fat1 & fat2转基因牛胚胎的构建及早期克隆胚甲基化模式的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因技术可以通过导入外源基因的方式人为地改造动物基因组,达到快速定向改造生物体的目地。在众多转基因方法中,核移植技术以其高效,快捷和低成本的突出优势,成为目前培育转基因动物的主要手段。但该技术仍存在一些问题,如大多数克隆动物在出生前就死亡,存活下来的克隆动物也常会伴有大量的表型异常和不同程度的发育缺陷。已有研究发现,该现象与体细胞移入去核的卵母细胞后进行异常的甲基化重编码程序有关。为了揭示核移植胚胎异常甲基化模式,本试验对5个发育阶段的早期核移植胚胎(合子期、S期、2-cell、8-cell和桑椹期)进行了抗-5mC抗体的免疫荧光检测,并对核移植胚胎中呈父源印记的IGF2/H19基因簇ICR区和呈母源印记的PWS/AS基因簇ICR区分别进行了bsp测序;同时试验还对10个参与甲基化重编程的重要因子在早期核移植胚发育过程中表达量的变化模式进行了定量研究,得出以下结论:
     (1)本试验利用核移植技术首次成功构建了携带有fatl以及fat2基因的转基因西杂牛胚胎,转基因胚的阳性率为5.45%。通过荧光检测可见卵泡外周有密集强烈的荧光表现,说明转入的外源基因成功翻译蛋白并且集结于卵泡染色质密集的部位。
     (2) SCNT胚的父源基因组在S期之前极微弱的发生了主动去甲基化,伴随着DNA复制的开始,又发生了微弱的被动去甲基化。8-cell以后,SCNT胚胎父源基因组与IVF胚父源基因组的甲基化重建能力相当。
     (3)早期胚胎中,S期发生了多种甲基化印记激活与抑制的调控过程,但在SCNT胚胎中类似Dnmt3a和Dnmt3b等促进甲基化作用因子表达量的提高及功能的增强占了主导地位,这使得母源DNA过早的进行了甲基化的重建造成了克隆胚胎的甲基化过高。
     (4) SCNT胚胎中MBD1、 Mecp2和MBD3三种甲基化结合蛋白在S期高水平表达,维持了供体核基因组的甲基化状态,影响了基因组的正常去甲基化机制。另外,克隆胚胎大量出现发育异常或死胎现象与MBD4基因表达下调引起基因错配有一定关系。
     (5)SCNT胚胎中2-cell之前去甲基化能力的显著下降并不是单方面由促甲基化酶表达量升高引起的,一些去甲基化调节因子(如AID以及APOBEC1等基因)的低表达也在一定程度上阻碍了克隆胚胎基因组去甲基化的进行。试验还发现,所有促进甲基化作用的细胞因子并不是在染色体的所有区段都是同向作用的,在某些特定靶点其作用会发生逆转。
The introduction and expression of exogenous gene in animal by genetic transformation is now the efficient way to reform organism. The somatic cell nuclear transfer (SCNT) has been wide applied in production of transgenic animal, due to the high performance and the low cost. However, cloning by somatic cell nuclear transfer (SCNT) is still inefficient. During development, a significant number of cloned embryos die during the pre-and peri-implantation period. This phenomenon is associated with the abnormal reprogramming of the donor nucleus. In order to study the methylating pattern of clone embryos, we detect5stages of clone early embryos (zygophase, S phase,2-cell,8-cell and morula) by immunofluorescence with antibodies against5-methylcytosine (5mC), and research the methylating pattern of the ICRs for PWS/AS imprinting cluster and IGF2/H19imprinting cluster by bisulfite sequencing PCR (bsp). We also detect10genes, which participated in the regulation of methylating by FQ-RT-PCR. The results of array analysis are as follows:
     (1) In our study, we product the early embryos which carried the fat-1and the fat-2gene for the fist time, the positive rate is5.45%. We also examine the transgenes embryos by fluorescence microscope, there are strong signals everywhere in the blastocysts especially in the periphery of blastocysts. Therefore the blastocysts which carried the exogenous gene could be used to embryo transfer.
     (2) The actively demethylation of paternal germline is very weak before cleavage in clone early embryos, and the ability of de novo methylation after8-cell is the same as IVF embryos.
     (3) In early clone early embryos, the de novo methylation has started before S phase ahead of IVF embryos. There are many over expression and tonic enzymes as Dnmt3a and Dnmt3b in clone early embryos, which promote de novo methylation before S phase.
     (4) The over expression of MBD1, Mecp2and MBD3lead to the high level of methylation in S phase. In addition, the low expression of MBD4could lead to cloned embryos die during the pre-and peri-implantation period, because of mismatches.
     (5) The low expression of AID gene and APOBEC1gene are responsible for incomplete demethylation in clone early embryos. Otherwise, same enzymes, which always promote de novo methylation, could inhibit methylation in same specific target point.
引文
[1]Briggs R, King T J. Proc. Transplantation of living nuclei from blastula cells into enucleated frogs'eggs. Natl[J]. Acad S ci, USA,1952,38:455-463.
    [2]Gurdon, JB. J. Embryol. Adult frogs derived from the nuclei of single somatic cells[J]. Developmental Biology,1962,10:622-640.
    [3]Illmensee K, Hoppe P C. Nuclear transplantation in Mus musculus:developmental potential of nuclei from preimplantation embryos[J]. Cell,1981,23:9-18.
    [4]McGrath J, Solt er, D. Structure and organization of the human Ki-ras proto-oncogene and a related processed pseudogene[J]. Science,1983,220:1300-1302.
    [5]Willadsen S M. Nuclear transplantation in sheep embryos[J]. Nature,1986,320:63-65.
    [6]Prather R S, First N. L. Nuclear transplantation in the bovine embryo:assessment of donor nuclei and recipient oocyte[J].Biol Reprod,1987,37:859-866.
    [7]Stice SL, Robl JM, Ponce de Leon FA, Jerry J, Golueke PG, Cibelli JB, Kane JJ. Cloning:New breakthroughs leading to commercial opportunities[J]. Theriogenology,1998,49:129-138.
    [8]Prather RS. Nuclear transplantation in early pig embryos [J]. Biol Reprod,1989,44:414-418.
    [9]Stice, S. L, Keefer, C. L. Bovine nuclear transfer embryos:oocyte activation prior to blastomere fusion[J]. Biol. Reprod,1993,48:715-719.
    [10]Wheeler MB,Walters EM. Transgenic technology and applications in swine[J].Theriogenology,2011,56(8):1345-1369.
    [11]Schnieke AE, Kind AJ, Ritchie WA, et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts[J]. Science,1997,278(5346):2130-2133.
