虎杖PcRS和PcPKS1基因在白藜芦醇生物合成中的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白藜芦醇是植物在长期进化过程中为增强自身对不良环境(如病原菌入侵、紫外线辐射等)而合成的植保素。研究报道白藜芦醇具有广泛的药理作用,包括抗肿瘤、保护心血管系统、延缓衰老等。白藜芦醇合酶是白藜芦醇生物合成途径中的关键酶之一,该酶与查尔酮合酶催化相同的底物。已有的研究表明白藜芦醇合酶基因与查尔酮合酶基因可能在生物合成途径中相互影响和相互调节。尽管关于白藜芦醇合酶与查尔酮合酶基因的研究报道很多,但是来源于虎杖的白藜芦醇合酶和查尔酮合酶基因的研究鲜有报道。
     已有研究者利用同源克隆的方法从虎杖中分离了基因PcRS和PcPKS1,推测其分别编码白藜芦醇合酶和查尔酮合酶。但是这两个基因在植物体内的功能以及如何调控白藜芦醇生物合成还未见文献报道。本课题通过在转基因拟南芥和虎杖植株中过量表达PcRS基因以及RNA干涉抑制PcPKS1基因的表达这两种策略,来考察分析PcRS基因和PcPKS1基因对白藜芦醇生物合成的调控作用,这对虎杖白藜芦醇生物合成途径的深入了解有非常重要的意义。本文的主要研究结果如下:
     (1)首先考察了PcRS基因的组织表达特性,Northern blot分析表明该基因在虎杖根茎中特异表达,这种转录模式与HPLC测得的白藜芦醇在虎杖各组织中的分布模式一致,推测PcRS基因与白藜芦醇生物合成有关。
     (2)为了分析PcRS基因在植物体内的功能,构建CaMV355启动子驱动的PcRS过量表达载体pCAMBIA1380-35S-PcRS并转化拟南芥。经高效液相色谱分析和质谱鉴定,转基因拟南芥植株能产生新的特异成分白藜芦醇苷。进一步分析发现,虽然外源PcRS基因在拟南芥叶、花、茎中组成型表达,但是白藜芦醇苷含量分布具有组织特异性,其中生长4周的叶片中白藜芦醇苷的含量最高(183.73μg/g鲜重)。以上结果证明,PcRS基因在植物体内具有促进白藜芦醇合成的功能,但是白藜芦醇的合成积累可能受PcRS基因的表达与底物浓度共同调控。
     (3)为了考察转基因拟南芥植株产生白藜芦醇苷是否具有生物活性,测定转基因拟南芥产生的白藜芦醇苷对炭疽病原菌的抑制率,当白藜芦醇苷浓度为50μg/mL时,抑制率达到50%。进一步用离体叶片法鉴定转基因拟南芥对炭疽病的抗性,叶片坏死斑直径减少56-65%,坏死斑上的孢子数减少75-80%,表明转基因拟南芥对炭疽病抗性增强。以上结果表明,转基因拟南芥植株产生的白藜芦醇苷具有抗炭疽病原菌的生物活性,推测PcRS基因可能参与植物抗病性调节。
     (4)为了确认白藜芦醇苷在转基因拟南芥中的积累是否会影响其它次生代谢物的合成,进行了进一步研究。野生拟南芥种皮颜色为褐色,而转基因拟南芥的种皮变为黄色,转基因拟南芥种皮中单宁合成受到抑制。转基因拟南芥子叶颜色变浅,花青素含量显著减少46-50%,表明转基因拟南芥中的花青素合成受到抑制。以上结果表明,外源PcRS基因的导入引起转基因拟南芥植株自身的黄酮物质的代谢流受阻。而表达分析显示转基因拟南芥内源的查尔酮合酶基因AtCHS表达没有下调。推测这种表型的改变不是由于内源AtCHS基因的下调,而是由于外源PcRS与内源AtCHS竞争底物。
     (5)在验证了PcRS基因功能的基础上开展了利用过量表达PcRS基因的策略来调控虎杖中白藜芦醇生物合成的工作。首先以虎杖茎尖为转化受体,对影响转化效率的因素如对潮霉素的敏感性、农杆菌液浓度、浸染时间、共培养时间、预培养时间等进行考察,建立根癌农杆菌介导虎杖茎尖遗传转化体系。随后利用该转化体系,将PcRS过量表达载体导入虎杖中并成功获得转基因虎杖。转基因虎杖及其后代表型无显著变化。转基因虎杖中PcRS的表达量是对照植株的1.4~1.9倍;白藜芦醇苷含量是对照植株的1.2~1.9倍。以上结果表明PcRS基因过量表达促进了虎杖中白藜芦醇的生物合成。
     (6)PcRS基因过量表达在一定程度上能促进虎杖中白藜芦醇生物合成,但是其含量提高的幅度并不大,于是开展了利用RNA干涉抑制PcPKS1基因表达的策略来调控虎杖中白藜芦醇生物合成的工作。首先构建CaMV355启动子驱动的PcPKS1干涉载体(pRNAi-PcPKS1)。随后利用已建立的转化体系将pRNAi-PcPKS1导入虎杖中,并成功获得转基因虎杖。转基因株系中PcPKS1的表达量明显低于对照植株,表达量下调39-87%;白藜芦醇苷含量明显提高,是对照植株的2.5-4.1倍;同时总黄酮含量减少14-42%;槲皮素含量减少22-62%。表型观察发现,表达量下调最多的转基因株系B5及其后代的表型都发生明显变化,其茎杆颜色变浅,花青素含量显著减少52%。以上结果表明,PcPKS1基因的表达下调抑制了虎杖黄酮物质的合成,使代谢流偏向白藜芦醇的合成,从而在一定程度上促进了虎杖中白藜芦醇的生物合成。
     综上所述,本课题证明PcRS基因编码的酶在植物体内具有白藜芦醇合酶的功能。PcRS过量表达和PcPKS1基因RNA干涉都能促进虎杖中白藜芦醇的生物合成。
Resveratrol is a phytoalexin accumulated in some plant species in response to fungalinfection or UV irradiation. Resveratrol have been tested to have significant pharmaceuticaleffects in prevention of cancers, heart diseases and neurodegenerative diseases. Resveratrolsynthase (RS), competing with chalcone synthase(CHS) for the same substrates, is the keyenzyme to synthesize resveratrol. Although RS and CHS genes have been well characterizedin many plant species, there are only a few descriptions about RS and CHS genes fromPolygonum cuspidatum Sieb.
