因疫苗可促进雌激素分泌(P<0.05),缩短雌鼠的发情周期(P<0.05)。
Although several hundred thousand original oocytes exist in embryonic period of mammals, there is only a few to hundreds of generations, and it is very low in utilization of oocytes. In antral follicle, the mechanism of development and technology of maturation in vitro are well studied. However, the technology of maturation of preantral follicle in vitro is difficulty and focus in the world, because it is inconclusive of the mechanism of development. In order to clarify the mechanism of preantral follicular development, promote the process of developmental biology, improve the techniques of maturation of preantral follicle in vitro and superovulation of young animals, and improve the utilization of follicles. In present study, Q-PCR, West-blot, CHIP, BSP and gene immunization were used, to elucidate whether epigenetic modifications such as DNA methylation and histone acetylation were involved in follicular development; to study the regulation of GDF9 and BMP15 in follicular development via the expression profile during folliculogenesis and epigenetic modifications; to explore the regulation and mechanism of INHa in follicular development via the expression profile during folliculogenesis and epigenetic modifications such as DNA methylation and histone acetylation; to investigate the regulation of SS in follicular development via transfection bGCs and immunization female mice with SS plasmid. The main results are as follows:
     1. Study the epigenetic regulation of DNA methylation and histone acetylation in bovine follicular development
     To evaluate whether epigenetic modifications including DNA methylation and histone acetylation were involved in regulating bovine follicular development. Q-PCR analysis was utilized to determine expressions of several enzymes of DNA methylation and histone acetylation; to test expressions of DNMTs, HDACs, and HATs after treatments with inhibitors of DNA methylation and histone deacetylation; and oocyte maturing rate was also investigated after treatments with inhibitors. The results are as follows:
     (1) DNA methylation and histone acetylation were involved in regulating bovine follicular development. DNA methyltransferase DNMT1, DNMT3a, DNMT3b, and histone acetyltransferase HDAC1 and histone deacetylase HAT1 were triggered with follicular development (P<0.05), HDAC2 increased only at 2-5mm stage (P<0.05). However, expression levels of HAT, HDACs and DNMTs reduced in large follicles (diameter>8 mm). Differential expressions of epigenetic modified enzymes suggested that epigenetic switches were involved in regulating folliculogenesis.
     (2) DNA methylation and histone acetylation were involved in oocyte maturation. Inhibitors of 5-aza-dc and/or NaB enhanced oocyte maturing rate (P<0.05), by down-regulation of transcription of DNMT1, DNMT3b, HDAC1 and HDAC2 (P<0.05).
     2. Explore the regulation of GDF9 and BMP15 in bovine follicular development
     Expression profiles of GDF9 and BMP 15 genes in different follicular development stages were evaluated by Q-PCR and West-blot, the follicular development stages were divided into five groups according to the follicular diameter (preantral follicle:<0.2mm; small:0.2-2mm; medium:2-5mm; large:5-8mm; ovum:>8mm); Expressions of GDF9 and BMP 15 were investigated after treatments with inhibitors of DNA methylation and histone deacetylation.The results are as follows:
     (1) Transcriptions of GDF9 and BMP 15 were differential expression during follicular development. GDF9 and BMP 15 expression were up-regulated at 0.2-2 mm and 5-8 mm stage (P<0.05). Differential expressions of GDF9 and BMP 15 suggested the regulation in the non-steroid-dependent phase, ovulation and luteal formation during follicular growth.
     (2) Proteins of GDF9 and BMP 15 were differential expression during follicular development. The expression of BMP 15 and GDF9 increased with follicular growth (P<0.05), but decreased at>8 mm stage (P<0.05).
     (3) Inhibitors of 5-aza-dc and/or NaB activated expressions of GDF9 and BMP15 in COCs (P<0.05), by down-regulation of transcriptions of DNMT1, DNMT3b, HDAC1 and HDAC2 (P<0.05).
     3. Investigate the regulation and mechanism of INHαin bovine follicular development
     Expression profile of INHa gene in different follicular development stages was evaluated by Q-PCR and West-blot; regulation of inhibitors in INHa gene was tested; the center promoter of INHa was determined by relative activity; the activity of fully methylated promoter and mutating the p300-binding site in 1294 luc promoter were tested. The mechanism of histone acetylation in promoter was explored by CHIP; methylation status of the CpG island within INHa proximal promoter at different stage of follicle (small:0.2-2mm; medium:2-5mm; large:5-8mm; ovum:>8mm) was determined by BSP. The results are as follows:
     (1) Transcription and translation of INHa were differential expression during follicular development. Transcription of INHa was up-regulated at 2-5mm, and peaked at>8 mm stage (P<0.05). INHa protein increased followed with follicular development (P<0.05). Differential expression of INHa suggested the important role in response of FSH stimulation, negative feedback regulation of the expression of GDF9 and BMP 15, the formation and ovulation of the dominant follicle during follicular growth.
     (2) Promoter was the target of DNA methylation and histone acetylation to modify INHa gene expression.The center promoter of INHa was 1294bp (-1017bp~+277bp), the activity of pGL-1294 activated significantly (P<0.05), the expression of INHa increased (P<0.05) after suppressing DNA methylation and histone deacetylation by inhibitors of 5-aza and/or NaB. The activity of methylated promoter reduced (P<0.05).
     (3) DNA methylation suppress activation of AP2a transcription factor in-907~-804 and-345~-197 within INHa promoter. Relative binding of AP2a to-907~-804 and-345~-197 increased after suppressing DNA methylation (P<0.05).
     (4) Histone acetylation was involved in regulation of P300 transcription factor in-345~-197 within INHa promoter. After suppressing histone deacetylation, the levels of H3 acetylation in-907~-804 and-345~-197 increased (P<0.05), and relative binding of P300 to-345~-197 increased (P<0.05).
     (5) P300 as bridge or stand was involved in regulation of-345~-197 by histone acetylation. After site-directed mutation of p300 binding sites, INHa promoter regulatory activity induced (P<0.05), the levels of H3 acetylation in-345~-197 increased (P<0.05), relative binding of P300 to-345~-197 increased (P<0.05).