    [12]Berkel PH, Welling MM, Geerts M, et al. Productioof recombinant human lactoferrin in the milk of transgenic cows[J]. Nat Biotechnol,2002,20(50):484-487.
    [13]La-It Yg JX, Li R, et al. Generation ofdoned-sgenic pigs rich in omega-3 firty adct[J].Nat Biotechnol,2006,24(4):435-436.
    [14]J B Gurdon, DA Melton. Nuclear reprogramming in cells[J]. Science,2009:322.
    [15]Welts DN, Mislca PM, Day AMJ, et al. Production of cloned lambs from an established embryonic cell line:a comparison between in vivo and in vitro-matured cytoplasts[J]. Bid of Reprod,1997,57(2):385-393.
    [16]Aoki F. Regulation of zygotic gone activation in mammalian embryo [J]. J Mamm Ova Res, 1997,14:125-131.
    [17]Wassannan P M, Kinlich R A. Gene expression during oogenesis in mice[J]. Mutat Res,1992, 296:3-15.
    [18]Bachvamva R F. A mammal tail of poly(A):the long and the short ofit[J]. Cell,1992,69: 895-897.
    [19]Kim J M, Liu H, Aoki F, et al. Changes in histone acetylation during mouse oocyte meiosis[J]. J cell Biol,2003,162:37-46.
    [20]Matsumoto K, Anzai M, Nakagata N, et al. Onset of paternal gene activation in early mouse embryos fertilized with transgenic mouse sperm[J]. Mol Repred Dev,1994,39:136-140.
    [21]Renard J P, Zhou Q, Lebourhis D, et al. Nuclear transfer technologies:between successes and doubts[J]. Theriogenology,2002,57:203-222.
    [22]李逸平,左嘉客.哺乳类早期胚胎发育阻滞的形成与突破[J].细胞生物学杂志,1992,14(4):153-155.
    [23]Matsumoto K, Anzai M, Nakagata N, et al. Onset of paternal gene activation in early mouse embryos fertilized with transgenic mouse sperm [J]. Mol Reprod Dev,1994,39:136-140.
    [24]Ram P1, Schultz RM. Reporter gene expression in G2 of the 1-cellmouse embryo [J]. DevBiol, 1993,156:552-556.
    [25]汪仁,薛绍白,柳惠图.细胞生物学[M].北京:北京师范大学出版社,1997.
    [26]Crosbyi M, Gandolfi F, Moor RM. Control of protein synthesis during early eleavage of sheep embryos[J].J Reprod Fert,1988,82:769-775.
    [27]Ziomek CA, Cnatot CL, Mane C. Polarization of blastomere in the eleaving rabbit embryo [J]. J Exp ZooL,1990,256:81-91.
    [28]Cibelli JB, Stice SL, Golucke PJ, et al. Cloned transgenic calyes produced from nonquiescent fetal fibroblasts[J]. Science,1998,280:1256-1258.
    [29]Wakayama T, Perry AC, Zuccotti M, et al. Full term development of micefrom enucleated oocytes injected with cumulus cell nnclei [J]. Nature,1998,394:369-374.
    [30]Kasinathan P, Knott JG, Moreira PN, et al. Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro[J]. Biol Reprod,2001,64(5): 1487-1490.
    [31]Kasinathan P, Knott JG, Wang Z, et al. Production of calves from G1 fibroblasts[J]. Nat Bioteeh,2001,19(12):1176-1178.
    [32]Campbell KH, Loi P, Otaegui PJ, et al. Cell cycle co-ordination in embryo cloning by nuclear transfer[J]. Rev Reprod,1996,1:40-46.
    [33]Campbe UKH. Nuclear equivalence, nuclear transfer and the cell cycle[J]. Cloning,1999,1: 3-15.
    [34]Miyoshi K, Rzucidlo SJ, Gibbons JR, et al. Development of porcine embryos reconstituted with somatic cells and enucleated metaphasel and oocytes matured in a protein free medium[J]. BMC Developrncnt Biology,2001,1:1.
    [35]Polejaeva IA, Chen SH, Vaught TD, et al. Cloned pigs produced by nuclear transfer from adult somatic cells[J]. Nature,2000,407:86-90.
    [36]Humpherys D, Eggan K, Akutsu H, et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei[J]. Proc Natl Acad Sci USA,2002,99: 12889-12894.
    [37]Kikyo N, Wolfe AP. Reprogramming nuclei:Insights from cloning nuclear ansfer and heterokaryons[J]. Journal of Cell Science,2000,113:11-20.
    [38]Kikyo N, Wade PA, Guschin D, et al. Active remodeling of somatic nuclei in egg cytoplasm by the nucleoso mal ATPase ISW I[J]. Science,2001,289:2360-2367.
    [39]Davie J R. Covalent modifications of histones:expression from chromatin mplates[J]. Curr Opin Genet Dev,1998,8:173-178.
    [40]Lyon M F. X-chromosome inactivation[J]. Curr Biol,1999,8-9:235-237.
    [41]Chao W, Huynh KD, Spencer RJ, et al. CTCF acandidate trans-acting factor for X-inactivation choice[J].Science,2002,295:345-347.
    [42]Eggan K, Akutsu H, Hochedlinger K, et al. X-Chromosome inactiva-tion in cloned mouse embryos [J]. Science,2000,290:1578-1581.
    [43]Wrenzycki C, Lucas-Hahn A, Herrmann D, et al. In vitro roduction and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos[J]. Biol Reprod,2002,66:127-134.
    [44]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development [J]. Science,2001.293(5532):1089-1093.
    [45]Hackett J A, Feldser D M, Greider C W. Telomere dysfunction in-creases mutation rate and genomic instability [J]. Cell,2001,106:275-286.
    [46]Holt S E, Shay J W, Wright W E. Refining the telomere-telomerase hypothesis of aging and cancer[J]. Nat Biotechnol,1996,14:836-839.
    [47]Faragher R G, Kipling D. How might replicative senescence contribute to human aging [J]? Bioessays,1998,20:985-991.
    [48]Betts DH, Bordignon V, Hill JR, et al. Reprogramming oftelomere activity and rebuilding of telomere length in cloned cattle[J]. PNAS,2001,98:1077-1082.
    [49]Guo ZR, Jin NY. Advan ces in an imal cloning an d related fields in 2000[J]. Journal of Chinese Animal Veterinary,2001,21(2):208-212.
    [50]Stevenson VA, Kramer J, Kuhn J, et al. Centrosomes and the scrambled protein coordinate microtubule—independent actin reorganization[J]. Nat Cell Biol,2001,3(1):68-75.
    [51]Manandhar G, Simerly C, Schatten G. Centrosome reduction during mammalian spermiogenesis[J]. Curr Top Dev Biol,2000,49:343-363.
