新型阿尔茨海默病和细胞凋亡正电子发射断层显像剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究包括两个部分:一是白藜芦醇基靶向Aβ斑块分子显像剂的研发及其初步的生物学评价和PET显像研究。二是新型细胞凋亡显像剂的研发及其在肿瘤模型小鼠中的实验研究。
     第一部分:根据白藜芦醇衍生物与β淀粉样蛋白的特殊作用方式和Aβ斑块分子显像剂[~(18)F]BAY94-9172的结构特点,设计合成了一系列白藜芦醇基Aβ斑块分子显像剂。通过一条简短的路线完成了BAY94-9172及其两个前体化合物的合成,经过放化合成实验证实甲胺基(R-NH-CH3)未经保护的甲磺酸酯衍生物为[~(18)F]BAY94-9172的一个新的前体化合物,并经“一步法”完成了[~(18)F]BAY94-9172的自动化合成。在标记各目标产物过程中发现:经Sep Pak C18小柱分离后各标记产物的放化纯度均可以达到95%以上,具有放化时间短的优势。对于各标记化合物的化学纯度对其在体内PET显像的影响仍需进一步研究。~(18)F标记的白藜芦醇基化合物的生物体内分布实验表明:经尾静脉注射后,该类化合物在小鼠体内吸收迅速,并广泛分布,主要是通过肝脏代谢、肾排泄。与[~(18)F]BAY94-9172相比,[~(18)F]12的脑初始摄取量相对偏低,但脑清除较快,其在2 min和60 min时的脑摄取率之比为9.2;[~(18)F]26和[~(18)F]45具有较高的脑初始摄取量和适宜的脑清除(2 min和60 min时的脑摄取率之比分别为:2.6和3)。因此[~(18)F]26和[~(18)F]45具有作为Aβ显像剂的潜力。PET显像研究结果表明:本文所合成的各F-18标记物在小鼠的脑部都呈现明显放射性聚集,由于临床PET显像仪分辨率所限,无法进一步观察脑内部各组织的摄取情况,需要结合与Aβ的体外结合性研究来评价。
     第二部分:根据细胞凋亡过程中细胞内锌离子浓度增加和细胞膜磷脂酰丝氨酸外翻的特点,首次提出以锌离子和外翻的磷脂酰丝氨酸为双重靶点,设计合成了一种带有二吡啶甲基胺结构的锌离子螯合剂,经不同方式对其进行标记后得到四个氟-18标记的化合物(带锌与不带锌)。经静脉注射后,[~(18)F]58及其锌离子螯合物在小鼠体内快速吸收,肝和肾脏摄取率高于其他脏器,主要经过肝脏和肾脏代谢。肿瘤小鼠动物模型PET显像研究表明:肿瘤小鼠经治疗后,[~(18)F]58及其锌离子螯合物在小鼠肿瘤处摄取具有不均匀显像,而且[~(18)F]58含锌离子螯合物在治疗后的肿瘤处摄取明显提高,说明[~(18)F]58及其锌离子螯合物对凋亡细胞和坏死细胞具有一定选择性,进一步的体外细胞凋亡结合性实验正在进行中。
The main work of this dissertation comprises two parts: (1) The research of ~(18)F radiolabeled resveratrol derivatives as new APs imaging agents; (2) The study on new radiolabeled chelating agent of Zinc ion with dipicolylamine as apoptosis imaging agents in tumor mice.
     Part One: a series of resveratrol derivatives as new APs imaging agents were synthesized according to the special affinity of resveratrol with Aβand characteristics of the chemical structure of BAY94-9172. BAY94-9172 and its two precursors were synthesized through a short route in this paper, and the mesylate derivative without protection of methylamino by (Boc)2O should be a new precursor of BAY94-9172, which was confirmed through the radiosynthesis of [~(18)F]BAY94-9172 with the two precursors. In addition, [~(18)F]BAY94-9172 was automated synthesized by one step fluorination of the new precursor in this work. The radiolabeled compounds were obtained after Sep Pak C18 purification within shorter radiosynthesis time and the radiochemical purity was over 95%. The influence in PET imaging for the chemical purity of radiolabeled compounds would be studied in future work.