     (6) Methylation levels of CpG island within INHαproximal promoter was not correlative with INHa expression during bovine follicle development.27 CpG sites of CpG island were hypomethylated or virtually unmethylated in all follicles from four different sizes (P>0.05).
     4. Investigate the regulation of SS in follicular development
     To study the role of SS in follicular development, pGM-CSF/SS plasmid containing SS was used to transfection bovine GCs and immunization female mice. The results are as follows:
     (1) SS was involved in inhibition of follicular development, via induced apoptosis of GC. Overexpression in bovine GCs, induced expression of Bax and P53 which were pro-apoptosis genes (P<0.05), reduced expression of Bcl-2 which was anti-apoptosis gene (P<0.05), down-regulated E2 level (P<0.05), induced apoptosis of GCs (P<0.05) and repressed follicular development.
     (2) Immunization with pGM-CSF/SS plasmid could improve reproductive ability of female mice. Immunization with pGM-CSF/SS plasmid could induce secretion of E2 (P<0.05), shorten estrous cycle of female mice (P<0.05).
引文
1.陈丽.DNA甲基化及其芯片技术研究进展.国外医学(卫生学分册),2007,34(6):368-72
    2.董传河,杜立新.BMP15对卵巢功能的调节及对生殖的影响.动物学杂志,2008,43(4):140-5
    3.李辉.组蛋白泛素化与肿瘤.中国肿瘤,2006,7(15):449-52
    4.李珍,董传河,李宏滨,杜立新.TGF-β超家族成员引起的信号转导及对卵泡生长发育的影响.中国畜牧兽医,2008,35:43-46
    5.梁爱心,姚艳丰,金定恩,武睿,韩丽。付平,刘耘,杨利国.小鼠对pGM-CSF/SS生长抑素基因疫苗的免疫应答.华中农业大学学报,2006,25(5):540-3
    6.廖丹,石巍.组蛋白甲基化与乙酰化的研究进展.现代生物医学进展,2008,5(8):977-8
    7.刘飞,靳飞,翟晓巧,贾峰.组蛋白甲基化和去甲基化研究进展.中国农学通报,2007,23(2):56-9
    8.卢翠玲,杨巍,胡召元,刘以训.颗粒细胞的增殖分化及其在卵泡发育中的作用.科学通报,2005,50(21):2341-7
    9.罗惠霞,王玉炯.组蛋白乙酰化/去乙酰化在真核基因转录调控中的作用.中国生物工程杂志.2004,24(2):19-21
    10.沈羽飞.染色质与表观遗传调控.高等教育出版社.2005
    11.舒邓群,茆达干,陈荣达,吴志敏,杨利国.粒细胞-巨噬细胞集落刺激因子与生长抑素融合表达质粒对断奶仔猪生长及相关激素的影响.南京农业大学学报,2007,30(4):92-6
    12.宋春雷,刘红林.组蛋白的泛素化与去泛素化修饰.细胞生物学杂志,2007,29:51-5
    13.汤琳琳,刘东,张德福.优良家畜(奶牛、猪)卵巢资源高效利用的生物学基础研究.上海畜牧兽医通讯,2004(3):49
    14.王峰,刘永斌,田春英,祁云霞,荣威恒.骨形态发生蛋白基因mRNA在牛卵巢组织中的表达研究.中国畜牧杂志,2008,44(9):1-5
    15.王蒙.哺乳动物DNA甲基化与基因表达调控.中国实用医药,2009,4(32):218-9
    16.王婷婷,吴琰婷.生长分化因子9和骨形成蛋白15基因的研究进展.国外医学计划生育/生殖健康分册,2007,6(26):295-8
    17.薛京伦主编.表观遗传学—原理、技术与实践.上海:科学技术出版社,2006,6-11,60-76
    18.杨利国主编.动物繁殖学.北京:中国农业出版社,2005:3-7
    19.张明,朱庆,郑鸿培.家畜卵泡抑制素研究进展.黑龙江畜牧兽医,2005,11:83-85
    20. Aaltonen J, Laitinen M P, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, Seppa L, Louhio H, Tuuri T, Sjoberg J, Butzow R, Hovata O, Dale L, Ritvos O. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab,1999,84(8):2744-50
    21. Andreani C L,Lazzarin N, Pierro E, Lanzone A,Mancuso S. Somatostatin action on rat ovarian steroidogenesis. Hum Reprod,1995,10(8):1968-73
    22. Aurich J E, Kranski S, Parvizi N, Aurich C. Somatostatin treatment affects testicular function in stallions. Theriogenology,2003,60(1):163-74
    23. Balanathan P, Ball E M, Wang H, Harris S E, Shelling AN, Risbridger G P. Epigenetic regulation of inhibin alpha-subunit gene in prostate cancer cell lines. J Mol Endocrinol,2004,32(1):55-67
    24. Balasch J, Creus M, Fabregues F, Puerto B,Casamitjana R,Vanrell J A. The effect of exogenous luteinizing hormone (LH) on oocyte viability:evidence from a comparative study using recombinant human follicle-stimulating hormone (FSH) alone or in combination with recombinant LH for ovarian stimulation in pituitary-suppressed women undergoing assisted reproduction. J Assist Reprod Genet, 2001,18(5):250-6
    25. Bartke A, Chandrashekar V, Bailey B,Zacek D,Turyn D. Consequences of growth hormone (GH) overexpression and GH resistance. Neuropeptides,2002,36(2-3): 201-8
    26. Bell A C, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature,2000,405(6785):482-5
    27. Bell A C, West A G, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell,1999,98(3):387-96
    28. Berger S L. Histone modifications in transcriptional regulation. Curr Opin Genet Dev, 2002,12(2):142-8
    29. Bernard D J, Chapman S C, Woodruff T K. Mechanisms of inhibin signal transduction. Recent Prog Horm Res,2001,56:417-50
    30. Berndsen C E, Albaugh B N, Denu J M. Catalytic mechanism of a MYST family histone acetyltransferase. Biochemistry,2007,46(3):623-9
    31. Bevers M M, Izadyar F. Role of growth hormone and growth hormone receptor in oocyte maturation. Mol Cell Endocrinol,2002,197(1-2):173-8
    32. Bird A. The essentials of DNA methylation. Cell,1992,70(1):5-8
    33. Bodensteiner KJ, Clay CM, Moeller CL, Sawyer H R. Molecular cloning of the ovine Growth/Differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol Reprod,1999,60(2):381-386
    34. Boork J. Regulation of gonadotropin-releasing hormone receptor mRNA expression in sheep. Jonrnal of Endocrinology,1994,143:175-182
    35. Bourc'his D, Xu GL, Lin C S, Bollman B, Bestor T H. Dnmt3L and the establishment of maternal genomic imprints. Science,2001,294(5551):2536-9
    36. Boyes J, Bird A. Repression of genes by DNA methylation depends on CpG Density and Promoter strength:Evidence for involvement of a methyl-CpG Binding Protein. Embo J,1992,11(1):327-33
    37. Braw-Tal R.The initiation of follicle growth:the oocyte or the somatic cells? Mol Cell Endocrinol,2002,187(1-2):11-18