     Recently, a resveratrol synthase gene (PcRS) and a chalcone synthase gene (PcPKS1)were isolated in P. cuspidatum, but there are only a few descriptions about the metabolicfunction of PcRS and PcPKS1in planta. In this study, to understand the regulation of PcRSand PcPKS1in the resveratrol biosynthesis, the PcRS gene was over-expressed in Arabidopsisand P. cuspidatum. On the other hand, we use RNAi technology to inhibite the geneexpression of PcPKS1in P. cuspidatum. The main results were as follows:
     (1)Northern blot analysis revealed that the accumulation of PcRS transcripts was mostabundant in rhizomes. This distribution corresponds well with the accumulation of theresveratrol, suggesting that PcRS might play an important role in resveratrol biosynthesis.
     (2)To understand the metabolic function of PcRS in planta, it was placed under thecontrol of the cauliflower mosaic virus (CaMV)35S promoter and overexpressed intransgenic Arabidopsis thaliana via Agrohacterium-mediated transfer methods. Transgenicplants accumulated a new compound, which was identified as piceid by high-pressure liquidchromatography (HPLC) and electrospray mass spectrometry (HPLC–ESI–MS). Nosignificant difference in PcRS transcript levels was observed in leaves, stems and roots, whilepiceid concentration was highest in the leaves of4-week-old Arabidopsis plants, up to183.73μg/g FW. We showed that overexpression of PcRS in transgenic Arabidopsis resultedin accumulation of piceid. But the successful accumulation of resveratrol is likely to bedependent upon a combination of sufficient PcRS levels and the availability of commonsubstrates.
     (3)Piceid was purified by preparative HPLC from transgenic lines and tested inagar-plate bioassays in order to assess its effectiveness against fungal. At the concentration of50μg/mL, hyphal growth was approximately reduced (50%). Results showed that themycelial growth of Colletotrichum higginsianum was greatly inhibited. The detached leavesof plants were used for spot inoculations.The lesion diameter of the transgenic Arabidopsisplants was56-65%smaller than that of the wild-type plants. Spore production of thetransgenic plants was75-80%less than the wild-type plants. Overexpression of PcRS intransgenic Arabidopsis caused restriction of C. higginsianum colonization by inhibition ofspore production, resulting in enhanced resistance against C. higginsianum.
     (4)We investigated whether the accumulation of piceid in transgenic Arabidopsis plantswould affect other secondary metabolite pools. The mature seed coats of wild-type plantswere brown, whereas the seeds of transgenic Arabidopsis appeared pale fawn. The transgeniclines had a remarkable decrease of46-50%in anthocyanin accumulation. These resultsindicate that both tannin and anthocyanin accumulation are decreased due to ectopicexpression of PcRS. Northern analysis showed that expression of endogenous Arabidopsischalcone synthase gene (AtCHS) in the transgenic lines was not decreased. These resultssuggest that the significant reduction in flavonoid levels in transgenic plants may be due tocompetition for the substrates, instead of suppression of endogenous AtCHS expression.
     (5)To understand the metabolic function of PcRS in P. cuspidatum, PcRS wasoverexpressed in transgenic P. cuspidatum. Prior to the transformation experiments, thefactors influencing A.tumefaciens-mediated transformation of P. cuspidatum were explored tooptimize the transformation system, which included sensitivity of shoot tips to hygromycin,preculture period, Agrobacterium concentration, infection time, co-cultivation period andpre-culturing time. Finally, a system of high efficiency of genetic transformation andregeneration of P. cuspidatum was established. The plant expression vectorspCAMBIA1380-35S-PcRS was introduced into P. cuspidatum. No significant phenotypicdifference was observed in transgenic plants and the second asexual multiplicationgeneration. Nouthern blot exhibited a increase expression in all positive lines and expressionof PcRS were1.4to1.9times as control. Transgenic P. cuspidatum produced1.2to1.9-foldhigher piceid than control plant. These results suggest that overexpression of PcRS activated resveratrol biosynthesis pathway in P. cuspidatum.
     (6)To understand the metabolic function of PcPKS1, the plant expression vectorpRNAi-PcPKS1were introduced into Polygonum cuspidatum. The transgenic lines hadremarkable decrease of39-87%in PcPKS1transcript levels,14-42%in flavonoidaccumulation,22-62%in quercetin accumulation. But transgenic P. cuspidatum produced2.5to4.1-fold higher piceid than control plant. The transgenic line B5had a remarkable decreaseof52%in anthocyanin accumulation, with altered stem color. These results suggest that theflavonoid content can be reduced by restrained PcPKS1gene expression using RNAi method,at the same time, resveratrol biosynthesis pathway was activated.