     The biodistribution of ~(18)F-labeled resveratrol derivatives showed that the labeled compounds were rapidly distributed widely to all organs in normal rice after intravenous injection within 2 min, and were metabolized from liver and spleen. Comparation to [~(18)F]BAY94-9172, [~(18)F]12 showed a low initial brain uptake, but followed by a rapid washout with a ratio of 2 min to 60 min brain uptake of 9.2. [~(18)F]26 and [~(18)F]45 exhibited excellent initial brain penetrations and moderate brain washout in normal mice (the ratios of 2 min to 60 min brain uptake were 2.6 and 3, respectively.). So [~(18)F]26 and [~(18)F]45 have some potentials as tracer for PET imaging Aβplaques in Alzheimer`s disease. PET images showed that the uptakes were seen in normal or AD module mice for the labeled compounds, but the detailed information about uptake and distribution of labeled compounds in mice brain could not be obtained for the poor resolution of clinical PET, and the comprehensive evaluation of these compounds should be combined with affinity with Aβin vitro in the further work.
     Part Two: The increase of zinc ion concentration in cell and the appearance of phosphatidylserine (PS) on the cell surface were two hallmarks of cells in apoptosis. A chelating agent of zinc ion with dipicolylamine was successfully synthesized in this work, and three ~(18)F-labeled compounds (with and without zinc ion) were obtained from being attached with two different ~(18)F-labeled groups, which were potential apoptosis imaging agents with the zinc ion and PS as targets. [~(18)F]58 and its chelate with zinc ion were rapidly distributed widely in normal mice after intravenous injection, and were metabolized mainly through liver and kidneys. PET images in tumor mice showed that uptake in tumors were discernible to that in other organs for the three ~(18)F-labeled dipicolylamine derivatives. The images with heterogeneous intensity were seen in tumors treated with adriacin for [~(18)F]58 and its chelate with zinc ion, which proved that the compounds [~(18)F]58 and its chelate with zinc ion exhitited selective for some apoptic and necrotic cells. The studies of clinical pathology of tumors and mechanisms of affinity to apoptotic cells in vitro are ongoing in future.
引文
[1] Hardy, J. A.; Higgins, G. A. Alzheimer`s Disease: The amyloid cascade hypothesis. Science, 1992, 256 (5054), 184-185.
    [2] Wimo, A.; Winblad, B.; Aguero-Torres, H. Von Strauss, E. The magnitude of dementia occurrence in the world. Alzheime.r Dis. Assoc. Disord., 2003, 17, 63-67.
    [3] Roberson, E. D.; Mucke, L. 100 years and counting: prospects for defeating Alzheimer`s disease. Science, 2006, 214, 781-784.
    [4] Monsonego, A.; Weiner, H. L. Immunotherapeutic approaches to Alzheimer`s disease. Science, 2003, 302, 834-838.
    [5] Bowers, W. J.; Federoff, H. J. Amyloid immunotherapy-engendered CNS inflammation. Neurobiol Aging, 2001, 23, 675-676.
    [6] Selkoe, D. J. Biology ofβamyloid precursor protein and the mechanism of Alzheimer`s disease. Alzheimer`s Disease, Lippincot Williams & Wilkins, Philadelphia, PA, 1999, 293-310.
    [7] Selkoe, D. J. The origins of Alzheimer disease: a is for amyloid. J. Am. Med. Assoc., 2000, 283, 1615-1617.
    [8] Golde, T. E.; Eckman, C. B.; Younkin, S. G. Biochemical detection of beta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer`s disease. Biochimica. Et. Biophysica. Acta., 2000, 1502, 172-187.