    38. Burgers W A, Fuks F, Kouzarides T. DNA methyltransferases get connected to chromatin. Trends Genet,2002,18(6):275-7
    39. Burroughs A, Hochhauser D, Meyer T.Systemic treatment and liver transplant tation for hepatocellular carcinoma:two ends of the therapeutic spectrum.Lancet Oncol, 2004,5(7):409-18
    40. Caixeta E S, Ripamonte P, Franco M M, Junior J B,Dode M A.Effect of follicle size on mRNA expression in cumulus cells and oocytes of Bos indicus:an approach to identify marker genes for developmental competence.Reprod Fertil Dev,2009,21(5): 655-64
    41. Carrel L, Willard H F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature,2005,434(7031):400-4
    42. Cedar H, Bergman Y. Linking DNA methylation and histone modification:patterns and paradigms. Nat Rev Genet,2009,10(5):295-304
    43. Cervera R P, Marti-Gutierrez N, Escorihuela E, Moreno R,Stojkovic M. Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos.Theriogenology,2009,72(8):1097-110
    44. Chan H M, La Thangue N B.p300/CBP proteins:HATs for transcriptional bridges and scaffolds. J Cell Sci,2001,114(13):2363-2373
    45. Cho B N, McMullen M L, Pei L,Yates C J,Mayo K E. Reproductive deficiencies in transgenic miceexpressing the rat inhibin alpha subunit gene. Endocrinology,2001, 142(11):4994-5004
    46. Christenson L K, Stouffer R L, Strauss Ⅲ J F. Quantitative analysis of the hormone-induced hyperacetylation of histone H3 associated with the steroidogenic. acute regulatory protein gene promoter. J Biol Chem,2001,276(29),27392-9
    47. Christina M. Grozinger and Stuart L. Schreiber. Deacetylase Enzymes:Biological Functions and the Use of Small-Molecule Inhibitors. Chem Biol,2002,9(1):3-16
    48. Christopher B, Schaefer,. Epigenetic Decisions in Mammalian Germ Cells. Science, 2007,316(5823):398-39
    49. Comb M, Goodman H M. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res,1990,18(13): 3975-82
    50. Courtier B, Heard E, Avner P. Xce haplotypes show modified methylation in a region of the active X chromosome lying 3'to Xist. Proc Natl Acad Sci USA,1995,11:92 (8):3531-5
    51. Cress W D, Seto E. Histon'e deacetylases, transcriptional control, and cancer. J Cell Physiol,2000,184(1):1-16
    52. DeManno D A, Cottom J E, Kline M P, Peters C A, Maizels E T, Hunzicker-Dunn M. Follicle-stimulating hormone promotes histone H3 phosphorylation on serine-10. Mol Endocrinol,1999,13(1),91-105
    53. Deplus R, Brenner C, Burgers W A, Putmans P,Kouzarides T,de Launoit Y,Fuks F. Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res,2002,30(17):3831-8
    54. Diana Lucifero, Sophie La Salle, Deborah Bourc' his, Martel J, Bestor T H, Trasler J M.Coordinate regulation of DNA methyltransferase expression during oogenesis. BMC Dev Biol,2007,7:36
    55. Diane M. Duffy. Growth Differentiation Factor-9 (GDF-9) is Expressed by the Primate Follicle Throughout the Periovulatory Interval. Biol Reprod,2003,69(2): 725-32
    56. Dietrich G, Spreng S, Gentschev I,Goebel W. Bacterial systems for the delivery of eukaryotic antigen expression vectors. Antisense Nucleic Acid Drug Dev,2000,10(5): 391-9
    57. Dou Y L, Go rovsky M A.Regulation of transcription by H1 phosphorylation in Tetrahymena is position independent and requires clustered sites. Proc Natl Acad Sci USA.2002; 99(9):6142-6
    58. Drummond A E, Dyson M, Thean E. Temporal and hormonal regulation of inhibin protein and subunit mRNA expression by post-natal and immature rat ovaries. J Endocrinol,2000,166(2):339-54
    59. Eckert D, Buhl S, Weber S, et al. The AP-2 family of transcription factors.Genome Biol,2005,6(13):246
    60. Eckery D C, Whale L J, Lawrence S B,Wylde K A, McNatty K P, Juengel J L. Expression of mRNA encoding growth differentiation factor 9 and bone morphogenetic protein 15 during follicular formation and growth in a marsupial the brushtail possum (Trichosurus vulpecula). Mol Cell Endocrinol,2002,192(1-2): 115-26
    61. Egger G, Liang G N, Jones P A. Epigenetics in human disease and prospects for epigenetic therapy. Nature,2004,429(6990):457-63
    62. Elsik C G, Tellam R L, Worley K C,Gibbs RA, Muzny DM, Weinstock GM, Adelson DL. The genome sequence of taurine cattle:a window to ruminant biology and evolution.Science,2009,24:324(5926):522-8
    63. Elvin J A, Clark A T, Wang P, Wolfman N M, Matzuk M M. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol,1999,13(6): 1035-48
    64. Engelhardt H, Harkness L M, Thomas G B, Brooks A N, McNeilly A S, Baird D T. Expression of inhibina andβA-subunit mRNA and protein in the fetal sheep ovary throughout gestation. Mol Cell Endocrinol,1995,107(2):141-7
    65. Epigenetics:regulation through rep ression. Science,1999,86 (5439):481-486
    66. Fagundes N S, Michalczechen-Lacerda V A, Caixeta E S,Machado G M, Rodrigues F C, Melo E O, Dode M A, Franco M M. Methylation status in the intragenic differentially methylated region of the IGF2 locus in Bos taurus indicus oocytes with different developmental competencies.Mol Hum Reprod,2011,17(2):85-91
    67. Feng W, Williams T.Cloning and characterization of the mouse AP-2 epsilon gene:a novel family member expressed in the developing olfactory bulb.Mol Cell Neurosci, 2003,24(2):460-75