     In this study, the effectiveness of PcRS in improving stilbene accumulation in foreignspecies has been proved. Our results suggest that PcRS overexpression and PcPKS1geneexpression using RNAi activated resveratrol biosynthesis pathway.
引文
[1]白杨,潘隽丽,苏薇薇.白藜芦醇与白藜芦醇甙的研究进展[J].中药材,2004,27(1):55-59
    [2]陈敏,舒友琴,何计国,等.薄层荧光扫描法测定葡萄酒中的白藜芦醇及其糖苷异构体[J].分析化学,2005,(5):49-52
    [3]张喜云.虎杖的化学成分、药理作用与提取分离[J].天津药学,1999,11(3):13-16
    [4]陈雷,韩雅珊.葡萄不同品种和组织白藜芦醇含量的差异[J].园艺学报,1999,26(2):12-15
    [5]黄纪念,尚遂存,方杰,等.花生中白藜芦醇研究开发现状与趋势[J].中国食物与营养,2006(2):20-33
    [6]俸灵林,郑昕,包文芳,等. RP-HPLC法同时测定虎杖中白藜芦醇和白藜芦醇苷的含量[J].天然产物研究与开发,2004,16(6):534-538
    [7] Chen L, Han Y S, Yang F Q, et al. High-speed counter-current chromatographyseparation and purifyication of resveratrol and piceid from Polygonum cuspidatum[J]. Jchromatog A,2001,907:343-346
    [8]夏海武,吕柳新.虎杖不同部位白藜芦醇含量的分析[J].植物资源与环境学报,2005, l4(3):55-56
    [9]于树宏,查建蓬,詹文红,等.虎杖野生植株及组织培养物中白藜芦醇和虎杖苷含量的比较[J].中国中药杂志,2006,31(8):637-641
    [10]王磊,黄澜,张勉,等.虎杖商品药材中白藜芦醇苷的含量测定[J].中国中药杂志,2002,27(5):344-348
    [11]曹庸,张敏,于华忠,等.气象因子和矿质元素对虎杖根茎白藜芦醇含量的影响[J].应用生态学报,2004,15(7):1143-1145
    [12]王玉玺.不同采收时间虎杖药材中白藜芦醇苷含量差异研究[J].时珍国医国药,2004,15(2):82-83
    [13]曹庸,于华忠,李国章,等.虎杖不同季节、不同组织部位白藜芦醇含量动态变化研究[J].中国药学杂志,2004,39(5):337-339
    [14] Anekonda T S. Resveratrol-a boon for treating Alzheimer’s disease?[J]. Brain Res Rev,2006,52:316-326
    [15] Athar M, Back J H, Tang X, et al. Resveratrol: a review of preclinical studies for humancancer protection[J]. Toxicol Appl Pharmacol,2007,224:274-283
    [16] Saiko P, Szakmary A, Jaeger W, et al. Resveratrol and its analogs: defense againstcancer, coronary disease and neurodegenerative maladies or just a fad?[J]. Mutat Res,2008,658:68-94
    [17] Jang M, Cai, L, Udeani G O, et al. Cancer chemopreventive activity of resveratrol, anatural product derived from grapes[J]. Science,1997,275:218-220
    [18] Aziz M H, Kumar R, Ahmad N. Cancer chemoprevention by resveratrol: In vitro and invivo studies and the underlying mechanisms[J]. Int J Oncol,2003,23:17-28
    [19] Holme A L, Pervaiz S. Resveratrol in cell fate decisions[J]. J Bioenerg Biomembr,2007,39(1):59-63
    [20] Fulda S, Debatin K M. Extrinsic versus intrinsic cell death induction pathways inanti-cancer chemotherapy[J]. Oncogene,2006,25:4798-4811
    [21] Norata G D, Marchesi P, Passamonti S, et al. Antiinflammatory and anti-atherogeniceffects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficientmice[J]. Atherosclerosis,2007,191(2):265-271
    [22] Nicholson S K, Tucker G A, Brameld J M. Effects of dietary polyphenols on geneexpression in human vascular endothelial cells[J]. Proc Nutr Soc,2008,67(1):42-47
    [23] Wood J G, Rogina B, Lavu S. Sirtuin activators mimic caloric restriction and delayageing in metazoans[J]. Nature,2004,430:686-689
    [24] Valenzano D R, Terzibasi E, Genade T, et al. Resveratrol prolongs lifes-pan and retardsthe onset of age-related markers in a short-lived vertebrate[J].Current Biology,2006,16(3):296-300
    [25] Jefremov V, Zilmer M, Zilmer K, et al. Antioxidative effects of plant polyphenols: fromprotection of G protein signaling to prevention of age-related pathologies[J]. Ann N YAcad Sci,2007,1095:449-457
    [26] Dohoon Kim. SIRT1deacetylase protects against neuro degeneration in modelsforAlzheimer's disease and amyotrophic lateral sclerosis[J]. European MolecularBiology Organization,2007,26(13):3169-3179
    [27] Palamara A T, Nencioni L, Aquilano K, et al. Inhibition of influenza A virus replicationby resveratrol[J]. J Infect Dis,2005,191(10):1719-1729
    [28] Chan M M. Antimicrobial effect of resveratrol on dermatophytes and bacterialpathogens of the skin [J]. Biochem Pharmacol,2002,63(2):99-104
    [29]高路,袁育康,吕卓人,等.白藜芦醇的免疫调节作用[J].西安交通大学学报(医学版),2003,24(2):121-123
    [30]张学景,邹永,钟荣清,等.白藜芦醇的雌激素样作用及相关治疗意义[J].中国新药杂志,2004,13(8):692-695
    [31]白金叶,陈洁,程桂芳.白藜芦醇对白三烯类化合物生成抑制作用[J].海峡药学,2003,15(4):19-20
    [32] Win W, Cao Z, Peng X, et al. Different effects of genistein and resveratrol on oxidativeDNA damage in vitro[J]. Mutat Res,2002,513(12):113-120
    [33] Sparvoli F, Martin C, Scienza A, et al. Cloning and molecular analysis of structuralgenes involved in flavonoid and stilbene biosynthesis in grape(Vitis vinifera L.)[J].Plant Mol Biol,1994,24:734-755