    [9] N?slund, J.; Haroutunian, V.; Mohs, R.; Davis, K. L.; Davies, P.; Greengard, P.; Buxbaum, J. D. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. J. Am. Med. Assoc., 2000, 283, 1571-1577.
    [10] Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297, 353-356.
    [11] Walsh, D. M.; Selkoe, D. J. Aβ-oligomers, a decade of discovery. Journal of Neurochemistry, 2007, 10, 1172-1184.
    [12] Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300, 486-489.
    [13] Mckhann, G.; Drachman, D.; Folstein, M. Katzman, R.; Price, D.; Stadlan, E. M. Clinical diagnosis of AIzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease. Neurology, 1984, 34, 939-944.
    [14] Petrella, J. R.; Coleman, R. E.; Doraiswamy, P. M. Neuroimaging and early diagnosis of Alzheimer`s disease: A look to the future. Radiology, 2003, 226, 315-336.
    [15] Benveniste, H.; Einstein, G.; Kim, K. R.; Hulette, C.; Johnson, G. A. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc. Natl. Acad. Sci., USA, 1999, 96, 14079-14084.
    [16] Zhang, J. Y.; Yarowsky, P.; Gordon, M. N.; Di, Carlo, G.; Munireddy, S.; van Zijl, P. C.; Mori, S. Detection of amyloid plaques in mouse models of Alzheimer’s disease by magnetic resonance imaging. Magn. Reson. Med., 2004, 51, 452-457.
    [17] Hintersteiner, M.; Enz, A.; Frey, P.; Jaton, A. L.; Kinzy, W.; Kneuer, R.; Neumann, U.; Rudin, M.; Staufenbiel, M.; Stoeckli, M.; Wiederhold, K. H.; Gremlich, H. U. In vivo detection of amyloid-βdeposits by near-infrared imaging using an oxazine-derivative probe. Nat. Biotechnol., 2005, 23, 577-583.
    [18] Johnson, K. A.; Jones, K.; Holman, B. L.; Becker, J. A.; Spiers, P. A.; Satlin, A.; Albert, M. S. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology, 1998, 50, 1563-1571.
    [19] Lopez, O. L.; Smith, G.; Becker, J. T.; Meltzer, C. C.; DeKosky, S. T. The psychotic phenomenon in probable Alzheimer’s disease : a positron emission tomography study.J. Neuropsychiatry. Clin. Neurosci., 2001, 13, 50-55.
    [20] Nordberg, A. PET imaging of amyloid in Alzheimer’s disease. Lancet. Neurol., 2004, 3, 519-527.
    [21] Zhuang, Z. P.; Kung, M. P.; Wilson, A.; Lee, C. W.; Plossl, K.; Hou, C.; Holtzman, D. M.; Kung, H. F. Structure-activity relationship of imidazo [1,2-?] pyridines as ligands for detectingβ-amyloid plaques in the brain. J. Med. Chem., 2003, 46, 237-243.
    [22] Kung, M. P.; Hou, C.; Zhuang, Z. P.; Skovronsky, D.; Kung, H. F. Binding of two potential imaging agents targeting amyloid plaques in postmortem brain tissues of patients with Alzheimer’s disease. Brain. Res., 2004, 1025, 98-105.
    [23] Ono, M.; Wilson, A.; Nobrega, J.; Westaway, D.; Verhoeff, P.; Zhuang, Z. P.; Kung, M. P.; Kung, H. F. 11C-labeled stilbene derivatives as Aβ-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl. Med. Biol., 2003, 30, 565-571.
    [24] Klunk, W. E.; Engler, H.; Nordberg, A.; Wang, Y.; Blomqvist, G.; Holt, D. P.; Bergstrom, M.; Savitcheva, I.; Huang, G. F.; Estrada, S.; Ausen, B.; Debnath, M. L.; Barletta, J.; Pric, J. C.; Sandell, J.; Lopresti, B. J.; Wall, A.; Koivisto, P.; Antoni, G.; Mathis, C. A.; Langstrom, B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol., 2004, 55, 306-319.