    68. Findlay J K, Drummond A E, Britt K L, Dyson M, Wreford N G, Robertson D M, Groome N P, Jones M E, Simpson E R. The roles of activins, inhibins and estrogen in early committed follicles. Mol Cell Endocrinol,2000,163(1-2):81-7
    69. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.Proc Natl Acad Sci USA,1992, 1; 89(5):1827-31
    70. Fuks F, Burgers W A, Brehm A,Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmtl associates with histone deacetylase activity. Nat Genet 2000,24(1):88-91
    71. Furbass R, Said H M, Schwerin M, Vanselow J. Chromatin structure of the bovine Cyp19 promoter 1.1. DNasel hypersensitive sites and DNA hypomethylation correlate with placental expression. Eur J Biochem,2001,268(5):1222-7
    72. Furbass R, Selimyan R, Vanselow J. DNA methylation and chromatin accessibility of the proximal Cyp 19 promoter region 1.5/2 correlate with expression levels in sheep placentomes. Mol Reprod Dev,2008,75(1):1-7
    73. Geiman TM, Sankpal UT, Robertson AK, Zhao Y, Zhao Y, Robertson KD. DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochemical and Biophysical Research Communications,200431(8):544-55
    74. Gevry N Y, Lalli E, Sassone-Corsi P,Murphy B D.Regulation of niemann-pick c1 gene expression by the 3'5'-cyclic adenosine monophosphate pathway in steroidogenic cells. Mol Endocrinol,2003,17(4),704-15
    75. GilesR H, PetersD J, Breuning M H. Conjunction dysfunction:CBP/p300 in human disease. TrendsGenet,1998,14(5):178-83
    76. Giordano A, Avantaggiati M L. p300 and CBP:partners for life and death. Journal of Cellu lar Physiology,1999,181(2):218-30
    77. Goodman R H, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes& Development,2000,14(13):1553-77
    78. Gougeon A, Delangle A, Arouche N, Stridsberg M, Gotteland JP, Loumaye E. Kit ligand and the somatostatin receptor antagonist, BIM-23627, stimulate in vitro resting follicle growth in the neonatal mouse ovary. Endocrinology,2010,151(3):1299-309
    79. Gowher H, Jeltsch A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem,2002,277(23):20409-14
    80. Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A. Mechanism of stimulation of catalytic activity of Dnmt3a and Dnmt3b DNA-(cytosine C5)-methyltransferaes by Dnmt3L. J Biol Chem,2005,280(14):13341-8
    81. Grivna S T, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev,2006,20(13):1709-14
    82. Grossman S R, Deato M E, Brignone C, Chan HM, Kung AL, Tagami H, Nakatani Y, Livingston DM. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science,2003,11:300(5617):342-4
    83. Gruenbaum Y, Cedar H, Razin A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature,1982,295(5850):620-2
    84. Gu W, Roeder R G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell,1997,90(4):595-606
    85. Gui L M, Joyce I M. RNA interference evidence that growth differentiation factor-9 mediates oocyte regulation of cumulus expansion in mice. Biol Reprod,2005,72(1): 195-9
    86. Guthrie H D, Ireland J L H, Good T E M. Expression of different molecular weight forms of inhibin in atretic and nonatretic follicles during the early luteal phase and altrenogest-synchronized follicular phase in pigs. Biology of Reproduction,1997, 56(4):870-7
    87. Hakim M, Dong Y, Lane W S, Speicher DW, Shiekhattar R. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes. Biol Chem,2003,278(9):7234-9
    88. Hakimi M, Bochar D A, Chenoweth J, Lane WS, Mandel G, Shiekhattar R. A cole-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci USA,2002,99(11):7420-5
    89. Han L, Mao D G, Zhang D K, Liang AX, Fang M, Moaeen-ud-Din M, Yang LG. Development and evaluation of a novel DNA vaccine expressing inhibin alpha (1-32) fragment for improving the fertility in rats and sheep. Animal Reproduction Science. 2008,109(1-4):251-65
    90. Hata K, Okano M, Lei H. Dnmt3Lcooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development,2002, 129(8):1983-93
    91. Hermann A, Goyal R, Jeltsch A. The Dnmtl DNA-(cytosine-C5)-methyl-transferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem,2004,279(46):48350-9
    92. Hiendleder S, Lewalshi H, Jaeger C, Pracht P. Nucleotide sequence of ovine a-inhibin (INHA) genes and evaluation of RFLP marker effects on reproductive performance. Anim Genet,2002,33 (3):247-48
    93. Hiendleder S, Lewalski H, Jaeger C, Plante Y. Genomic cloning and comparative sequence analysis of different alleles of the ovine βA-inhibin/activin (INHBA) gene as a potential QTL for litter size. Anim Genet,1996,27 (2):119
    94. Hiromichi Kimura, Kunio Shiota. Methyl-CpG-binding Protein, MeCP2, Is a Target Molecule for Maintenance DNA Methyltransferase, Dnmtl. J Biol Chem,2003,14, 278(7):4806-12
    95. Holst N, Haug E, Tanbo T, Abyholm T, Jacobsen MB. Somatostatin in human follicular fluid. Hum Reprod,1994,9 (8):1448-51
    96. Holst N, Jacobsen M B, Haug E, Tanbo T, Abyholm T. Somatostatin in physiological concentrations inhibits basal and enhances luteinizing hormone-stimulated progesterone release from human granulosa-luteal cells. Hum Reprod,1995,10(6): 1363-6
    97. Huntriss J, Hinkins M, Oliver B, Harris SE, Beazley JC, Rutherford AJ, Gosden RG, Lanzendorf SE, Picton HM. Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells. Mol Reprod Dev,2004,67(3):323-36