    [34] Weisshaar B, Jenkins G I. Phenylpropanoid biosynthesis and its regulation[J]. CurrentOpinion in Plant Biology,1998,1:251-257
    [35] Rolfs C H, Kindl H. Stilbene synthase and chalcone synthase: two different constitutiveenzymes in cultured cells of Picea excelsa[J]. Plant Physiol,1984,75:489-492
    [36] Flores-Sanchez I J, Verpoorte R. Plant Polyketide Synthases: A fascinating group ofenzymes[J]. Plant Physiology and Biochemistry,2009,47:167-174
    [37] Tropf S, K rcher B, Schr der G, et al. Reaction mechanisms of homodimeric plantolyketide synthase (stilbenes and chalcone synthase). A single active site for thecondensing reaction is sufficient for synthesis of stilbenes, chalcones, and6'-deoxychalcones[J]. J Biol Chem,1995,270(14):7922-7928
    [38] Abe I, Morita H. Structure and function of the chalcone synthase superfamily of planttype III polyketide synthases[J]. Nat Prod Rep,2010,27(6):809-838
    [39] Austin M B, Noel J P. The chalcone synthase superfamily of type III polyketidesynthases[J]. Nat Prod Rep.2003,20(1):79-110.
    [40] Jaillon O, Aury J M, Noel B, et al. The grapevine genome sequence suggests ancestralhexaploidization in major angiosperm phyla [J]. Nature,2007,449(7161):463-467
    [41] Lim J, Yun S, Chung I, et al. Resveratrol synthase transgene expression andaccumulation of resveratrol glycoside in Rehmannia glutinosa [J]. Molecular Breeding,2005,16(3):219-233
    [42] Yu C K, Lam C N, Springob K, et al. Constitutive accumulation of cis-piceid intransgenic Arabidopsis overexpressing a sorghum stilbene synthase gene [J]. PlantCell Physiology,2006,47(7):1017-1021
    [43] Liu S, Hu Y, Wang X, et al. High content of resveratrol in lettuce transformed with astilbene synthase gene of Parthenocissus henryana [J]. Journal of Agriculture andFood Chemistry,2006,54(21):8082-8085
    [44] Samappito S, Page J E, Schmidt J, et al. Aromatic and pyrone polyketides synthesizedby a stilbene synthase from Rheum tataricum[J]. Phytochemistry,2003,62:313-323
    [45]何水林,郑金贵,林明,等.植物芪类次生代谢物的功能、合成调控及基因工程研究进展[J].农业生物技术学报,2004,12(1):102-108
    [46] Ballester A, Molthoff J, Vos R, et al. Biochemical and Molecular Analysis of PinkTomatoes:Deregulated Expression of the Gene Encoding Transcription FactorSlMYB12Leads to Pink Tomato1Fruit Color[J]. Plant Physiology,2010,152:71-84
    [47] Yamaguchi T, Kurosaki F, Suh D Y, et al. Cross-reaction of chalcone synthase andstilbene synthase overexpressed in Escherichia coli[J]. FEBS Lett,1999,460(3):457-461
    [48] Holton T A, Cornish E C. Geneties and biochemistry of anthocyanin biosynthesis[J].Plant Cell,1995,7:1071-1083
    [49] Winkel-Shirley B. Flavonoid Biosynthesis. A Colorful Model for Genetics,Biochemistry, Cell Biology, and Biothehnology[J]. Plant Physiol,2000,126:485-493
    [50] Debeaujon I, Peeters A J M, Léon-Kloosterziel K M, et al. The TRANS PARENTTESTA12gene of Arabidopsis encodes a multidrug secondary transporter-like proteinrequired for flavonoid sequestration in vacuoles of the seed coat endothelium[J]. PlantCell,2001,13:853-872
    [51] Rogers L A, Campbell M M. The genetic control of lignin deposition during plantgrowth and development[J]. New Phytologist,2004,164:17-30
    [52] Sharmin S, Bari M A, Siddique N M. Effects of genotype on induction of callus andplant regeneration potential in vitro anther culture of rice(Oryza sativa L.)[J]. Pak JBiol Sci,2004,7(2):235-237
    [53]朱新贵,郭勇,林捷.光质对玫瑰茄悬浮细胞合成花青素的影响[J].华南理工大学学报(自然科学版),1999,27(3):57-60
    [54]元英进,胡宗定.光强和单色光对长春花愈伤组织培养的影响[J].植物生理学通讯,1993,29(6):471-473
    [55]赵德修,李茂寅,邢建民,等.光质、光强和光期对水母雪莲愈伤组织生长和黄酮生物合成的影响[J].植物生理学报,1999,25(2):127-132
    [56] Wang C, Wu J, Mei X. Enhancement of Taxol production and excretion in Taxuschinensis cell culture by fungal elicitation and medium renewal[J]. Appl Microbiol Biot,2001,55(4):404-410
    [57] Zhao J, Zhu W, Hu Q. Enhanced catharanthine production in Catharanthus roseus cellcultures by combined elicitor treatment in shake flasks and bioreactors[J]. EnzymeMicro Technol,2001,28:673-681
    [58] Rao S R, Ravishankar G A. Plant cell culuture: Chemical factories of secondarymetabolites[J]. Biotechnol Advances,2002,20:101-153
    [59]吕东平,赵德修,黄艳,等.前体对水母雪莲悬浮培养细胞黄酮合成的影响[J].云南植物研究,2001,23(4):497-503