    [25] Archer, H. A.; Edison, P.; Brooks, D. J.; Barnes, J.; Frost, C.; Yeatman, T.; Fox, N. C.; Rossor, M. N. Amyloid load and cerebral atrophy in Alzheimer's disease: an 11C-PIB positron emission tomography study. Ann. Neurol., 2006, 60(1), 145-147.
    [26] Agdeppa, E. D.; Kepe, V.; Petric, A.; Satyamurthy, N.; Liu, J.; Huang, S. C.; Small, G. W.; Cole, G. M.; Barrio, J. R. In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer's brain using the positron emission tomography molecular imaging probe 2-(1-[6-[(2-[18F]fluoroethyl)(methyl)amino] -2-naphthyl]ethylidene)malono nitrile. Neuroscience, 2003, 117(3), 723-730.
    [27] Klunk, W. E.; Bacskai, B. J.; Mathis, C. A.; Mandasz, S. T.; Mclellan, M, E.; Frosch, M. P.; Debnath, M. L.; Holt, D. P.; Wang, Y. M.; Hyman, B. T. Imaging Aβplaques in living transgenic mice with multiphoton microscopy and Methoxy-X04, a systemically administered Congo red derivative. Journal of Neuropathology & Experimental Neurology, 2002, 61, 797-805.
    [28] Styren, S. D.; Hamilton, R. L.; Styren, G. C.; Klunk, W. E. X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer’s disease pathology. J. Histochem. Cytochem., 2000, 48, 1223-1232.
    [29] Zhuang, Z. P.; Kung, M. P.; Hou, C.; Skovronsky, D. M.; Gur, T. L.; Pl?ssl, K.; Trojanowski, J. Q.; Lee, V. M. Y.; Kung, H. F. Radioiodinated styrylbenzenes and thioflavins as probes for Amyloid aggregates. J. Med. Chem., 2001, 44 (12), 1905-1914.
    [30] Wang, Y. M.; Mathis, C. A.; Huang, G. F.; Holt, D. P.; Debnath, M. L.; Klunk, W. E. Synthesis and 11C-labelling of (E, E)-1-(3`,4`-dihydroxystyryl) -4-(3`-methoxy -4`-hydroxystyryl) benzene for PET imaging of amyloid deposits. J. Label. Compd. Radiopharm., 2002, 45, 647-664.
    [31] Kumar, P.; Zheng, W. Z.; McQuarrie, S. A.; Jhamandas, J. H.; Wiebe, L. I. 18F-FESB: synthesis and automated radiofluorination of a novel 18F-labeled pet tracer forβ-amyloid plaques. J. Label. Compd. Radiopharm., 2005, 48, 983-996.
    [32] Agdeppa, E. D.; Kepe, V.; Liu, J.; Flores-Torres, S.; Satyamurthy, N.; Petric, A.; Cole, G. M.; Small, G. M. Huang, S. C.; Barrio, J. R. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission eomography imaging probes forβ-amyloid plaques in Alzheimer’s disease. J. Neurosci., 2001, 21, RC189.
    [33] Ye, L.; Morgenstern, J. L.; Gee, A. D. Delineation of PET imaging agent binding sites on beta-amyloid peptide fibrils. Journal Biology Chemistry, 2005, 280, 23599-23604.
    [34] Luurtsema, G.; Schuit, R. C.; Takkenkamp, K.; Lubberink, M.; Hendrikse, N. H.; Windhorst, A. D.; Molthoff, C. F. M.; Tolboom, N.; Berckel, B. N. M.; Lammertsma, A. A. Peripheral metabolism of [18F]FDDNP and cerebral uptake of its labelled metabolites. Nucl. Med. Biol., 2008, 35, 869-874.
    [35] Agdeppa, E. D.; Kepe, V.; Liu, J.; Small, G. W.; Huang, S. C.; Petric, A.; Satyamurthy, N.; Barrio, J. R. 2-Dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP analogs): novel diagnostic and therapeutic tools in Alzheimer`s disease. Mol. Imaging. Biol., 2003, 5, 404-417.