    98. Hussein T S, Thompson J G, Gilchrist R B. Oocyte-secreted factors enhance oocyte developmental competence. Develop Biol,2006,296 (2):514-21
    99. Ikeda S, Tatemizo A, Iwamoto D, Taniguchi S, Hoshino Y, Amano T, Matsumoto K, Hosoi Y, Iritani A, Saeki K. Enhancement of histone acetylation by trichostatin A during in vitro fertilization of bovine oocytes affects cell number of the inner cell mass of the resulting blastocysts. Zygote,2009,17:209-15
    100.Ito M, Park Y, Week J, Mayo K E,Jameson J L. Synergistic activation of the inhibin alpha-promoter by steroidogenic factor-1 and cyclic adenosine 3',5'-monophosphate. Mol Endocrinol,2000,14(1):66-81
    101.Janknecht R, Hunter T. Transcription. A growing coactivator network. Nature,1996, 5; 383(6595):22-3
    102.Jayawardana B C, Shimizu T, Nishimono H, Kaneko E, Tetsuka M, Miyamoto A. Hormonal regulation of expression of growth differentiation factor-9 receptor type Ⅰ and Ⅱ genes in the bovine ovarian follicle. Reproduction,2006,131(3):545-53
    103. Jones P A, Takai D. The role of DNA methylation in mammalian epigentics. Science, 2001,293(5532):1068-70
    104.Juengel J L, McNatty K P. The role of proteins of the transforming growth factor-b superfamily in the intraovarian regulation of follicular development. Hum Reprod Update,2005,11:143-160
    105.Juengel JL, Hudson NL, Berg M, Hamel K, Smith P, Lawrence SB, Whiting L, McNatty KP. Effects of active immunization against growth differentiation factor 9 and/or bone morphogenetic protein 15 on ovarian function in cattle. Reproduction, 2009,138(1):107-14
    106.Juengel JL, Hudson NL, Heath DA, Smith P, Reader KL, Lawrence SB, O'Connell AR, Laitinen MP, Cranfield M, Groome NP, Ritvos O, McNatty KP.Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol Reprod,2002,67(6):1777-89
    107.Kang H, Roh S. Extended Exposure to Trichostatin-A after Activation Alters the Expression of Genes that Important for Early Development in the Nuclear Transfer Murine Embryos. J Vet Med Sci,2010,24
    108.Kawahara K, Kawabata H, Aratani S, Nakajima T.Hyper nuclear acetylation (HNA) in proliferation, differentiation and apoptosis. Ageing Research Reviews,2003: 287-97
    109.Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature,2005,434 (7033):583-89
    110.Kirkwood RN, Korchinski RS, Thacker PA, Laarveld B. Observations on the influence of active immunization against somatostatin on the reproductive performance of sheep and pigs. J Reprod Immunol,1990,17:229-38
    111.Knight P G, Glister C TGF-beta superfamily members and ovarian follicle development. Reproduction,2006,132:191-206
    112.Kono T. Nuclear transfer and reprogramming. Rev Reprod,1997,2:74-80
    113.Kuo M H, Allis C D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays,1998,20:615-26
    114.Laura P, Neill O, Turner B M. Immunoprecipitation of native chromatin:nCHIP. Methods,2003,31:76-82
    115.LaVoie H A. Epigenetic control of ovarian function:the emerging role of histone modifications. Mol Cell Endocrinol,2005,243:12-18
    116.Lawson M, Uciechowska U, Schemies J, Rumpf T, Jung M, Sippl W. Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). Biochim Biophys Acta,2010,1799(10-12):726-39
    117.Lee WS, Yoon SJ, Yoon TK, Cha KY, Lee SH, Shimasaki S, Lee S, Lee KA. Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol Reprod Dev,2004,69(2):159-63
    118.Lee WS, Yoon SJ, Yoon TK, Cha KY, Lee SH, Shimasaki S, Lee S, Lee KA.DNA methyltransferase loading, but not de novo methylation, is an oocyte-autonomous process stimulated by SCF signalling. Dev Biol,2008,321:238-50
    119.Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet,2002,3:662-73
    120.Li X, Kato Y, Tsuji Y, Tsunoda Y. The effects of trichostatin A on mRNA expression of chromatin structure, DNA methylation and development-related genes in cloned mouse blastocysts. Cloning Stem Cells,2008,10:133-42
    121.Li X, Wang X, He K, Ma Y, Su N, He H, Stole V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell,2008,20(2):259-76
    122.Ling Wang, Yong Tang, Philip A. Cole and Ronen Marmorstein. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases:implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol.2008,18(6): 741-7
    123.Lister R, Pelizzola M, Dowen R H. Human DNA methylomes at base resolution show widespread epigenomic differences.Nature,2009,462:315-322
    124.Luna-Dominguez J E, Enns R M, Armstrong D V, Ax R L. Reproductive performance of Holstein cows receiving somatotropin. J Dairy Sci,2000,83(7):1451-5
    125.Magoffin D A. Ovarian theca cell. Int J Biochem Cell Biol,2005,37:1344-49
    126.Manel Esteller. DNA Methylation, Epigenetics and Metastasis. Springer.2005
    127.Mao D G, Yang L G, Ye R, Jiang X P. Effect of Inhibin α (1-32)Gene immunization on the Follicular Development and Reproductive Hormones in Rats. Agricultural Sciences in China,2003,2(6):337-43
    128.Marco Conti. Specificity of the cyclic Adenosine 35-Monophosphate signal in granulose cell.Function Biology of Reproduction,2002,67:1653-61