    [60]曲均革,虞星炬,张卫,等.前体饲喂、诱导子和光照联合使用对葡萄细胞培养合成花青素的影响[J].生物工程学报,2006,22(2):299-305
    [61]曹庸,陈雪,唐永红,等.虎杖愈伤组织的诱导及高产白藜芦醇材料的筛选[J].生命科学研究,2006,10(3):270-275
    [62]于树宏,赵丽丽,王伟,等.影响虎杖毛状根高频诱导的因素探讨[J].西北植物学报,2005,25(9):1740-1746
    [63]刘晓琴.虎杖悬浮细胞体系的建立及次生代谢调控的初步研究[D].中国科学院研究生院硕士学位论文,2006
    [64]文涛,梁莉,曾杨,等.不同光照强度对虎杖愈伤组织的影响[J].中国中药杂志,2007,32(13):1277-1280
    [65]曹庸.虎杖颗粒愈伤组织悬浮培养体系建立与白藜芦醇的生物合成、调控及生物转化研究[D].湖南农业大学博士学位论文,2005
    [66]姜丰.葡萄组织培养生产白藜芦醇的研究[D].湖南农业大学硕士学位论文,2008
    [67]唐永红,曹庸,黄早成,等.真菌B-39与虎杖悬浮细胞的共培养[J].微生物学通报,2007,34(3):545-548
    [68]文涛,曾杨,喻晓,等.真菌诱导子对虎杖愈伤组织中白藜芦醇合成的影响[J].核农学报,2008,22(4):435-438
    [69]罗丽媛.葡萄细胞系白藜芦醇的合成动态及其代谢调控研究[D].甘肃农业大学硕士学位论文,2010
    [70]韩晶晶,刘炜,毕玉平.白藜芦醇的研究进展[J].生物工程学报,2008,24(11):1851-1859
    [71]郭斌,尉亚辉,曹炜. He-Ne激光诱变选育高产白藜芦醇细胞系[J].光子学报,2002,31(3):277280
    [72]曹庸,唐永红,卢成英,等.一株产白藜芦醇真菌的培养及调控研究[J].食品科学,2007,28(5):245-248
    [73] Verpoorte R, Memelink J. Engineering secondary metabolite production in plants[J].Curr Opin Biotechnol,2002,13:181-187
    [74] Namdeo A G. Plant cell elicitation for production of secondary metabolites: A Review[J].Phcog Rev,2007,1:69-79
    [75] Dellapenna D. Plant metabolic engineering[J]. Plant Physiol,2001,125:160-163
    [76] Oksman-Caldentey K M, Inzé D. Plant cell factories in the post-genomic era:new waysto produce designer secondary metabolites[J]. Trends Plant Sci,2004,9:433-440
    [77] Zhang L, Ding R, Chai Y, et al. Engineering tropane biosynthetic pathway inHyoscyamus niger hairy root cultures[J]. Proc Natl Acad Sci USA,2004,101:6786-6791
    [78] Canel C, Lopes-Cardoso M I, Whitmer S, et al. Effects of over-expression ofstrictosidine synthase and tryptophan decarboxytase on alkaloid production by cellcultures of Catharanthus rosues[J]. Planta,1998,205:414-419
    [79] Fits L V D, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator ofplant primary and secondary metabolism[J]. Science,2000,289:295-297
    [80] Allen R S, Millgate A G, Chitty J A, et al. RNAi-mediated replacement of morphinewith the nonnarcotic alkaloid reticuline in opium poppy[J]. Nat Biotechnol,2004,22(12):1559-1566
    [81] Rischer H, Oresic M, Seppanen-Laakso T, et al. Gene-tometabolite networks forterpenoid indole alkaloid biosynthesis in Catharanthus roseus cells[J]. Proc Natl AcadSci USA,2006,103:5614-5619
    [82] Fischer R, Budde I, Hain R. Stilbene synthase gene expression causes changes in flowercolour and male sterility in tobacco[J]. Plant J,1997,11:489-498
    [83] Fettig S, Hess D. Expression of a chimeric stilbene synthase gene in transgenic wheatlines[J]. Transgenic Res,1999,8:179-189
    [84] Giovinazzo G, d’Amico L, Paradisio A, et al. Antioxidant metabolite profiles in tomatofruit constitutively expressing the grapevine stilbene synthase gene[J]. Plant BiotechnolJ2005,3:57-69
    [85] Fan C H, Pu N, Wang X P, et al. Agrobacterium-mediated genetic transformation ofgrapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wildVitis pseudoreticulata[J]. Plant Cell Tiss Organ Cult,2008,92:197-206
    [86] Giorcelli A, Sparvoli F, Mattivi F, et al. Expression of the stilbene synthase (StSy) genefrom grapevine in transgenic white poplar results in high accumulation of theantioxidant resveratrol glucosides[J]. Transgenic Res,2004,13:203-214
    [87] Hüsken A, Baumert A, Milkowski C, et al. Resveratrol glucoside (piceid) synthesis inseeds of transgenic oilseed rape (Brassica napus L.)[J]. Theor Appl Genet,2005,111:1553-1562
    [88] Kobayashi S, Ding C K, Nakamura Y, et al. Kiwifruits (Actinidia deliciosa)transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside)[J]. Plant Cell Rep,2000,19:904-910
    [89] Schwekendiek A, Spring O, Heyerick A, et al. Constitutive expression of a grapevinestilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and itsderivatives in substantial quantities[J]. J Agric Food Chem,2007,55:7002-7009
    [90] Stark-Lorenzen P, Nelke B, H bler G, et al. Transfer of a grapevine stilbene synthasegene to rice (Oryza sativa L.)[J]. Plant Cell Rep,1997,16:668-673
    [91] Hanhineva K, Kokko H, Siljanen H, et al. Stilbene synthase gene transfer causedalterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria×ananassa)[J]. J Exp Bot,2009,60:2093-2106