    [36] Shoghi-Jadid, K.; Small, G. W.; Agdeppa, E. D.; Kepe, V.; Ercoli, L. M.; Siddarth, P.; Read, S.; Satyamurthy, N.; Petric, A.; Huang, S. C.; Barrio, J. R. Localization of neurofibrillary tangles and beta amyloid plaques in the brains of living patients with Alzheimer disease. Am. J. Geriatr. Psychiatry., 2002, 10, 24-35.
    [37] Rogers D. R. Screening for amyloid with the thioflavin-T fluorescent method. Am. J. Clin. Pathol., 1965, 44, 59-61.
    [38] Klunk, W. E.; Wang, Y. M.; Huang, G. F.; Debnath, M. L.; Holt, D. P.; Chester, A.; Mathis, C. A. Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci., 2001, 69, 1471-1484.
    [39] Klunk, W. E.; Wang, Y. M.; Huang, G. F.; Debnath, M. L.; Holt, D. P.; Shao, L.; Hamilton, R. L.; Ikonomovic, M. D.; DeKosky, S. T.; Mathis, C. A. The binding of 2-(4`-Methylaminophenyl) benzothiazole to postmortem brain homogenates is dominated by the amyloid component. The Journal of Neuroscience, 2003, 23(6), 2086-2092.
    [40] Mathis, C. A.; Wang, Y. M.; Holt, D. P.; Huang, G. F.; Debnath, M. L.; Klunk, W. E. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem., 2003, 46(13), 2740-2754.
    [41] Klunk, W. E.; Engler, H.; Nordberg, A.; Wang, Y. M.; Blomqvist, G.; Holt, D. P.; Bergstr?m, M.; Savitcheva, I.; Huang, G. F.; Estrada, S.; Ausén, B.; Debnath, M. L.; Barletta, J.; Price, J. C.; Sandell, J.; Lopresti, B. J.; Wall, A.; Koivisto, P.; Antoni, G.; Mathis, C. A.; L?gstr?m, B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol., 2004, 5, 306-319.
    [42] Gjermund, H.; Andrea I. H.; Andrew, D. W.; Behrooz, H. Y.; Markus, S.; Alexander, D.; Hans-Jrgen, W. Metabolically stabilized benzothiazoles for imaging of amyloid plaques. J. Med. Chem., 2007, 50 (6), 1087-1089.
    [43] Serdons, K.; Verduyckt, T.; Vanderghinste, D.; Borghgraef, P.; Cleynhens, J.; Leuven, F. V.; Kung, H.; Bormans, G.; Verbruggen, A. 11C-labelled PIB analogues as potential tracer agents for in vivo imaging of amyloidβin Alzheimer`s disease. Eur. J. Org. Chem., 2009, 44, 1415-1426.
    [44] Solbach, C.; Uebele, M.; Reischl, G.; Machulla, H. J. Efficient radiosynthesis of carbon-11 labelled uncharged Thioflavin T derivatives using [11C]methyl triflate forβ-amyloid imaging in Alzheimer`s disease with PET. Appl. Radiat. Isot., 2005, 62, 591-595.
    [45] Wilson, A. A.; Garcia, A.; Chestakova, A.; Kung, H.; Houle, S. A. rapid one-step radiosynthesis of theβ-amyloid imaging radiotracer N-methyl-[11C]2- (4`-methylaminophenyl)-6-hydroxybenzothiazole([11C]-6-OH-BTA-1). J. Label Compd. Radiopharm., 2004, 47, 679-682.
    [46] Johnson, A. E.; Jeppsson, F.; Sandell, J.; Wensbo, D.; Neelissen, A. M.; Juréus, A.; Str?m, P.; Norman, H.; Farde, L.; Scesson, S. P. S. AZD2184: a radioligand for sensitice detection ofβ-amyloid deposits. J. Neurochem., 2009, 108, 1177-1186.