    129.Marozzi A, Porta C, Vegetti W, Crosignani PG, Tibiletti MG, Dalpra L, Ginelli E. Mutation analysis of the inhibin a gene in a cohort of Italian women affected by ovarian failure. Hum Reprod,2002,17 (7):1741-45
    130.Mazerbourg S, Klein C, Roh J, Kaivo-Oja N, Mottershead DG, Korchynskyi O, Ritvos O, Hsueh AJ. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol,2004,18(3):653-65
    131.McGee E A, Hsueh A J. Initial and cyclic recruitment of ovarian follicles. Endocr Rev,2000,21:200-14
    132.McIntyre HD, Marechal DJ, Deby GP, Mathieu AG, Hezee-Hagelstein MT, Franchimont PP. Immunoreactive somatostatin in the rat ovary. Acta Endocrinol (Copenh),1992,126(6):553-58
    133.McNatty KP, Galloway SM, Wilson T, Smith P, Hudson NL, O'Connell A, Bibby AH, Heath DA, Davis GH, Hanrahan JP, Juengel JL. Physiological effects of major genes affecting ovulation rate in sheep. Genet Sel Evol,2005b,37:25-38
    134.McNatty KP, Smith P, Moore LG, Reader K, Lun S, Hanrahan JP, Groome NP, Laitinen M, Ritvos O, Juengel JL. Oocyte-expressed genes affecting ovulation rate. Mol Cell Endocrinol,2005a,234(1-2):57-66
    135.McPherson L A, Weigel R J.AP2alpha and AP2gamma:a comparison of binding site specificity and trans-activation of the estrogen receptor promoter and single site promoter constructs.Nucleic Acids Res,1999,15; 27(20):4040-9
    136.Metzger E, Yin N, Wissmann M, Kunowska N, Fischer K. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol.2008,10(1):53-60
    137.Mirkin S, Nikas G, Hsiu JG, Diaz J, Oehninger S. Gene expression profiles and structural/functional features of the pri-Implantation endometrium in natural and gonadotropin-simulated cycles. J Clin Endocrinol Metab,2004,89(11):5742-52
    138.Moaeen-ud-Din M, Malik N, Yang LG. Somatostatin can alter fertility genes expression, oocytes maturation, and embryo development in cattle. Anim Biotechnol, 2009,20(3):144-50
    139.Montgomery G W, Galloway S M, Davis G H, McNatty K P. Genes C on-trolling Ovulation Rate in Sheep. Reproduction,2001,121:843-52
    140.Moore R K, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein215 signaling in granulosa cells. J Biol Chem,2003,278(1):304-10
    141.Mori T, Saito H, Ohno Y, Irahara M, Hosoi E, Saito S. Evidence for existence of somatostatin-like immunoreactivity with molecular heterogeneity in porcine ovaries. Acta Endocrinol (Copenh),1984,106(2):254-9
    142.Mourot M, Dufort I, Gravel C, Algriany O, Dieleman S, Sirard MA. The influence of follicle size, FSH-enriched maturation medium, and early cleavage on bovine oocyte maternal mRNA levels. Mol Reprod Dev,2006,73:1367-79
    143.Nakagawa M, Yamanaka S. Mechanism for maintaining pluripotency in embryonic stem cells and inner cell mass. Tanpakushitsu Kakusan Koso,2005,50(6):546-50
    144.Nestorovic N, Manojlovic-Stojanoski M, Ristic N, Sekulic M, Sosic-Jurjevic B, Filipovic B, Milosevic V. Somatostatin-14 influences pituitary-ovarian axis in peripubertal rats. Histochem Cell Biol.2008,130(4):699-708
    145.Nilsson EE, Skinner MK. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Mol Cell Endocrinol, 2004,214(1-2):19-25
    146.Nimz M, Spitschak M, Fiirbass R, Vanselow J.The pre-ovulatory luteinizing hormone surge is followed by down-regulation of CYP19A1, HSD3B1, and CYP17A1 and chromatin condensation of the corresponding promoters in bovine follicles.Mol Reprod Dev,2010,77(12):1040-8
    147.Nimz M, Spitschak M, Schneider F,Furbass R, Vanselow J. Down-regulation of genes encoding steroidogenic enzymes and hormone receptors in late preovulatory follicles of the cow coincides with an accumulation of intrafollicular steroids. Domest Anim Endocrinol,2009,37:45-54
    148.Niwa K, Takano R, Obata Y, Hiura H, Komiyama J, Ogawa H, Kono T.Nuclei of Oocytes Derived from Mouse Parthenogenetic Embryos Are Competent to Support Development to Term. Bio of Repro,2004,71:1560-67
    149.Nowak SJ, Corces VG.Phosphorylation of histone H3 correlates with transcriptionally active loci.Genes Dev,2000,14(23):3003-13
    150.Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell,1996,87:953-59
    151.Okano M, Bell D W, Haber D A, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell,1999, 99:247-57
    152.Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, Tsang BK. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol,2006,20(10):2456-68
    153.Otsuka F, Shimasaki S. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand:its role in regulating granulosa cell mitosis. PNAS,2002,99 (12):8060-51
    154.Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem,2001,276(14):11387-92
    155.Peterson C L, Laniel M A. Histones and histone modifications. Ctn Biol,2004,14: 546-51
    156.Pillon D, Caraty A, Fabre-Nys C, Lomet D, Cateau M, Bruneau G. Regulation by estradiol of hypothalamic somatostatin gene expression:possible involvement of somatostatin in the control of luteinizing hormone secretion in the ewe. Biol Reprod, 2004,71(1):38-44
    157.Rajkumar K, Kerr D E, Kirkwood R N, Laarveld B. Inhibitory action of somatostatin-14 on hormone-stimulated cyclic adenosine monophosphate induction in porcine granulosa and luteal cells. J Endocrinol,1992,134(2):297-306