    [92] Hain R, Reif H J, Krause E, et al. Disease resistance results from foreign phytoalexinexpression in a novel plant[J]. Nature,1993,361:153-156
    [93] Coutos-Thévenot P, Poinssot B, Bonomelli A, et al. In vitro tolerance to Botrytiscinerea of grapevine41B rootstock in transgenic plants expressing the stilbene synthaseVst1gene under the control of a pathogen-inducible PR10promoter[J]. J Exp Bot,2001,52:901-910
    [94] Leckband G, L rz H. Transformation and expression of a stilbene synthase gene of Vitisvinifera L. in barley and wheat for increased fungal resistance[J]. Theor Appl Genet,1998,96:1004-1012
    [95] Thomzik J E, Stenzel K, St cker R, et al. Synthesis of a grapevine phytoalexin intransgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance againstPhytophthora infestans[J]. Physiol Mol Plant Pathol,1997,51:265-278
    [96] Hipskind J D, Paiva N L. Constitutive accumulation of a resveratrol glucoside intransgenic alfalfa increases resistance to Phoma medicaginis[J]. Mol Plant MicrobeInteract,2000,13:551-562
    [97] Lim J D, Yun S J, Chung I M, et al. Resveratrol synthase transgene expression andaccumulation of resveratrol glycoside in Rehmannia glutinosa[J]. Mol Breed,2005,16:219-233
    [98] Serazetdinova L, Oldach K, L rz H. Expression of transgenic stilbene synthases inwheat causes the accumulation of unknown stilbene derivatives with antifungalactivity[J]. J Plant Physiol,2005,162:985-1002
    [99] Zhu Y J, Agbayani R, Jackson M C, et al. Expression of the grapevine stilbene synthasegene VST1in papaya provides increased resistance against diseases caused byPhytophthora palmivora[J]. Planta,2004,220:241-250
    [100] Nicoletti I, De Rossi A, Giovinazzo G, et al. Identification and quantification ofstilbenes in fruits of transgenic tomato plants (Lycopersicon esculentum Mill.) byreversed phase HPLC with photodiode array and mass spectrometry detection[J]. JAgric Food Chem,2007,55:3304-3311
    [101] Delaunois B, Cordelier S, Conreux A, et al. Molecular engineering of resveratrol inplants [J]. Plant Biotechnol J,2009,7:2-12
    [102] Hannon G J. RNA interference[J]. Nature,2002,418:244-251
    [103] Siomi H, Siomi M C. On the road to reading the RNA-interference code[J]. Nature,2009,457(22):396-404
    [104] Ogita S, Uefuji H, Yamaguch i Y, et al. Producing decaffeinated coffee plants [J].Nature,2003,423:823
    [105] Dubouzet J G, Morishige T, Fujii N, et al. RNA silencing of scoulerine9-Omethyltransferase expression by double stranded RNA in Coptisjap onica protoplasta[J]. B iosci Biotechnol Biochem,2005,69(1):63-70
    [106] Nakatsuka T, Pitaksutheepong C, Yamamura S, et al. Induction of differential flowerpigmentation patterns by RNAi using promoters with distinct tissue-specific activity[J].Plant Biotechnol Rep,2007,1:251-257
    [107] Fukusaki E, Kawasaki K, Kajiyama S, et al. Flower color modulations of Toreniahybrida by downregulation of chalcone synthase genes with RNA interference[J]. JBiotechnology,2004,111:229-240
    [108] Schijlen E, Vos C H, Martens S, et al. RNA Interference Silencing of ChalconeSynthase, the First Step in the Flavonoid Biosynthesis Pathway, Leads toParthenocarpic Tomato Fruits [J]. Plant Physiol,2007,144:1520-1530
    [109] Bovy A, Vos R D, Kemper M, et al. High-flavonol tomatoes resulting from theheterologous expression of the maize transcription factor genes LC and C1[J]. PlantCell,2002,14:2509-2526
    [110] Aharoni A, Ric De Vos C H, Wein M, et al. The strawberry FaMYB1transcriptionfactor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J]. PlantJ,2001,28:319-332
    [111]腊平,蔡文启,张玖春,等.转芪合酶基因植物中三羟基反式芪的功能[J].科学通报,2001,46(4):326-329
    [112] Yamaguchi T, Kurosaki F, Suh D Y, et al. Cross-reaction of chalcone synthase andstilbene synthase overexpressed in Escherichia coli[J]. FEBS Lett.1999,460(3):457-461
    [113] Katsuyama Y, Funa N, Horinouchi S. Precursor-directed biosynthesis of stilbene methylethers in Escherichia coli[J]. Biotechnol J.2007,2(10):1286-1293
    [114] Wang W, Wan S B, Zhang P, et al. Prokaryotic expression, polyclonal antibodypreparation of the stilbene synthase gene from grape berry and its different expressionin fruit development and under heat acclimation[J]. Plant Physiol Biochem.2008,46(12):1085-1092.
