泛素化对多器官功能障碍综合征脾脏树突状细胞功能的调节作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究多器官功能障碍综合征(multiple organs dysfunction syndrome,MODS)病程中脾脏树突状细胞(dendritic cells,DC)的变化及MHC-Ⅱ蛋白的泛素依赖性作用,证实泛素-蛋白酶体途径在MODS病程中对脾脏DC MHC-Ⅱ变化及DC功能的影响,探讨E3泛素连接酶MARCH1在MODS第一次打击期对脾脏DC MHC-Ⅱ泛素化调节的作用机制,并观察干预MARCH1对MODS第一次打击期脾脏DC免疫功能的影响,进而为MODS的免疫调节与防治寻找新的靶点。
     方法:采用腹腔注射酵母多糖复制MODS小鼠模型。120只小鼠随机分为正常对照组和MODS1d、3d、5d、7d和10d组。各组实验小鼠分别分离脾脏和胸腺组织,一部分脾脏应用免疫荧光方法检测CD11c+DC数量的变化,剩余组织应用MiniMACS免疫磁珠分别分离DC和T细胞用于体外细胞学实验。运用流式细胞术、Real-Time PCR、Western Blot和MTT法等检测DC对CD86、MHC-Ⅱ、泛素、E3泛素连接酶(MARCH1-8)的表达,DC分泌IL-12、TNF-α的水平以及诱导T细胞增殖和分泌IL-2、IFN-γ的水平。接着运用免疫共沉淀及WesternBlot检测正常对照组和MODS1d组DC MHC-Ⅱ蛋白泛素化水平,并用MG132分别处理两组DC各6h,运用PI染色法、Real-Time PCR、Western Blot和MTT法等检测处理前后各组DC的凋亡率,DC对MHC-Ⅱ蛋白的表达以及诱导T细胞增殖和分泌IL-2、IFN-γ、TNF-α的水平。通过从小鼠尾部提取cDNA作为模板,采用特异的引物,运用聚合酶链式反应(polymerase chain reaction,PCR)技术扩增出MARCH1cDNA片段,EcoRⅠ和BamHⅠ双酶切后,连接于载体pMB-HA质粒上,构建pMB-HA-MARCH1重组载体,经双酶切和DNA测序分析检测重组载体构建结果,转化大肠埃希菌DH5α感受态菌、筛选阳性克隆、抽提质粒并进行纯化。将pMB-HA-MARCH1表达载体和SiRNA分别转染进MODS1d组DC,运用MTT法、PI染色法、流式细胞术、Real-Time PCR、免疫共沉淀及Western Blot等比较MODS1d组、MARCH1siRNA敲低组和MARCH1过表达组DC的形态、活力和凋亡率,DC对MHC-Ⅱ蛋白的表达和泛素化水平以及诱导T细胞增殖和分泌IL-2、IFN-γ、TNF-α的水平。
     结果:MODS病程中CD11c+DC数量逐渐减少,DC表面MHC-Ⅱ和CD86蛋白,DC分泌的IL-12、TNF-α和其介导的T细胞增殖活性以及T细胞分泌的IL-2和IFN-γ的表达均为先升高,在MODS1d组达到峰值,此后下降,至MODS期降到最低点,但MHC-Ⅱ和泛素的mRNA水平变化均不明显。而E3泛素连接酶中MARCH1的变化最显著,mRNA和蛋白水平表达均为先下降,在MODS1d组达到最低值,后略有升高趋势,直至MODS10d组又有所下降。在MODS病程中MHC-Ⅱ与MARCH1的变化趋势大致相反。MODS1d组脾脏DC MHC-Ⅱ蛋白泛素化程度较正常对照组显著降低,MG132处理前后两组DC凋亡率无明显变化,而DC MHC-Ⅱ蛋白的表达以及诱导T细胞增殖和分泌IL-2、IFN-γ、TNF-α的水平均为MODS1d组与MG132处理后的正常对照组比正常对照组高,其中前者比后者稍高,MG132处理后的MODS1d组为最高。成功构建了E3泛素连接酶MARCH1的真核表达载体pMB-HA-MARCH1,并合成了3条效果比较理想的MARCH1的siRNA。对MODS1d组DC进行MARCH1过表达和siRNA敲低干预,发现三组DC的形态、活力和凋亡率均无明显变化,而MARCH1过表达干预可以增加MHC-Ⅱ的泛素化程度,减少MHC-Ⅱ的蛋白表达水平,并降低DC诱导T细胞增殖和分泌IL-2、IFN-γ、TNF-α的功能;而MARCH1siRNA敲低干预则相反可以降低MHC-Ⅱ的泛素化程度,增加MHC-Ⅱ的蛋白表达水平,并增强DC诱导T细胞增殖和分泌IL-2、IFN-γ、TNF-α的功能。
     结论:1、在MODS第一次打击期DC的数量虽有下降,但其抗原提呈功能与激活T细胞介导免疫应答反应的能力却是增强的;而到了MODS期,DC的数量及功能均降至最低,机体处于免疫抑制状态。2、在MODS病程中,是MARCH1通过泛素化降解MHC-Ⅱ减少了小鼠脾脏DC MHC-Ⅱ的表达。3、在MODS中脾脏DC MHC-Ⅱ的变化确实是具有泛素依赖性。4、成功构建了E3泛素连接酶MARCH1的真核表达载体pMB-HA-MARCH1,并合成了3条效果较理想的MARCH1的siRNA。5、在MODS病程第一次打击期,脾脏DC MHC-Ⅱ过表达的原因与MARCH1对MHC-Ⅱ的泛素化降解程度较低有关。提示病程初期用MARCH1过表达干预,可以作为防止MODS免疫机能过亢和炎症反应过度的一个潜在的治疗靶点。