    [52]Manandhar G, Schatten H, Sutovsky P. Centrosome reduction during gametogenesis and its significance[J]. Biol Reprod,2005,72(1):2-13.
    [53]Sutovsky P, Schatten G. Paternal contributions to the mammalian zygote:fertilization after sperm—egg fusion[J].nt Rev Cytol,2000,195:1-65.
    [54]Palermo GD, Colombero LT, Rosenwaks Z. The human sperm centrosome is responsible for normal syngamy and early embryonic development[J]. Rev Reprod,1997,2(1):19-27.
    [55]Shin MR, Park SW, Shim H, et al. Nuclear and microtubule reorganization in nuclear-transferred bovine embryos[J]. Mol Reprod Dev,2002,62(1):74-82.
    [56]Yin XJ, Cho SK, Park MR, et al. Nuclear remodeling and the developmental potential of nuclear transferred porcine oocytes under delayed-activated conditions[J]. Zygote,2003, 11(2):167-174.
    [57]Zhong ZS, Zhang G, Meng XQ, et al. Function of donor cell centrosome in intraspecies and interspecies nuclear transfer embryos[J]. Exp Cell Res,2005,306(1):35-46.
    [58]Simerly C, Navara C, Hyun SH, et al. Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates:overcoming defects caused by meioticspindle extraction[J]. Dev Biol,2004,276(2):237-252.
    [59]Wilmut I, Beaujean N. Somatic cell nuclear transfer [J].Nature,2002,419:583-585.
    [60]Humpherys D, Eggan K, Akutsu H, et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei[J].Proc Natl Acad Sci USA,2002,99: 12889-12894.
    [61]Daniels R, Hall V, Trounson A O. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei[J]. Biol Reprod,2000,63:1034-1040.
    [62]Delcuve GP, Rastegar M, Davie JR. Epigenetic control[J]. J Cell Physiol,2009,219(2): 243-250.
    [63]Humpherys D, Eggan K, Akutsu H, et al. Epigenetic instability in ES cells and cloned mice[J]. Science,2001,293:95-97.
    [64]Ogawa H, Ono Y, Shimozawa N, et al. Disruption of imprinting in cloned mouse fetuses from embryonic stem cells[J]. Reproduction,2003,126:549-557.
    [65]Young L E, Schnieke A E, McCreath K J, et al. Conservation of IGF2-H19 and IGF2R imprinting in sheep:effects of somatic cell nuclear transferr[J]. Mech Dev,2003,120: 1433-1442.
    [66]Haines TR, Rodenhiser DI, Ainsworth PJ. Allele-specific non-CpG methylation of the Nfl gene during early mouse development[J]. Dev Biol,2001,240(2):585-598.
    [67]Jaenisch R. DNA methylation and imprinting:why bother? [J]Trends Genet,1997,13(8): 323-329.
    [68]Farthing CR, Ficz G, Ng RK, et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes[J]. PLoS Genet,2008,4(6): 100-116.
    [69]Bestor TH. The DNA methyltransferases of mammals[J]. Hum Mol Genet,2000,9(16): 2395-2402.
    [70]Jeltsch A. Beyond Watson and Crick:DNA methylation and molecular enzymology of DNA methyltransferases[J]. Chembiochem,2002,3(4):274-293.
    [71]Robertson KD, Wolffe AP. DNA methylation in health and disease[J]. Nat Rev Genet,2000, 1(1):11-19.
    [72]Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation[J]. Science,2003,300(5618):489-492.
    [73]Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromoso-mal instability and tumors promoted by DNA hypomethy-lation[J]. Science,2003,300(5618):455.
    [74]Hashimshony T, Zhang J, Keshet I, et al. The role of DNA methylation in setting up chromatin structure during development[J]. Nat Genet,2003,34(2):187-192.
    [75]Wade PA. Methyl CpG-binding proteins and transcrip-tional repression[J]. Bioessays,2001, 23(12):1131-1137.
    [76]Aravin A A, Sachidanandam R. Developmentally regulated piRNA clusters implicate MILI in transposon control [J]. Science,2007,316:744-747.
    [77]F arrell W E, Simpson D J, Frost S J, et al. Methylation mechnisims in pituitary tumorigenesis[J]. Endocr Relat Cancer,1999,6(4):437-447.
    [78]Hsieh J, Gage F H. Epigenetic control of neural stem cell fate[J]. Curr Opin Genet Dev, 2004,14(5):467-469.
    [79]Henderson I R, Jacobsen S E. Epigenetic inheritance in plants [J]. Nature,2007,447: 418-424.
    [80]Li E, Bind A P. DNA methylation in mammals [A]. In:Allis C D, Jenuwein T, Reinberg D. Epigenetics [M]. New York:Cold Spring Habor Laboratory Press,2007:341-356.
    [81]Bind A P. Gene number, noise reduction and biological complexity[J]. Trends Genet,1995, 11:94-100.
    [82]Yoder J A, Walsh C P, Bestor T H. Cytosine methylation and the ecology of untragenomic parasites [J]. Trends Genet,1997,13:335-340.
    [83]Singal R, Ginder G D. DNA methylation [J]. Blood,1999,93:4059-4070.
    [84]Zemach A, McDaniel I E, Silva P, et al. Genome-wide evolutionary analysis of eukaryotic DNA methylation [J]. Science,2010,328:916-919.
    [85]Ycko B. Epigenetic gene silencing in cancer[J]. J Clin Invest,2000,105 (4):401-407.
    [86]Strain L, Warner JP, Johnston T, et al. A human parthenogenetic chimaera[J]. Nat Genet, 1995,11(2):164-169.
    [87]Surani MA. Parthenogenesis in man[J]. Nat Genet,1995,11(2):111-113.
    [88]Dobrovic A, Kristensen L S. DNA methylation, epimutations and cancer predisposition[J]. Int. J. Biochem. Cell Biol.,2009,41:34-39.
    [89]Kafri T, M Ariel, M Brandeis, R Shemer, L Urven, J McCarrey, H Cedar, and A Razin. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line[J]. Genes Dev,1992,6:705-714.
    [90]Tycko B. Epigenetic gene silencing in cancer[J]. J Clin Invest,2000,105(4):401-407.
    [91]Baylin SB, Herman JG, Graft JR, et al. Alterations in DNA meth2 ylation:a fundamental aspect of neoplasia[J]. AdvCancer Res,1998,72:141-196.
    [92]Ehrlich M. DNA methylation in cancer:too much but also too little[J]. Oncogene,2002, 21(35):5400-5413.
    [93]Burbee DG, Forgacs E, Zochbauer Muler S, et al. Epigenetic inactivation of RASSF1 A in lung and breast cancers and malignant phenotype suppression[J]. J Natl Cancer lnst,2001, 93(9):691-699.