    [115] Watts K T, Lee P C, Schmidt-Dannert C. Biosynthesis of plant-specific stilbenepolyketides in metabolically engineered Escherichia coli[J]. BMC Biotechnol.2006,6:22-29.
    [116] Becker J V, Armstrong G O, Merwe M J, et al. Metabolic engineering of Saccharomycescerevisiae for the synthesis of the wine-related antioxidant resveratrol[J]. FEMS YeastRes.2003,4(1):79-85.
    [117] Zhang Y S, Li S Z, Li J, et al. Using unnatural protein fusions to engineer resveratrolbiosynthesis in yeast and mammalian cells[J]. J AM CHEM SOC.2006,128:13030-13031
    [118] Sydor T, Schaffer S, Boles E. Considerable increase in resveratrol production byrecombinant industrial yeast strains with use of rich medium[J]. Appl EnvironMicrobiol,2010,76(10):3361-3363
    [119]郭春叶.芪合酶基因酵母表达载体的构建及其表达研究[D].西北农林科技大学硕士研究生学位论文,2007
    [120]雷阳梅.虎杖白藜芦醇合酶基因的克隆与表达[D].中国农业科学研究院硕士学位论文,2007
    [121] Ma L Q, Guo Y W, Gao D Y, et al. Identification of a Polygonum cuspidatumthree-intron gene encoding a type III polyketide synthase producing both naringenin andp-hydroxybenzalacetone[J]. Planta,2009,229:1077-1086
    [122]张煊,胡君萍,韩玫. HPLC法测定花生不同部位中白藜芦醇的含量[J].新疆医科大学学报,2003,26(5):440-441
    [123] Chung I M, Park M R, Rehman S, et al. Tissue specific and inducible expression ofresveratrol synthase gene in peanut plants[J]. Mol Cells,2001,12:353-359
    [124]雷阳梅,唐益雄.虎杖不同组织总RNA提取方法探索[J].河南农业学,2007,8:93-94
    [125] Wang W, Tang K, Yang H R, et al. Distribution of resveratrol and stilbene synthase inyoung grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-Con its accumulation[J]. Plant Physiol Biochem,2010,48:142-152
    [126] Chung L M, Park M R, Chun J C, et al. Resveratrol accumulation and resveratrolsynthase gene expression in response to abiotic stresses and hormones in peanutplants[J]. Plant Sci,2003,164:103-109
    [127] Pan Q H, Wang L, Li J M, et al. Amounts and subcellular localization of stilbenesynthase in response of grape berries to UV irradiation[J]. Plant Sci,2009,176:360-366
    [128] Seppanen S K, Syrjala L, Weissenberg K, et al. Antifungal activity of stilbenes in invitrobioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase[J].Plant Cell Rep.2004,22(8):584-593
    [129] Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism[J]. Plant Cell,1995,7(7):1085-1097
    [130]张楠,刘建. UV-C和水杨酸对虎杖叶中白藜芦醇和虎杖苷的诱导作用西北植物学报,2008,28(5):0990-0994
    [131] Shirley B W, Kubasek W L, Storz G, et al. Analysis of Arabidopsis mutants deficient inflavonoid biosynthesis[J]. Plant J,1995,8:659-671
    [132] Hobbs S L, Warkentin T D, DeLong C M, et al. Transgene copy number can bepositively or negatively associated with transgene expression[J]. Plant Mol Biol,1993,21:17-26
    [133] Tang W, Newton RJ, Weidner DA, et al. Genetic transformation and gene silencingmediated by multiple copies of a transgene in eastern white pine[J]. J Exp Bot,2007,58:545-554
    [134] Richter A, de Kathen A, de Lorenzo G, et al. Transgenic peas (Pisum sativum)expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) andstilbene synthase from grape (Vitis vinifera)[J]. Plant Cell Rep,2006,25:1166-1173
    [135]谭琳,康由发,马兵刚,等.芪合酶基因转化番茄产生白藜芦醇的研究[J].生命科学研究,2003,7(3):262-266
    [136]王明月,吕岱竹,尹桂豪,等.高效液相色谱法测定转基因番茄果实中的白藜芦醇[J].色谱,2003,21(3):258-259
    [137] Melchior F, Kindl H. Coordinate-and elicitor-dependent expression of stilbene synthaseand phenylalanine ammonialyase genes in Vitis cv. Optima[J]. Arch Biochem Biophys1991,288:552-557
    [138] Wiese W, Vornam B, Krause E, et al. Structural organization and differential expressionof three stilbene synthase genes located on a13kb grapevine DNA fragment[J]. PlantMol Biol,1994,26:667-677