Objective:To study the changes of spleen dendritic cells(DC) and the ubiquitin-dependent effects of MHC-Ⅱ protein in the course of multiple organ dysfunctionsyndrome(MODS). To confirm the influences of MHC-Ⅱ and spleen DC in the courseof MODS by the ubiquitin-proteasome pathway. To explore the ubiquitinationregulatory mechanisms of MHC-Ⅱ in spleen DC during the first strike period ofMODS by the E3ubiquitin ligase enzyme MARCH1. To observe the influences ofsplenic DC immune function during the first strike period of MODS by theintervention of MARCH1, and to find a new target for the immune regulation andprevention of MODS.
     Methods: MODS mice model were established by intraperitoneal injection ofzymosan.120mice were randomly divided into normal control group and the MODS1d,3d,5d,7d and10d groups. Spleen and thymus tissue samples of each group wereisolated, part of the spleen tissue samples were used to detect the changes of thenumber of CD11c+DC by immunofluorescence method, and the rest tissue sampleswere used to separate Spleen DC and T cells for cytological experiments in vitro byMiniMACS microbeads. The expression of CD86, MHC-Ⅱ, ubiquitin and E3ubiquitin ligase (MARCH1-8) on DC, the levels of IL-12and TNF-α secreted by DC,the proliferative activity of T cells and the levels of IL-2and IFN-γ secreted by T cellswere detected by flow cytometry, Real-Time PCR, Western blot and MTT method.Then the ubiquitination levels of MHC-Ⅱ proteins in DC of the normal control groupand MODS1d group were detected by co-immunoprecipitation and western Blot.After treating the two groups with MG132respectively for6h, we detected theapoptosis rate of DC, the expression of MHC-Ⅱ protein on DC, the proliferative activity of T cells and the levels of IL-2, IFN-γ and TNF-α secreted by T cells by PIstaining, Real-Time PCR, Western blot and MTT method. Cellular cDNA wasextracted from the tail of mouse as a template. The MARCH1cDNA was synthesizedby PCR with the specific primers. After restriction endonuclease EcoRⅠand BamHⅠdouble digested it,the MARCH1cDNA was cloned in pMB-HA vector to constructrecombinant vectors. The result of recombinant vector was identified usingdouble-digestion and DNA sequencing. Then we transformed the recombinant vectorinto competent E.coli DH5α cells, screened positive clones, extracted plasmid, andpurified it. The pMB-HA-MARCH1expression vectors and siRNA were transfectedinto DC of MODS1d group. The morphology, viability and apoptosis rate of DC, theexpression of MHC-Ⅱ proteins on DC, the proliferative activity of T cells and thelevels of IL-2, IFN-γ and TNF-α secreted by T cells were detected by MTT, PIstaining, flow cytometry, Real-Time PCR, co-immunoprecipitation and Western Blotin MODS1d group, MARCH1siRNA knock down group and MARCH1overexpression group.