    [94]VachtenheimJ, Horakova I, Novotna H. Hypomethylation of CCGc sites in the 3'region of H-ras protooncogene is frequent and is as sociated with H-ras allele loss in non-small cell lung cancer[J].Cancer Res,1994,54(5):1145-1148.
    [95]Neddermann P, Gallinari P, Lettieri T, et al. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase[J]. J Biol Chem,1996,271(22): 12767-12774.
    [96]Tommasi S, Denissenko MF, Pfeifer GP. Sunlight induces pyrimi dine dimers preferentially at 5-methylcytosine bases[J]. Cancer Res,1997,57(21):4727-4730.
    [97]Deng G, Chen A, Pong E, et al. Methylation in hMLHI promoter interferes with its binxling to transcription factor CBF and inhibits gene expression[J].Oncogene,2001,20:7120-7127.
    [98]Nan X, F.Javier Campoy, Adrian Bird. MeCP2 Is a Transcriptional Repressor with Abundant Binding Sites in Genomic Chromatin[J]. Cell,1997,88:471-481
    [99]Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylationfJ]. Nat Genet,1998,20:116-117.
    [100]Eden S, Constancia M, Hashimshony T. An upstream repressor element plays a role in Igf2 imprinting[J]. EMBO J,2001,20:3518-3525.
    [101]Shihuyal K, Fukushima S, Takatsuji H. RNA-directed DNA methylation induces transcriptional activation in plants[J]. Proc, Nati. Sci. USA,2009,106(5):1660-1665.
    [102]Margot JB, Cardoso MC, Leonhardt H. Mammalian DNA methyltransferases show different subnuclear distributions[J]. Cell Biochem,2001,83(3):373-379.
    [103]Beslor T H. Cloning of a mammalian DNA methyltransferase [J]. Mol Biol,1988,203: 971-983.
    [104]Yen R W C, Vertino P M, Nelkin B D, et al. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res.1992,20 (9),2287-2291.
    [105]Ko YG, Nishino K, Hattori N, et al. Stage-by-stage Change in DNA methylation status of Dnmtl locus during mouse early development[J]. Biol Chem,2005,280(10):9627-9634.
    [106]Kurihara Y, Kawamura Y, Uchijima Y,et al. Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1[J]. Dev Biol,2008,313(1):335-346.
    [107]Howell CY, Bestor TH, Ding F, et al. Genomic imprinting disrupted bya maternal effect mutation in the Dnmtl gene[J]. Cell,2011,04(6):829-838.
    [108]Ratnam S, Mertineit C, Ding F, et al. Dynamics of Dnmtl methyltransferase expression and intracellular localization during oogenesis and preimplantation development[J]. Dev Biol, 2002,245(2):304-314.
    [109]Glickman JF, Pavlovich JG, Reich NO. Peptide mapping of the murine DNA methyltransferase reveals a major phosphorylation site and the start of translation[J]. Biol Chem,1997,272(28):17851-17857.
    [110]Goyal R, Reinhardt R, Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmtl methyltransferase[J]. Nucleic Acids Res,2006,34(4):1182-1188.
    [111]Hsieh CL. The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmt1 [J]. BMC Biochem,2005,6:6.
    [112]Dong A, Yoder JA, Zhang X, et al. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA[J]. Nucleic Acids Res,2001,29(2):439-448.
    [113]Schaefer M, Steringer JP,Lyko F.The Drosophila cytosine-5 methyltransferase Dnmt2 is associated with the nuclear matrix and can access DNA during mitosis[J]. PLoS ONE,2008, 3(1):1414.
    [114]Kunert N, Marhold J, Stanke J, et al. A Dnmt2-like protein mediates DNA methylation in Drosophila[J]. Development,2003,130(21):5083-5090.
    [115]Goll MG, Kirpekar F, Maggert KA, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2[J]. Science,2006,311(5759):395-398.
    [116]Rai K, Chidester S, Zavala CV, et al. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish[J]. Genes Dev,2007,21(3):261-266.
    [117]Okano M, Ken-ichiro. Dissociogenic stress:A transcultural concept. Psychiatry and Clinical Neurosciences,1998,152:123-128.
    [118]Xie S, Wang Z, Okano M, et al. Cloning, expression and chromosome locations of the human Dnmt3 gene family[J]. Gene,1999,236(1):87-95.
    [119]Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin[J]. Mol Cell Biol,2004,24(20):9048-9058.
    [120]Cheng X, Blumenthal RM. Mammalian DNA methyltrans- ferases:A structural perspective[J]. Structure,2008,16(3):341-350.
    [121]Ko YG, Nishino K, Hattori N,et al. Stage-by-stage Change in DNA methylation status of Dnmtl locus during mouse early development[J]. Biol Chem,2005,280(10):9627-9634.
    [122]Ding F, Chaillet JR. In vivo stabilization of the Dnmtl (cytosine-5) methyltransferase protein[J]. Proc Natl Acad Sci USA,2002,99(23):14861-14866.
    [123]Weisenberger DJ, Velicescu M, Cheng JC,et al. Role of the DNA methyltransferase variant Dnmt3b3 in DNA methylation[J]. Mol Cancer Res,2004,2(1):62-72.
    [124]Suetake I, Shinozaki F, Miyagawa J, et al. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction[J]. Biol Chem,2004,279(26): 27816-27823.
    [125]Rajaram, S, Reddy, G.S and Iyengar, D.S. An unusual action of hydrazine hydrate on arylthiols:A new facile method for synthesis of disulfides. Indian Journal of chemistry, 1999, (38):639-640
    [126]Jackson M, Krassowska A, Gilbert N, et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells[J]. Mol Cell Biol,2004,24(20):8862-8871.
    [127]Karpf AR, Matsui S. Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells[J]. Cancer Res,2005,65(19): 8635-8639.
    [128]Dodge JE, Okano M, Dick F, et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immo rtalization[J]. Biol Chem,2005,280(18):17986-17991.
    [129]Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting[J]. Nature,2004,429(6994):900-903.
    [130]Kato Y, Kaneda M, Hata K, et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse[J]. Hum Mol Genet,2007,16(19):2272-2280.
    [131]Yokomine T, Hata K, Tsudzuki M, et al. Evolution ofthe vertebrate Dnmt3 gene family:a possible link between existence of Dnmt3L and genomic imprinting[J]. Cytogenet Genome Res,2006,113(1-4):75-80.
    [132]Suetake I, Morimoto Y, Fuchikami T, et al. Stimulation effect of Dnmt3L on the DNA methylation activity of Dnmt3a2[J]. J Biochem,2006,140(4):553-559.
    [133]Webster KE, O'Bryan MK, Fletcher S, et al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermato-genesis. Proc Natl Acad Sci USA,2005,102(11): 4068-4073.