    [139] Chung I M, Park M R, Chun J C, et al. Resveratrol accumulation and resveratrolsynthase gene expression in response to abiotic stresses and hormones in peanutplants[J]. Plant Sci,2003,164:103-109
    [140] Thomma BPHJ, Eggermont K, Penninckx IAMA, et al. Separate jasmonate-dependentand salicylate-dependent defense-response pathways in Arabidopsis are essential forresistance to distinct microbial pathogens[J]. Proc Natl Acad Sci USA,1998,95:5107-5111
    [141] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophicpathogens[J]. Annu Rev Phytopathol,2005,43:205-227
    [142] Van der Meer IM, Stam M E, Van Tunen A J, et al. Antisense inhibition of flavonoidbiosynthesis in petunia anthers results in male sterility[J]. Plant Cell,1992,4:253-262
    [143] Ylstra B, Touraev A, Benito Moreno RM, et al. Flavonols stimulate development,germination and tube growth of tobacco pollen[J]. Plant Physiol,1992,100:902-907
    [144] Fettig S, Hess D. Expression of a chimeric stilbene synthase gene in transgenic wheatlines[J]. Transgenic Res,1999,8:179-189
    [145] Jeandet P, Douillet-Breuil A C, Bessis R, et al. Phytoalexins from the Vitaceae:biosynthesis, phytoalexins gene expression in transgenic plants, antifungal activity andmetabolism[J]. J Agric Food Chem,2002,50:2731-2741
    [146]杜敏华,文祯中,杨柯金.虎杖(Polygonum cuspidatum)茎尖愈伤组织诱导及高频植株再生浙江大学学报(农业与生命科学版)[J].2008,34(5):525-531
    [147]薛梅,兰卫,王自军,等.虎杖中总黄酮和多糖的含量测定[J].中成药,2006,28(5):735-736
    [148]王信. HPLC法测定虎杖叶中槲皮素的含量[J].中药材,2006,29(4):400-401
    [149]吴敬音,朱卫民,佘建民,等.陆地棉(G. hirsutum L.)茎尖分生组织培养及其在基因导入上的应用[J].棉花学报,1994,6(2):89-92
    [150] Zapata C, Park S H, Elzik K M, et al. Transformation of a Texas cotton cultivar byusing Agrobacterium and the shoot apex [J]. Theor Appl Genet,1999,98:252-256
    [151]孙传波,曲文利,姜志磊,等.农杆菌介导向玉米茎尖导入HAL1基因的初步研究[J].玉米科学,2009,17(6):32-34
    [152]王贵荣,刘敬梅,高山林.烟草Ⅰ类几丁质酶和β-1,3葡聚糖酶基因茎尖转化太子参的研究[J].药物生物技术,2006,13(5):334-337
    [153]赵福永.棉花茎尖农杆菌转化体系的建立[J].安徽农业科学,2009,37(2):515-518
    [154]周小凤,金双侠,李翔,等.新疆海岛棉的丛生芽诱导和茎尖遗传转化的研究[J].棉花学报,2009,21(4):324-329
    [155] HU T, Metz S, Cha Y C, et al. Agrobacterium mediated large scale transformation ofwheat(Triticum aestivum L.) using glyphosate selection [J]. Plant Cell Rep,2003,21:1010-1019
    [156]苗晓燕,于树宏,沈银柱,等.利用基因转化提高虎杖毛状根中活性成分的含量[J].药学学报,2007,42(9):995-999
    [157] Chen D H, Ye H C, Li G F, et al. Expression of a chimeric farnesyl diphosphatesynthase gene in Artemisia annua L. transgenic plants via Agrobacteriumtumefaciens-mediated transformation[J]. Plant Sci,2000,155:179-185
    [158]韩军丽.青蒿高效遗传转化体系的建立与青蒿素生物合成的分子调控[D].中国科学院研究生院博士学位论文,2005
    [159] Muir S R, Collins G J, Robinson S, et al. Overexpression of petunia chalcone isomerasein tomato results in fruits containing levels of flavonoids[J]. Nat Biotechnol,2001,19:470-474
    [160] Wesley S V, Helliwell, C, Smith, N A, et al. Constructs for Efficient, Effective and HighThroughput Gene Silencing in Plants[J]. Plant J,2001,27:581-590
    [161] Helliwell C, Waterhouse P. Constructs and methods for high-throughput gene silencingin plants[J]. Methods,2003,30:289-295
    [162] Helliwell C, Wesley S V, Wielopolska A J, et al. High throughput vectors for efficientgene silencing in plants[J]. Func Plant Biol,2002,29:1217-1221
    [163]侯春喜.人参皂苷生物合成关键酶基因MVD和βAS的克隆及βAS的反义表达[D].吉林大学博士学位论文,2009
    [164]肖荧.丹参酚酸类成份的生源合成的调控研究[D].第二军医大学硕士学位论文,2009
    [165]狄曙玲,刘列钊,柴友荣,等.类黄酮物质及查尔酮合酶在油菜性状该良中的作用[J].安徽农学通报,2007,13(18):21-24
    [166] Wasson A P, Pellerone F I, Mathesius U, et al. Silencing the Flavonoid Pathway inMedicago truncatula Inhibits Root Nodule Formation and Prevents Auxin TransportRegulation by Rhizobia [J]. Plant Cell,18:1617-1629

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700