     Result:The number of CD11c+DC in the course of MODS was graduallyreduced. The expression of CD86and MHC-Ⅱ proteins on DC, the levels of IL-12and TNF-α secreted by DC, the proliferative activity of T cells and the levels of IL-2and IFN-γ secreted by T cells were increased first, and reached a maximum value inthe MODS1d group, thereafter decreased to the lowest point in the MODS period, butthe mRNA levels of MHC-Ⅱ and ubiquitin were not significant. The changes of E3ubiquitin ligase enzyme MARCH1were extremely significant. The levels of mRNAand protein expression of MARCH1were decreased first and reached a minimumvalue in the MODS1d group, then after a slight increasing trend they were decreasedagain in the MODS10d group. The trend of MHC-Ⅱ and MARCH1was roughly theopposite in the course of MODS. Compared with normal control group the degree ofspleen DC MHC-Ⅱ protein ubiquitination in the MODS1d group was significantlylower. The change of apoptosis rate of DC in the groups treated by MG132was notsignificant. The expression of MHC-Ⅱ proteins on DC, the proliferative activity of Tcells and the levels of IL-2, IFN-γ and TNF-α secreted by T cells in the MODS1dgroup and MG132treated normal control group were higher than the normal controlgroup, where the former is slightly higher than the latter, and the MODS1d grouptreated by MG132was the highest. We successfully constructed the eukaryoticexpression vector pMB HA-MARCH1of the E3ubiquitin ligase MARCH1, and synthesized three effective siRNA of MARCH1. We interfered DC in the MODS1dgroup with overexpression MARCH1and siRNA, and found that the morphology,vitality, and apoptosis rates of DC in the three groups had no significant changes.Thedegree of ubiquitination of MHC-Ⅱ was increased, and the expression of MHC-Ⅱproteins on DC, the proliferative activity of T cells and the levels of IL-2, IFN-γ andTNF-α secreted by T cells were reduced by interfered DC in the MODS1d group withoverexpression MARCH1. While the degree of ubiquitination of MHC-Ⅱ was reduced,and the expression of MHC-Ⅱ proteins on DC, the proliferative activity of T cells andthe levels of IL-2, IFN-γ and TNF-α secreted by T cells were increased by interferedDC in the MODS1d group with MARCH1siRNA.
     Conclusion:1、The number of DC was decreased, but the antigen-presentingability and the capability to activate T cell-mediated immune response of DC wereenhanced during the first strike period of MODS; the number and the immunefunctions of DC dropped to the lowest and the organism was in a state of immunesuppression during the MODS period.2、MARCH1can degrade the expression ofMHC-Ⅱ on spleen DC by ubiquitination in the course of MODS.3、The change ofMHC-Ⅱ on spleen DC in MODS was really ubiquitin-dependent.4、We successfullyconstructed the eukaryotic expression vector pMB HA-MARCH1of the E3ubiquitinligase MARCH1, and synthesized three effective siRNA of MARCH1.5、Interferingthe expression of MARCH1can change the expression of MHC-Ⅱ on DC and theimmune function of DC by degrading MHC-Ⅱ through ubiquitination in the firststrike period of MODS. It suggested that we can use MARCH1as a potentialtherapeutic target for MODS.
引文
[1]Deitch EA.Multiple organ failure. Pathophysiology and potential future therapy[J].Ann Surg,1992,216(2):117–134.
    [2]Marshall JC.Inflammation,coagulopathy and the pathogenesis of multiple organdysfunction syndrome[J].Crit Care Med,2001,29(7):S99–S106.