    [134]Jones PA, Liang GN. Rethinking how DNA methylation patterns are maintained[J]. Nat Rev Genet,2009,10(11):805-811.
    [135]Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet,2010,11(3):204-220.
    [136]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development[J]. Science,2001,293(5532):1089-1093.
    [137]Reik W, Walter J. Genomic imprinting:parental influence on the genome[J]. Nat Rev Genet, 2001,2(1):21-32.
    [138]Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond[J]. Nat Rev Genet,2008,9(2):129-140.
    [139]Morgan HD, Santos F, Green K, et al. Epigenetic reprogramming in mammals[J]. Hum Mol Genet,2005,14(Spec 1):47-58.
    [140]Mayer W, Niveleau A, Walter J, et al. Embryogenesis:Demethylation of the zygotic paternal genome[J]. Nature,2000,403(6769):501-502.
    [141]Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote[J]. Curr Biol,2000,10(8):475-478.
    [142]Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells[J]. Mech Dev,2002,117(1-2):15-23.
    [143]Lee JY, Inoue K, Ono R, et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells[J]. Development,2002,129(8): 1807-1817.
    [144]Ooi SKT, Bestor TH. The colorful history of active DNA demethylation[J]. Cell,2008, 133(7):1145-1148.
    [145]Santos F, Hendrich B, Reik W, et al. Dynamic reprogramming of DNA methylation in the early mouse embryo[J]. Dev Biol,2002,241(1):172-182.
    [146]Bhattacharya SK, Ramchandani S, Cervoni N, et al. A mammalian protein with specific demethylase activity for mCpG DNA[J]. Nature,1999,397(6720):579-583.
    [147]Barreto G, Schafer A, Marhold J, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation[J]. Nature,2007,445(7128):671-675.
    [148]Jin SG, Guo C, Pfeifer GP. GADD45A does not promote DNA demethylation[J]. PLoS Genet,2008,4(3):1000013.
    [149]Zhu JK. Active DNA demethylation mediated by DNA glycosylases[J]. Annu Rev Genet, 2009,43:143-166.
    [150]Gehring M, Reik W, Henikoff S. DNA demethylation by DNA repair[J]. Trends Genet, 2009,25(2):82-90.
    [151]Niehrs C. Active DNA demethylation and DNA repair[J]. Differentiation,2009,77(1):1-11.
    [152]Wu SC, Zhang Y. Active DNA demethylation:many roads lead to Rome[J]. Nat Rev Mol Cell Biol,2010,11(9):607-620.
    [153]肖遥,张华林,白莉雅,等.哺乳动物中的DNA主动去甲基[J].HEREDITA-S (Beijing),2011.
    [154]Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond[J]. Nat Rev Genet,2008,9(2):129-140.
    [155]Gehring M, Reik W, Henikoff S. DNA demethylation by DNA repair[J]. Trends Genet, 2009,25(2):82-90.
    [156]Ginsburg M, Snow MHL, McLaren A. Primordial germ cells in the mouse embryo during gastrulation[J]. Development,1990,110(2):521-528.
    [157]Seki Y, Hayashi K, Itoh K, et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice[J]. Dev Biol,2005,278(2):440-458.
    [158]Seki Y, Yamaji M, Yabuta Y, et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice[J]. Development, 2007,134(14):2627-2638.
    [159]Hajkova P, Ancelin K, Waldmann T, et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature,2008,452(7189):877-881.
    [160]Morgan HD, Dean W, Coker HA, et al. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues:implications for epigenetic reprogramming[J]. Biol Chem,2004,279(50):52353-52360.
    [161]Ying Y, Zhao GQ. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse[J]. Dev Biol,2001, 232(2):484-492.
    [162]Van der Heijden GW, Dieker JW, Derijck AAHA, et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote[J]. Mech Dev,2005,122(9):1008-1022.
    [163]McLay DW, Clarke HJ. Remodelling the paternal chromatin at fertilization in mammals[J]. Reproduction,2003,125(5):625-633.
    [164]Santos F, Hendrich B, Reik W, et al. Dynamic reprogramming of DNA methylation in the early mouse embryo[J]. Dev Biol,2002,241(1):172-182.
    [165]Hajkova P, Jeffries SJ, Lee C, et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway[J]. Science,2010,329(5987):78-82.
    [166]Wossidlo M, Arand J, Sebastiano V, et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes[J]. EMBO J,2010,29(11):1877-1888.
    [167]Lane N, Dean W, Erhardt S, et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse[J]. Genesis,2003,35(2): 88-93.
    [168]Kim SH, Kang YK, Koo DB, et al. Differential DNA methylation reprogramming of various repetitive sequences in mouse preimplantation embryos[J]. Biochem Biophys Res Commun, 2004,324(1):58-63.
    [169]Barton SC, Arney KL, Shi W, et al. Genome-wide methylation patterns in normal and uniparental early mouse embryos[J]. Hum Mol Genet,2001,10(26):2983-2987.
    [170]Yang XZ, Smith SL, Tian XC, et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning[J]. Nat Genet,2007,39(3):295-302.
    [171]Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development:Aberrant reprogramming in cloned Embryos[J]. Proc Natl Acad Sci USA,2001,98(24):13734-13738.
    [172]Dean W, Santos F, Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer[J]. Semin Cell Dev Biol,2003,14(1):93-100.
    [173]Simonsson S, Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei[J]. Nat Cell Biol,2004,6(10):984-990.
    [174]Santos F, Zakhartchenko V, Stojkovic M, et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos[J]. Curr Biol,2003, 13(13):1116-1121.
    [175]Gurdon JB, Melton DA. Nuclear reprogramming in cells[J]. Science,2008,322(5909): 1811-1815.
    [176]Bhutani N, Brady JJ, Damian M, et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation[J]. Nature,2010,463(7284):1042-1047.
    [177]Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells[J]. Nature, 2010,467(7313):285-290.
    [178]Lees-Murdockurdock DJ, Shovlintc, Gardiner T, et al. DNA methyltransferase expression in the mouse germ line during periods of de novo methylation[J]. Developmental Dynamics, 2005,232(4):992-1002.
    [179]Slotkin RK, Vaughn M, Borges F, et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen[J]. Cell,2009,136(3):461-472.
    [180]Lane N, Dean W, Erhardt S, et al. Resistance of IAPs tomethylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse[J]. Genesis,2003,35(2): 88-93.
    [181]Borgel J, Guibert S, Li Y, et al. Targets and dynamics of promoter DNA methylation during early mouse development [J].Nature Genetics,2010,42(12):1093-1100.
    [182]马立红,王晓梅.多不饱和脂肪酸药理作用研究[J].吉林中医药,2006,26(12):69-70.