    158.Ralf Ficner. Novel Structural Insights into Class Ⅰ and Ⅱ Histone Deacetylases. Current Topics in Medicinal Chemistry,2009,9:235-40
    159.Richard H. Goodman and Sarah Smolik. CBP/p300 in cell growth, transformation, and development. Genes Dev,2000,14:1553-77
    160.Richards J S, Russell D L, Ochsner S, et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res, 2002,57:195-220
    161.Robertson K D. DNA methylation and chromatin-unraveling the tangled web. Oncogene,2002,21:5361-79
    162.Roh JS, Bondestam J, Mazerbourg S, Kaivo-Oja N, Groome N, Ritvos O, Hsueh AJ. Growth differentiation factor-9 stimulates inhibin production and activates Smad2 in cultured rat granulosa cells. Endocrinology,2003,144(1):172-8
    163.Ronen Marmorstein, Raymond C. Trievel. Histone modifying enzymes:Structures, mechanisms, and speci fi cities. Biochim Biophys Acta,2009,1789(1):58-68
    164.Rosenfeld C S, Wagner J S, Roberts R M, Lubahn D B. Intraovarian actions of oestrogen. Reproduction,2001,122(2):215-26
    165.Ruiz-Cortes ZT, Kimmins S, Monaco L, Burns KH, Sassone-Corsi P, Murphy BD. Estrogen mediates phosphorylation of histone H3 in ovarian follicle and mammary epithelial tumor cells via the mitotic kinase, Aurora B.Mol Endocrinol,2005,19(12): 2991-3000
    166.Rusovici R, Hui YY, LaVoie H A. Epidermal growth factormediated inhibition of follicle-stimulating hormone-stimulated StAR gene expression in porcine granulosa cells is associated with reduced histone H3 acetylation. Biol Reprod,2005,72: 862-71
    167.Salvador LM, Park Y, Cottom J, Maizels ET, Jones JC, Schillace RV, Carr DW, Cheung P, Allis CD. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells.J Biol Chem,2001,26; 276(43):40146-55
    168.Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A, Allis CD.Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science,1999; 285:886-91
    169.Senbon S, Hirao Y, Miyano T. Interactions between the oocyte and surrounding somatic cells in follicular development:lessons from in vitro culture. J Reprod Dev, 2003,49(4):259-69
    170.Serge McGraw, Claude Robert, Lyne Massicotte, Marc-Andre Sirard. Quantification of Histone Acetyltransferase and Histone Deacetylase Transcripts During Early Bovine Embryo Development. Biology of Reproduction,2003,68:383-89
    171.Serge McGraw, Guillaume Morin, Christian Vigneault, Pierre Leclerc and Marc-Andre Sirard. Investigation of MYST4 histone acetyltransferase and its involvement in mammalian gametogenesis. BMC Developmental Biology,2007,7: 123
    172.Shi Y, Mello C A. CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev,1998,12:943-55
    173.Shi Y, Sawada J, Sui G, Affar el B, Whetstine JR, Lan F, Ogawa H, Luke MP, Nakatani Y, Shi Y. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature,2003,422:735-38
    174.Shiama N. The p300/CBP family:in tegrating signals with transcription factors and chromatin. Trends in Cell Biology,1997,7:230-36
    175.Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev,2004,25(1):72-101
    176.Siedlecki P, Garcia Boy R, Musch T, Brueckner B, Suhai S, Lyko F, Zielenkiewicz P. Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem, 2006,26; 49(2):678-83
    177.Singh B, Dixit VD, Singh P, Georgie GC, Dixit VP. Plasma inhibin levels in relation to steroids and gonadotrophins during oestrous cycle in buffalo. Reprod Domest Anim,2001,36(3-4):163-7
    178.Soloff MS, Gal S, Hoare S, Peters CA, Hunzicker-Dunn M, Anderson GD, Wood TG. Cloning, characterization, and expression of the rat relaxin gene. Gene,2003,323, 149-55
    179.Sonnack V, Failing K, Bergmann M, Steger K. Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia,2002,34 (6): 384-90
    180.Spada F, Haemmer A, Kuch D, Rothbauer U, Schermelleh L, Kremmer E, Carell T, Langst G, Leonhardt H. DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J Cell Biol,2007,176:565-571
    181.Strahl BD, Allis CD.The language of covalent histone modifications. Nature,2000, 403:41-5
    182.Suzuki M M, Bird A. DNA methylation landscapes:provocative insights from epigenomics.Nat Rev Genet,2008,9:465-76
    183.Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, Allis CD, Marmorstein R, Denu JM. Catalytic mechanism and function of invariant glutamic acid-173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem,1999,274: 18157-60
    184.Taya K. Roles of inhibin in regulation of FSH secretion and folliculogensis in mammals. Current Trends in Exp Endocrinol,1993,1:97-111
    185.Teixeira Filho FL, Baracat EC, Lee TH, Suh CS, Matsui M, Chang RJ, Shimasaki S, Erickson GF. Aberrant expression of growth differentiation factor-9 in oocytes of women with poly cystic ovary syndrome. J Clin Endocrinol Metab,2002,87(3): 1337-44
    186.Thomas AD, Murray JD, Famula TR, Oberbauer AM. Growth hormone and fertility in oMtla-oGH transgenic mice. Reproduction,2001,122:537-44
    187.Thomas FH, Ethier JF, Shimasaki S, Vanderhyden BC. Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte andgranulosa cell factors. Endocrinology,2005,146(2):941-49
    188.Tomanek M, Pisselet C, Monget P, Madigou T, Thieulant ML, Monniaux D. Estrogen receptor protein and mRNA expression in the ovary of sheep.Mol Reprod Dev,1997,48(1):53-62