    [3]Volman TJ,Hendriks T,Goris RJ.Zymosan-induced generalized inflammation:experimental studies into mechanisms leading to multiple organ dysfunctionsyndrome[J].Shock,2005,23(4):291-297.
    [4]Laney JD,Hochstrasser M.Substrate targeting in the ubiquitin system[J].Cell,1999,97(4):427-430.
    [5]Joazeiro CA,Weissman AM.RING finger proteins: mediators of ubiquitin ligaseactivity[J].Cell,2000,102(5):549-552.
    [6]Goto E,Ishido S,Sato Y,et al.c-MIR, a human E3ubiquitin ligase, is a functionalhomolog of herpesvirus proteins MIR1and MIR2and has similar activity[J].J BiolChem,2003,278(17):14657-14668.
    [7]Bartee EM,Mansouri BT,Hovey Nerenberg,et al.Downregulation of majorhistocompatibility complex class I by human ubiquitin ligases related to viral immuneevasion proteins[J].J Virol,2004,78(3):1109–1120.
    [8]Coscoy L,DJ Sanchez and D Ganem.A novel class of herpesvirusencodedmembrane-bound E3ubiquitin ligases regulates endocytosis of proteins involved inimmune recognition[J].J Cell Biol,2001,155(7):1265–1273.
    [9]Matsuki Y,Ohmura-Hoshino M,Goto E,et al.Novel regulation of MHC class IIfunction in B cells[J].EMBO J,2007,26(3):846-854.
    [10]De Gassart A,Camosseto V,Thibodeau J,et al.MHC class II stabilization at thesurface of human dendritic cells is the result of maturation-dependent MARCH Idown-regulation[J]. Proc Natl Acad Sci U S A,2008,105(9):3491-3496.
    [11]孙宇,陆江阳,王晓虹等.小鼠迟发型多脏器功能障碍综合征模型复制及病理学观察[J].中国危重病急救医学杂志,2003,15(1):15-18.
    [12]Tilney NL,Bailey GL,Morgan AP.Sequential system failure after rupture ofabdominal aortic aneurysms: an unsolved problem in postoperative care[J]. AnnSurg,1973,178(2):117–122.
    [13]Goris RJ,Boekholtz WK,van Bebber IP,et al.Multiple organ failure and sepsiswithout bacteria. An experimental model[J]. Arch Surg,1986,121(8):897–901.
    [14]陆江阳,王晓虹,刘茜等.多器官功能障碍综合征52例尸检脾及脾树突状细胞的病理学观察[J].诊断病理学杂志,2007,14(3):12-16.
    [15]Steinberg S,FlynnW,Kelley K,et al.Development of a bacteria-independent modelof the multiple organ failure syndrome[J]. Arch Surg,1989,124(12):1390–1395.
    [16]Jansen MJ, Hendriks T, Verhofstad AA,et al.Gradual development of organdamage in the murine zymosan-induced multiple organ dysfunctionsyndrome[J].Shock,1997,8(4):261–267.
    [17]Braselmann S,Taylor V,Zhao H,et al.R406, an orally available spleen tyrosinekinase inhibitor blocks fc receptor signaling and reduces immune complex-mediatedinflammation[J].J Pharmacol Exp Ther,2006,319(3):998-1008.
    [18]陆江阳,李志宏,王晓虹等.脾脏树突状细胞在多器官功能障碍综合征中的变化与意义[J].中国危重病急救医学杂志,2006,18(1):24-28.
    [19]陆江阳,王晓虹,孙宇等.MODS大鼠胸腺树突状细胞病理改变及作用的研究[J].中国危重病急救医学杂志,2001,13(11):675-677.
    [20]Shortman, K,S. H. Naik. Steady-state and inflammatory dendritic-celldevelopment[J]. Nat. Rev. Immunol,2007,7(1):19-30.
    [21]Banchereau J, Briere F, Caux C,et al.Immunobiology of dendritic cells(Review)[J]. Annu Rev Immunol,2000,18(1):767-811.
    [22]Steinman R M, Turley S, Mellman I,et al.The induction of tolerance by dendriticcells that have captured apoptotic cells[J]. J Exp Med,2000,191(3):411-416.