    [183]李殿鑫,陈银基,周光宏,等.co-3多不饱和脂肪酸分类,来源与疾病防治功能[J].中国食物与营养,2006(6):52-54.
    [184]张艳荣,单玉玲,李玉.姬松茸ω-6多不饱和脂肪酸对高血脂鼠的降血脂作用[J].吉林大学学报,2006,32(6):960-963.
    [185]RazA, Kamin-BelskyN, przedecki F. Fish oil in hibits △6 desaturase activity in vivo:Utility in a dietary Paradigm to obtain mice depleted of arachidonic acid [J].The journal of Nutritional Biochemistry,1997,8(10):558-565.
    [186]Caplan M S, Jilling T. The role of polyunsaturated fatty acid supplement -ation in intestinal inflammation and neonatal necrotizing enterocolitis[J]. Lipids,2001,36:9.
    [187]Karsten H, Weylandt, Anja Nadolny, et al. Reduction of inflammation and chronic tissue damage by omega-3 fatty acids in fat-1 transgenic mice with pancreatitis[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2008, (11):634-641.
    [188]Undurti N, Das. Transgenic fat-1 mouse as a model to study the pathophysiology of cardiovascular, neurological and psychiatric disorders[J]. Lipids in Health and Disease,2009, (8):61.
    [189]J Griffitts, D Saunders. Non-mammalian fat-1 gene prevents neoplasia when introduced to a mouse hepatocarcinogenesis model:Omega-3 fatty acids prevent liver neoplasia[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2010, (10):1133-1144.
    [190]Trisha J, Brock, John Browse, et al. Fatty Acid Desaturation and the Regulation of Adiposity in Caenorhabditis elegans[J]. Genetics,2007,176:865-875.
    [191]Kazuhiro Saeki, Kazuya Matsumoto, Mikio Kinoshita, et al. PNAS,2004,101(17): 6361-6366.
    [192]Mitalipov SM, Yeoman RR, Nusser KD,et al. Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells[J]. Biol Reprod,2002,66:1367-1373.
    [193]Gao S, McGarry M, Priddle H, et al. Effects of donor oocytes and culture conditions on development of cloned mice embryos [J]. Mol Reprod Dev,2003,66:126-133.
    [194]Wakayama T, Yanagimachi R. Mouse cloning with nucleus donor cells of different age and type[J]. Mol Reprod Dev,2001,58:376-383.
    [195]Zhou Q, Renard J P, Friec GL,e t al. Generation of fertile cloned rats by regulating ocyte activation[J]. Science,2003,302(5648):1179.
    [196]Zhou Q, Yang S H, Ding CH, et al. A comparative approach to Somatic cell nuclear transfer in the rhesus monkey[J]. Hum Reprod,2006,21(10):2564-2571.
    [197]Okahara Narita J, Tsuchiya H, Takada T, et al. Cloned blastocysts produced by nuclear transfer from somatic ceils in cynomolgus monkeys (Macaca fascicularis)[J]. Primates,2007, 48(3):232-240.
    [198]Simerly C, Dominko T, Navara C, et al. Molecular correlates of primate nuclear transfer failures[J]. Science,2003,300:297.
    [199]Simerly C, Navara C, Hwan Hyun S, et al. Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates:overcoming defects caused by meiotic spindle extraction.Dev Biol,2004,276:237-252.
    [200]Ng SC, Chen N, Yip WY, et al. The first cell cycle after transfer of somatic cell nuclei in a non-human primate[J]. Development,2004,131:2475-2484.
    [201]Wolf DP. Assisted reproductive technologies in rhesus macaques[J].Reprod Biol Endocrinol, 2004,2:37.
    [202]李裕强,安志兴,张涌.牛卵母细胞质内注射体细胞核移植胚的早期发育[J].畜牧兽医学报,2005,36(1):33-37.
    [203]Campbell K H S, Mc Whir J, Ritchie W A, et al. Sheep cloned by nuclear transfer from cultured cell lines[J]. Nature,1996,380:64-66.
    [204]Campbell K H S. Nuclear equivalence, nuclear transfer and the cell cycle[J]. Cloning,1999, 1:12-15.
    [205]Wani NA. Chemical activation of in vitro matured dromedary camel(Camelus dromedarius) oocytes:optimization of protocols. TheriogenolOgy,2008,69:591-602.
    [206]Booth P J, Vajta G, Hoi A, et al.Full-term development of nuclear transfer calves produced from open-pulled straw (OPS) vitrified cytoplasts:work in progress[J]. Theriogenology, 1999,51:999-1006.
    [207]J.L. Susko-Parrish, M.L. Leibfried-Rutledge, D.L. Northey, et al. Inhibition of Protein Kinases after an Induced Calcium Transient Causes Transition of Bovine Oocytes to Embryonic Cycles without Meiotic Completion[J]. Developmental Biology,1994,166, Issue(2):729-739.
    [208]王滇,张春燕,刘松柏,等.不同化学激活剂对牛卵丘细胞重构胚发育的影响[J].中国畜牧兽医,2009,36(1)
    [209]Wakayama T, Perry A C, Zuccotti M, et al. Full term development of mice from enucleated oocytes injected with cumulus cell nuclei[J]. Nature,1998,394:369-374.
    [210]well D N, Misica P M, McMillan W H, et al. Production of cloned bovine fetuses following nuclear transfer with cells from a fetal fibroblast cell line[J]. Theriogenology,1998,49:330.
    [211]Uruno K, Urakawa M, Aoyagi Y. Effect of postfusion or prefusion activation on nuclear transfer results of bovine embryonic stem-like cells[J]. TheriogenologY,2001,55:295.
    [212]Cezar GG, Bartolomei MS, Forsberg EJ, et al. Genome-wide epigenetic alterations in cloned bovine fetuses[J]. Biol Reprod,2003,68(3):1009-1014.
    [213]Kang YK, Koo DB, Park JS, et al. Aberrant methylation of donor genome in cloned bovine embryos[J]. Nat Genet,2001,28(2):173-177.
    [214]Bourc'his D, Le Bourhis D, Patin D, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos[J]. Curr Biol,2001,11(19): 1542-1546.
    [215]Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development:aberrant reprogramming in cloned embryos[J]. Proc Natl Acad Sci USA,2001,98(24):13734-13738.
    [216]Guo-Liang Xul, Timothy H. Bestorl, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene[J]. Nature,1999,402: 187-191.
    [217]Ohgane J, Wakayama T, Kogo Y, et al. DNA methylation variation in cloned mice[J]. Genesis,2001,30(2):45-50.
    [218]Shimozawa N, Sotomaru Y, Eguchi N, et al. Phenotypic abnormalities observed in aged cloned mice from embryonic stem cells after long-term maintenance[J]. Reproduction,2006, 132(3):435-441.