    189.Tong SY, Ki KD, Lee JM, Kang MJ, Ha TK, Chung SI, Chi SG, Lee SK.Frequent inactivation of hSRBC in ovarian cancers by promoter CpG island hypermethylation.Acta Obstet Gynecol Scand,2010,89(5):629-35
    190.Torney A H, Robertson D M, Hodgson Y M. In vitro bioactive and immunoactive inhibin concentrations in bovine fetal ovaries and testes throughout gestation. Endocrinology,1990,127:2938-46
    191.Trievel RC, Rojas JR, Sterner DE, Venkataramani RN, Wang L, Zhou J, Allis CD, Berger SL, Marmorstein R. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci USA,1999, 96:8931-36
    192.Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. GenesDev,2006,20 (5):515-24
    193.Vallee M, Gravel C, Palin MF, Reghenas H, Stothard P, Wishart DS, Sirard MA. Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species. Biol Reprod,2005, 73(1):63-71
    194.Van Vugt HH, Swarts HJ, Van de Heijning BJ, Van der Beek EM. Centrally applied somatostatin inhibits the estrogen-induced luteinizing hormone surge via hypothalamic gonadotropin-releasing hormone cell activation in female rats. Biol Reprod,2004,71:813-9
    195.Vanselow J, Selimyan R, Furbass R. DNA methylation of placenta-specific Cyp19 promoters of cattle and sheep. Exp Clin Endocrinol Diabetes,2008,116(7):437-42
    196.Vanselow J, Spitschak M, Nimz M, Furbass R. DNA methylation is not involved in preovulatory down-regulation of CYP11A1, HSD3B1, and CYP19A1 in bovine follicles but may have a role in permanent silencing of CYP19A1 in large granulosa lutein cells. Biol Reprod,2010,82:289-298
    197.Vanselow J, Yang W, Herrmann J, Zerbe H, Schuberth HJ, Petzl W, Tomek W, Seyfert HM. DNA-remethylation around a STAT5-binding enhancer in the alphaSl-casein promoter is associated with abrupt shutdown of alphaS1-casein synthesis during acute mastitis.J Mol Endocrinol,2006,37(3):463-77
    198.Varani S, Elvin JA, Yan C, DeMayo J, DeMayo FJ, Horton HF, Byrne MC, Matzuk MM. Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol Endocrinol,2002,16:1154-67
    199.Vassena R, Dee Schramm R, Latham K E. Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preimplantation embryos. Mol Reprod Dev,2005,72(4):430-6
    200.Virginia A S. Jian Min S, Lin L. Chromatin immunoprecipitation:a tool for studying histone acetylatlon and transcription factor binding. ScienceDirect,2003,31:67-75
    201.Vivek Shukla, Thomas Vaissi'ere, Zdenko Herceg. Histone acetylation and chromatin signature in stem cell identity and cancer. Mutation Research,2008 637(1-2):1-15
    202.Vo N, Goodman R H. CREB-binding protein and p300 in transcriptional regulation. J Biol Chem,2001,27:276(17):13505-8.
    203.Vrba L, Junk DJ, Novak P, Futscher BW. p53 induces distinct epigenetic states at its direct target promoters. BMC Genomics,2008,9:486
    204.Whitley N C, Payne D B, Zhang H,Cox N M. The influence of insulin administration after weaning the first litter on ovulation rate and embryo survival in sows. Theriogenology,1998,50(3):479-85
    205.Wood J R, Strauss J F. Multiple signal transduction pathways regulate ovarian steroidogenesis. Rev Endocr Metab Disord,2002,3(1):33-46
    206.Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y, Sun YE. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes.Science,2010,329:444-448
    207.Wu X, Chen L, Brown C A,Yan C, Matzuk MM. Interrelationship of growth differentiation factor 9 and inhibin in early folliculogenesis and ovarian tumorigenesis in mice. Mol Endocrinol,2004,18(6):1509-19
    208.Xiong Y, Dowdy S C, Podratz K C, Jin F, Attewell JR, Eberhardt NL, Jiang SW. Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells. Cancer Res,2005,65:2684-9
    209.X-J Yang, E Seto. HATs and HDACs:from structure, function and regulation to novel strategies for therapy and prevention. Oncogene,2007,13; 26(37):5310-8
    210.Yamamoto N, Christenson L K, McAllister J M, Strauss JF 3rd. Growth differentiation factor-9 inhibits 3'5'-adenosine monophosphate- stimulated steroidogenesis in human granulosa and theca cells. J Clin Endocrinol Metab,2002, 87(6):2849-56
    211.Yamamoto S. Development of follicle and intrafollicular inhibin-like substance in cows and sows. Tohohu Journal of Agricultural Research,1996,47:9-18
    212.Yoder J A, Soman N S, Verdine G L, Bestor TH. DNA (cytosine-5)-methyltransferases in mouse cells and tissues studies with a mechanism-based probe. J Mol Biol,1997,270(3):385-95
    213.Zhang Y, Dufau M L. Dual mechanisms of regulation of transcription of luteinizing hormone receptor gene by nuclear orphan receptors and histone deacetylase complexes. J Steroid Biochem Mol Biol.2003,85(2-5):401-14
    214.Zhang Y, Dufau M L. Silencing of transcription of the human luteinizing hormone receptor gene by histone deacetylase-mSin3A complex.J Biol Chem, 2002,277(36):33431-8
    215.Zhao F, Lufkin T, Gelb B D.Expression of Tfap2d, the gene encoding the transcription factor Ap-2 delta, during mouse embryogenesis.Gene Expr Patterns, 2003,3(2):213-7
    216.Zuccotti M, Garaqna S, Merico V, Monti M, Alberto Redi C. Chromatin organisation and nuclear architecture in growing mouse oocytes. Mol Cell Endocrinol,2005, 234(1-2):11-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700