    [23]Villadangos J A, Cardoso M, Steptoe R J,et al.MHC class II expression isregulated in dendritic cells independently of invariant chain degradation[J].Immunity,2001,14(6):739-749.
    [24]Hotchkiss RS,Tinsley KW,Swanson PE,et al.Dep letion of dendritic cells, but notmacrophages, in patientswith sepsis[J].J Immunol,2002,168(5):2493-2500.
    [25]Guisset O,Dilhuydy MS,Thiebaut R,et al.Decrease in circulating dendritic cellspredicts fatal outcome in septic shock[J].Intensive CareMed,2007,33(1):148-152.
    [26]Wen H,Hogaboam CM,Gauldie J,et al.Severe sep sis exacerbates cell-mediatedimmunity in the lung due to an altered dendritic cell cytokine profile[J].Am JPathol,2006,168(6):1940-1950.
    [27]Umemoto E Y, Brokaw J J, DupuisM, et al. Rapid changes in shape and numberof MHC class Ⅱ expressing cells in rat airways after mycop lasma pulmonisinfection[J].Cell Immunol,2002,220(2):107-115.
    [28]Banchereau J,Steinmam RM.Dendritic cells and the control of immunity[J].Nature,1998,392(3):245-252.
    [29]Cella M, Sullusto F, Lanzavecchia A.Origin,maturation and presenting function ofdendritic cells[J].Cur Opin Immunol,1997,9(1):10-16.
    [30]Bugeon L,margaret JD.costimulation of T cells[J].Am j respir crit caremed,2000,162(4):164-168.
    [31]Ralph M,Steinman,Daniel Hawiger,et al.Tolerogenic dendritic cells[J].Annu.Rev.Immunol,2003,21(2):685-711.
    [32]Kuchroo VK, Das MP, Brown JA,et al. B7-1and B7-2costimulatory moleculesactivate differentially the Th1/Th2development pathways: Application toautoimmune disease therapy[J].Cell,1995,80(5):707-718.
    [33]Haczku A, Takeda K, Redai I,et al.Anti-CD86(B7.2) treatment abolishes allergicairway hyperresponsiveness in mice[J]. Am J Respir Crit Care Med,1999,159(5):1638-1643.
    [34]Hofer MF, Jirapongsananuruk O, Trumble AE,et al.Upregulation of B7.2, but notB7.1, on B cells from patients with allergic asthma[J].J Allergy Clin Immunol,1998,101(1):96-102.
    [35]Zhou LJ,Tedder TF.Human blood dendritic cells selectively express CD83,amember of the immunoglobulin superfamily[J].J Immunol,1995,154(8):3821.
    [36]Yadav D,Sarvetnick N.B7-2regulates survival, phenotype, and function ofAPCs[J]. J. Immunol,2007,178(10):6236–6241.
    [37]Trinchieri, G.Interleukin-12: a cytokine at the interface of inflammation andimmunity[J]. Adv Immunol,1998,70:83-243.
    [38]Watford, W.T, M. Moriguchi, A. Morinobu,et al.The biology of IL-12:coordinating innate and adaptive immune responses[J]. Cytokine Growth FactorRev,2003,14(5):361-368.
    [39]Trinchieri, G, S. Pflanz, R. A. Kastelein.The IL-12family of heterodimericcytokines: new players in the regulation of T cell responses[J].Immunity,2003,19(5):641-644.
    [40]Hunter CA.New IL-12-family members: IL-23and IL-27, cytokines withdivergent functions[J]. Nat Rev Immunol,2005,5(7):521-531.
    [41]王辉,游晶.辅助性T细胞的研究概况及进展[J].世界华人消化杂志,2007,15(13):1532-1536.
    [42]William R.Heath,Gabrielle T.Belz,Georg M.N.Behrens,et al.Cross-presentation,dendritic cell subsets,and the generation of immunity to cellular antigens[J].Immunological Reviews,2004,199(6):9-26.