    [219]Comizzoli P, Marquant-Le, Guienne B, et al. Onset of the first S-phase is determined by a paternal effect during the Gl-phase in bovine zygotes[J]. Biol Reprod,2000,62:1677-1684.
    [220]Bourc(?) his D, Le Bourhis D, Patin D, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos[J]. Curr Biol 2001, 11:1542-1546.
    [221]Jung Sun Park,Young Sun Jeong,Sang Tae Shin, et al. Dynamic DNA Methylation Reprogramming:Active Demethylation and Immediate Remethylation in the Male Pronucleus of Bovine Zygotes[J]. Developmental Dynamics,2007,236:2523-2533.
    [222]Bourc'his D, Bourhis D L, Patin D, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos[J]. Curr Biol,2001,11: 1542-1546.
    [223]D. Bourc, D. Le Bourhis, D. Patin, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos[J]. Current Biology, 2003,11:1542-1546.
    [224]Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development:Aberrant reprogramming in cloned embryos[J]. Proc Natl Acad Sci USA,2001,98:13734-13738.
    [225]Fatima Santos,Valeri Zakhartchenko,Miodrag Stojkovic,et al. Epigenetic Marking Correlates with Developmental Potential in Cloned Bovine Preimplantation Embryos[J]. Current Biology,2003,13:1116-1121.
    [226]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development[J], Science,2001,293(5532):1089-1093.
    [227]Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2[J]. Genes Dev,1998,12: 3693-3702.
    [228]Drewell RA, Arney KL, Arima T, et al. Novel conserved elements upstream of the H19 gene are transcribed and act as mesodermal enhancers[J]. Development,2002,129:1205-1213.
    [229]Fa tima Santos, Valeri Zakhartchenko.Miodrag Stojkovic,et al. Epigenetic Marking Correlates with Developmental Potential in Cloned Bovine Preimplantation Embryos[J]. Current Biology,2003,13:1116—1121.
    [230]Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development:Aberrant reprogramming in cloned embryos[J]. Proc Natl Acad Sci USA,2001,98:13734-13738.
    [231]U S, Yu D, Lee E, et al. Variable and tissue-specifichormone resistance in heterotrimeric Gs protein a-subunit(Gsa) knockoutmice is due to tissue-specific imprinting of thegsa gene[J]. Proc Natl Acad Sci U S A,1998,95:8715-8720.
    [232]Coombes C, Amaud P, Gordon E, et al. Epigenetic properties and identification of an imprint mark in the Nesp-Gnasxl domain of the mouse Gnas imprinted locus[J]. Mol Cell Biol,2003, 23:5475-5488.
    [233]Ogura A, Inoue K, Ogonuki N, et al. Phenotypic effects of somatic cell cloning in the mouse[J]. Clone Stem Cells,2002,4:397-405.
    [234]Weksberg R, Shen DR, Fei YL, et al. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome[J]. Nature Genet,1993,5:143-150.
    [235]Birnbacher B, Amann C, Breitshopl H, et al. Cellular localization of insulin-like growth factor Ⅱ mRNA in the human fetus and the placentas:detection with a digoxigenin-labeled cRNA probe and immuno-cytochemistry[J]. Pediatr Res,1998,43(5):614-620.
    [236]Forne T, Oswald J, Dean W, et al. Loss of the maternal H19 gene induces changes in Igf2 methylation in both cis and trans[J]. Proc Natl Acad Sci USA,1997,94(19):10243-10248.
    [237]Couldrey C, Lee R SF. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming[J]. BMC Developmental Biology,2010,10:27.
    [238]Hammoud S S, Purwar J, Pflueger C, et al. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility [J]. Fertility and Sterility,2009,94(5): 1728-1733.
    [239]Suzuki J Jr, Therrien J, Filion F, et al. In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle[J]. BMC Developmental Biology,2009,9:9.
    [240]McAllister G, Amara S G, Lerner M R. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N[J]. Proceeding of the National Academy of Sciences of the United States of America,1988,85(14):5296-5300.
    [241]Barlow DP. Gametic imprinting in mammals[J]. Science,1995,270(5242):1610-1613.
    [242]Dao D, Wslsh CP, Yuan L, et al. Multipoint analysis of human chromosome 1 1p15/mouse distal chromosome 7:inclusion of H19/IGF2 in the minimal WT2 region, gene specificity of H19 silencing in Wilms' tumorigenesis and methylation hyper- dependence of H19 imprinting[J]. Hum Mol Genet,1999,8(7):1337-1352.
    [243]Juan V, Crain C, Wilson C. Evidence for evolutionary conserved secondary structure in the H19 tumor suppressor RNA[J].Nuclear Acids Res,2000,28(5):1221-1227.
    [244]Lustig Yariv O, Schulze E, Komitowski D, et al. The expression of the imprinted genes H19 and IGF- 2 in choriocarcinoma cell lines. Is H19 a tumor suppressor gene [J]. Oncogene, 1997,15(2):169-177.
    [245]Ariel I, Sughayer M, Fellig Y, et al. The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma[J]. Mol Pathol,2000,53(6):320-323.
    [246]Williamson CM, Turner MD, Ball ST, et al. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster [J]. Nat Genet,2006, 38:350-355.
    [247]Ohta T, Gray TA, Rogan PK, et al. Imprinting-mutation mechanisms in Prader-Willi syndrome[J]. Am J Hum Genet,1999,64:397-413.
    [248]Chan SW, Henderson IR, Jacobsen SE. Gardening the genome:DNA Methylation in Arabidopsis thaliana[J]. Nat Rev Genet,2005,6(5):351-360.
    [249]Goll M G, Bestor TH. Eukaryotic cytosine methyltransferases[J]. Rev Biochem,2005,74(1): 481-514.
    [250]Morgan H D, Santos F, Green K, et al. Epigenetic reprogramming in mammals[J]. Hum Mol Genet,2005,14(1):47-58.
    [251]Dean W, Santos F, Stojkovic M, et al. Conservation of methylation repro-gramming in mammalian development:aberrant repro-gramming in cloned embryos[J]. Proc Natl Acad Sci USA,2001,98(24):13734-13738.
    [252]Edwards C A, Ferguson-Smith A C. Mechanisms regulating imprinted genes in clusters[J]. Curr Opin Cell Biol,2007,19(3):281-289.
    [253]Carol A Edwards, Anne C Ferguson-Smith. Mechanisms regulating imprinted genes in clusters[J].2007, Current Opinion in Cell Biology,19:281-289.
    [254]Li S, Klein E S, Russo A F, et al. Isolation of cDNA clones encoding small nuclear ribonucleoparticle-associated proteins with different tissue specificities[J]. Proceeding of the National Academy of Sciences of the United States of America,1989,86(24):9778-9782.
    [255]Zhongde W, Alexander M, Rudolf J. Nuclear cloning and epigenetic reprogramming[J]. Handbook of Stem Cells Embryonic,2006,1:119-126.
    [256]Cezar G G, Bartolomei M S, Forsberg E J, et al. Genome-wide epigenetic alterations in cloned bovine fetuses[J]. Biol Reprod,2003,68:1009-1014.
    [257]Chung Y G, Ratnam S, Chaillet J R, et al. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biol Reprod,2003,69:146-153.
    [258]Zhongde W, Alexander M, Rudolf J. Nuclear cloning and epigenetic reprogramming[J]. Handbook of Stem Cells Embryonic,2006,1:119-126.
    [259]Chung YG, Ratnam S, Chaillet JR, et al. Abnomal regulation of DNA methyltransferase expression in cloned mouse embryos[J]. Biol Reprod,2003,69(1):146-153.
    [260]Hiromichi Kimura, Kunio Shiota. Methyl-CpG-binding Protein, MeCP2, Is a Target Molecule for Maintenance DNA Methyltransferase, Dnmtl[J]. The Journal of Biological Chemistry,2003,278(7):4806-4812.
    [261]Shireen A. Sarraf, Irina Stancheva. Methyl-CpG Binding Protein MBD1 Couples Histone H3 Methylation at Lysine 9 by SETDB1 to DNA Replication and Chromatin Assembly [J]. Molecular Cell,2004,27:595-605.
    [262]Ken-ichiro Tatematsu, Tetsu Yamazaki, Fuyuki Ishikawa. MBD2-MBD3 complex binds to hemi-methylated DNAand forms a complex containing DNMT1 at thereplication foci in late S phase[J]. Genes to Cells,2000,5:677-688.
    [263]Alfonso Bellacosa. Role of MED 1 (MBD4) Gene in DNA repair and human cancer[J]. Journal of Cellular Physiology,2001,187(2):137-144.
    [264]Emmanuelle Vire, Carmen Brenner, Rachel Deplus, et al.The Polycomb group protein EZH2 directly controls DNA methylation[J]. Nature,2006,439(16):871-874.
    [265]Nidhi Bhutani, Jennifer J. Brady, Mara Damian, et al.Reprogramming towards pluripotency requires AID-dependent DNA demethylation[J]. Nature,2010,463,1042-1047
    [266]Aapola U, Maenpaa K, Kaipia A, et al. Epigenetic modifications affect Dnmt3L expression[J]. Biochem J,2004,380(3):705-713.
    [267]Weisenberger DJ, Velicescu M, Cheng JC, et al. Role of the DNA methyltransferase variant Dnmt3b3 in DNA methylation[J]. Mol Cancer Res,2004,2(1):62-72.
    [268]Suetake I, Shinozaki F, Miyagawa J, et al. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction[J]. J Biol Chem,2004,279(26): 27816-27823.
    [269]Ryutaro Hirasawa,Hatsune Chiba,Masahiro Kaneda,et al. Maternal and zygotic Dnmtl are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development[J].Genes & Development,2008,22:1607-1616.
    [270]Ko YG, Nishino K, Hattori N, et al. Stage-by-stage Change in DNA methylation status of Dnmtl locus during mouse early development[J]. J Biol Chem,2005,280(10):9627-9634.
    [271]Nimura K, Ishida C, Koriyama H, et al. Dnmt3a2 targets endogenous Dnmt3L to ES cell chromatin and induces regional DNA methylation[J]. Genes Cells,2006,11(10):1225-1237.
    [272]Cheng X, Blumenthal RM. Mammalian DNA methyltrans- ferases:A structural perspective[J]. Structure,2008,16(3):341-350.
    [273]Kato Y, Kaneda M, Hata K, et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse[J]. Hum Mol Genet,2007,16(19):2272-2280.
    [274]Franc,ois Fuks, Paul J. Hurd, et al. The Methyl-CpG-binding Protein MeCP2 Links DNA Methylation to Histone Methylation[J]. The Journal of Biological Chemistry,2003,278(6): 4035-4040.
    [275]Lluis Morey1,Carmen Brenner2, Francesco Fazi, et al. MBD3, a Component of the NuRD Complex, Facilitates Chromatin Alteration and Deposition of Epigenetic Marks[J]. Cell. Biol, 2008,28(19):5912-5923.
    [276]Jhrana Datta, Sarmila Majumder, Shoumei Bai, et al. Lymphosarcoma Cells Methyltransferase 3 A with Mbd3 and Brgl in Mouse Physical and Functional Interaction of DNA[J]. Cancer Res,2005,65:10891-10900.
    [277]Shelley E. Browna, Matthew J. Sudermanb, Michael Hallettb, et al.DNA demethylation induced by the methyl-CpG-binding domain protein MBD3[J]. Gene,2008,420,(2,):99-106.
    [278]Kimberly J. Reese, Shu Lin, Raluca I. Verona, et al. Maintenance of Paternal Methylation and Repression of the Imprinted H19 Gene Requires MBD3[J]. PLoS Genet,2008,3(8):137.
    [279]Daniel D. De Carvalho, Jueng Soo You, Peter A. Jones. DNA methylation and cellular reprogramming[J]. Trends in cell biology,2010,20(10):609-617.
    [280]Nidhi Bhutani, Jennifer J. Brady, Mara Damian, et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation[J]. Nature,2009,463:1042-1047.
    [281]Christian Popp, Wendy Dean, Suhua Feng, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency [J]. Nature 2010,63:1101-1105.
    [282]Kunal Rai, Ian J. Huggins, Smitha R. James, et al. DNA Demethylation in Zebrafish Involves the Coupling of a Deaminase, a Glycosylase, and Gadd45[J]. cell,2008,135(7):1201-1212.
    [283]Jian-Kang Zhu. Active DNA Demethylation Mediated by DNA Glycosylases[J]. nnu Rev Genet,2009,43:143-166.
    [284]Patrick Trojerl, Danny Reinberg. Histone Lysine Demethylases and Their Impact on Epigenetics[J]. cell,2006,125(2):213-217.
    [285]Emmanuelle Vire, Carmen Brenner, Rachel Deplus, et al. The Polycombo up protein EZH2 directly controls DNA methylation[J].nature,2006,439.
    [286]Chanchao Lorthongpanich, Davor Solter, Chin Yan Lim.Nuclear reprogramming in zygotes[J]. Dev. Biol,2010,54:1631-1640.
    [287]Jose M. Lora, David M. Wilson, Kevin Lee, et al. Epigenetic control of the immune system: histone demethylation as a target for drug discovery[J]. Spring,2010,7(1):67-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700