    [43]Labeur M S,B Roters,B Pers.Generation of tumor immunity by bonemarrow-derived dendritic cells correlates with dendritic cell maturation stage[J].JImmunol,1999,162(1):168–175.
    [44]Horn-KD.Evoloving strategies in the treatment of sepsis and systemicinflammatory response syndrome (SIRS)[J].QJM,1998,91(4):265.
    [45]O Riordain DS,Mendez MV, O Riordain MG,et al.Melecular mechanisms ofdecreased interleukin-2production after thermal injury[J]. Surgery,1993,114(2):407-414.
    [46]Mellman I,Steinman RM.Dendritic cells: specialized and regulated antigenprocessing machines[J].Cell,2001,106(3):255-258.
    [47]Reise Sousa C.Dendritic cells in a mature age[J]. Nature Rev Immunol,2006,6(6):476-483.
    [48]Trombetta ES,Mellman I.Cell biology of antigen processing in vitro and invivo[J].Annu Rev Immunol,2005,23:975-1028.
    [49]Chow A,Toomre D,Garrett W,et al.Dendritic cell maturation triggers retrogradeMHC class II transport from lysosomes to the plasma membrane[J].Nature,2002,418(6901):988-994.
    [50]Turley SJ.Transport of peptide-MHC class II complexes in developing dendriticcells[J].Science,2000,288(5465):522-527.
    [51]Boes M.T-cell engagement of dendritic cells rapidly rearranges MHC class IItransport[J].Nature,2002,418(6901):983-988.
    [52]Garrett WS.Developmental control of endocytosis in dendritic cells by Cdc42[J].Cell,2000,102(3):325-334.
    [53]Wilson NS,El-Sukkari D,Villadangos JA.Dendritic cells constitutively presentself antigens in their immature state in vivo and regulate antigen presentation bycontrolling the rates of MHC class II synthesis and endocytosis[J].Blood,2004,103(6):2187-2195.
    [54]West MA,Prescott AR,Eskelinen EL,et al.Rac is required for constitutivemacropinocytosis by dendritic cells but does not control its downregulation[J].CurrBiol,2000,10(14):839-848.
    [55]Sallusto F,Cella M,Danieli C,et al.Dendritic cells use macropinocytosis and themannose receptor to concentrate macromolecules in the major histocompatibilitycomplex class II compartment: downregulation by cytokines and bacterial products[J].J Exp Med,1995,182(2):389-400.
    [56]刘茜,陆江阳,王晓虹等.MODS小鼠脾脏树突细胞PD-1、PD-L1的表达变化及其意义[J].解放军医学杂志,2010,35(1):17-19.
    [57]谭波,王兴勇.单核细胞HLA-DR抗原在MODS中的表达及白藜芦醇苷的保护机制[J].儿科药学杂志,2005,11(4):10-12.
    [58]Shin JS,Ebersold M,Pypaert M,et al.Surface expression of MHC class II indendritic cells is controlled by regulated ubiquitination[J].Nature,2006,444(7115):115-118.
    [59]Hershko A,Ciechanover A.The ubiquitin system[J].Annu Rev Biochem,1998,67(1):425-479.
    [60]Varshavsky A.The ubiquitin system[J].Trends Biochem. Sci,1997,22(10):383-387.
    [61]Hochstrasser M.Ubiquitin-dependent protein degradation[J].Annu Rev Genet,1996,30:405-439.
    [62]申传安,柴家科,盛志勇等.烧伤脓毒症早期心肌内泛素mRNA的表达变化及意义[J].解放军医学杂志,2003,28(11):956-957.
    [63]申传安,柴家科,姚咏明等.烧伤脓毒症早期膈肌内泛素基因和蛋白的表达变化及意义[J].中国危重病急救医学杂志,2003,15(11):655-657.
    [64]Coscoy L and D Ganem.PHD domains and E3ubiquitin ligases: viruses make theconnection[J].Trends Cell Biol,2003,13(1):7–12.
    [65]Cadwell K and L Coscoy.Ubiquitination on nonlysine residues by a viral E3ubiquitin ligase[J].Science,2005,309(5731):127–130.
    [66]Ishido S,Wang C,Lee BS et al.Downregulation of major histocompatibilitycomplex class I molecules by Kaposi’s sarcoma-associated herpesvirus K3and K5proteins[J].J Virol,2000,74(11):5300-5309.
    [67]Coscoy L,Ganem D.Kaposi’s sarcoma-associated herpesvirus encodes twoproteins that block cell surface display of MHC class I chains by enhancing theirendocytosis[J]. Proc Natl Acad Sci U S A,2000,97(14):8051-8056.
    [68]Stevenson PG,Efstathiou S,Doherty PC,et al.Inhibition of MHC class I-restrictedantigen presentation by gamma2-herpesviruses[J].Proc Natl Acad Sci U S A,2000,97(15):8455-8460.
    [69]Haque M,Ueda K,Nakano K,et al.Major histocompatibility complex class Imolecules are down-regulated at the cell surface by the K5protein encoded byKaposi’s sarcoma-associated herpesvirus/human herpesvirus-8[J].J Gen Virol,2001,82(5):1175-1180.
    [70]Mansouri M,Bartee E,Gouveia K,et al.The PHD/LAPdomain protein M153R ofmyxomavirus is a ubiquitin ligase that induces the rapid internalization and lysosomaldestruction of CD4[J].J Virol,2003,77(2):1427-1440.
    [71]Fruh K,Bartee E,Gouveia K,et al.Immune evasion by a novel family of viralPHD/LAP-finger proteins of gamma2-herpesviruses and poxviruses[J].Virus Res,2002,88(1-2):55-69.
    [72]Guerin JL,J Gelfi,S Boullier,et al.Myxoma virus leukemia-associated protein isresponsible for major histocompatibility complex class I and Fas-CD95down-regulation and defines scrapins, a new group of surface cellular receptorabductor proteins[J].J Virol,2002,76(6):2912-2923.
    [73]Ishido S,JK Choi,BS Lee,et al.Inhibition of natural killer cell-mediatedcytotoxicity by Kaposi’s sarcoma-associated herpesvirus K5protein[J]. Immunity,2000,13(3):365–374.
    [74]Coscoy L and D Ganem.A viral protein that selectively downregulates ICAM-1and B7-2and modulates T cell costimulation[J].J Clin Invest,2001,107(12):1599–1606.
    [75]Sanchez DJ,JE Gumperz and D Ganem.Regulation of CD1d expression andfunction by a herpesvirus infection[J].J Clin Invest,2005,115(5):1369–1378.
    [76]Ohmura HM,Matsuki Y, Aoki M,et al.Inhibition of MHC Class II Expression andImmune Responsesby c-MIR[J].J Immunol,2006,177(5):341-354.
    [77]van Niel G,Wubbolts R,Ten Broeke T,et al.Dendritic cells regulate exposure ofMHC class II at their plasma membrane by oligoubiquitination[J].Immunity,2006,25(6):885-894.
    [78]Walseng E,Furuta K,Goldszmid RS,et al.Dendritic cell activation prevents MHCclass II ubiquitination and promotes MHC class II survival regardless of the activationstimulus[J]. J Biol Chem,2010,285(53):41749-41754.
    [79]Nicolas Lapaque,Martin Jahnke,John Trowsdale,et al.The HLA-DRα Chain IsModified by Polyubiquitination[J].J BIOLOGICAL CHEMISTRY,2009,284(11):7007-7016.
    [80]Jeoung-Sook Shin,Melanie Ebersold,Marc Pypaert,et al.Surface expression ofMHC class II in dendritic cells is controlled by regulated ubiquitination[J].Nature,2006,444(11):115-118.
    [81]Adams J,Behnke M,Chen SW,et al.Potent and selective inhibitors of theproteasome:dipeptidyl boronic acids[J].Bioorg Med Chem Lett,1998,8(4):333-338.
    [82]Ohmura-Hoshino M,Matsuki Y,Mito-Yoshida M,et al.Cutting edge: requirementof MARCH-I-mediated MHC II ubiquitination for the maintenance of conventionaldendritic cells[J].J Immunol.2009,183(11):6893-6897.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700