    [47] Nyberg, S.; J?nhagen, M. E.; Cselényi, Z.; Halldin, C.; Julin, P.; Olsson, H.; Freund-Levi, Y.; Andersson, J.; Varn?s, K.; Svensson, S.; Farde, L. Detection of amyloid in Alzheimer's disease with positron emission tomography using [11C]AZD2184. Eur. J Nucl. Med. Mol. Imaging., 2009, 36(11), 1859-1863.
    [48] Storey, A. E.; Jones, C. L.; Bouvet, D. R. C.; Lasbistes, N.; Fairway, S. M.; Gibson, A. M.; Nairne, R. J.; Karimi, F.; Langstrom, B. Fluorination process of anilide derivatives and benzothiazole fluroinate derivatives as in vivo imaging agents, WO 2007020400, 2007-02-22.
    [49] Mathis, C.; Lopresti, B.; Mason, N.; Price, J.; Flatt, N.; Bi, W.; Ziolko, S.; DeKosy, S.; Klunk, W. Comparision of the amyloid imaging agents [F-18]3`-F-PIB and [C-11]PIB in Alzheimer`s disease and control subjects. J. Nucl. Med., 2007, 48 (Supplement 2), 56P.
    [50] Berndt, U.; Stanetty, C.; Wanek, T.; Kuntner, C.; Stanek, J.; Berger, M.; Bauer, M.; Henriksen, G.; Wester, H. J.; Kvaternik, H.; Angelberger, P.; Noe, C. Synthesis of a [18F]fluorobenzothiazole as potential amyloid imaging agent. J. Label. Compd. Radiopharm., 2008, 51, 137-145.
    [51] Zheng, M. Q.; Yin, D. Z.; Qiao, J. P.; Zhang, L.; Wang, Y. X. Syntheses and evaluation of fluorinated benzothiazole anilines as potential tracers forβ-amyloid plaques in Alzheimer’s disease. Journal of Fluorine Chemistry, 2008, 129, 210-216.
    [52] Neumaier, B.; Deisenhofer, S.; Sommer, C.; Solbach, C.; Reske S. N.; Mottaghy, F. Synthesis and evaluation of 18F-fluoroethylated benzothiazole derivatives for in vivo imaging of amyloid plaques in Alzheimer’s disease. Appl. Radiat. Isot., 2010, 68, 1066-1072
    [53] Serdons, K.; Vanderghinste, D.; Eeckhoudt, M.; Borghgraef, P.; Kung, H.; Leuven, V.; Groot, T.; Bormans, G.; Verbruggen, A. Synthesis and evaluation of two fluorine-18 labelled phenylbenzothiazoles as potential in vivo tracers for amyloid plaque imaging. J. Label. Comp. Radiopharm., 2009, 52(11), 473-481.
    [54] Serdons, K.; Terwinghe, C.; Vermaelen, P.; Laere, K. V.; Kung, H.; Mortelmans, L.; Bormans, G.; Verbruggen, A. Synthesis and evaluation of 18F-labeled 2-phenylbenzothiazoles as positron emission tomography imaging agents for amyloid plaques in Alzheimer’s disease. J. Med. Chem., 2009, 52 (5), 1428-1437.
    [55] Serdons, K.; Verduyckt, T.; Vanderghinste, D.; Cleynhens, J.; Borghgraef, P.; Vermaelen, P.; Terwinghe, C.; Leuven, F. V.; Laere, K. V.; Kung, H.; Bormans, G.; Verbruggen, A. Synthesis of 18F-labelled 2-(4`-fluorophenyl)-1,3-benzothiazole and evaluation as amyloid imaging agent in comparison with [11C]PIB. Bioorg. Med. Chem. Lett., 2009, 19, 602-605.
    [56] Serdons, K.; Laere, K. V.; Janssen, P.; Kung, H. F.; Bormans, G.; Verbruggen, A. Synthesis and evaluation of three 18F-labeled aminophenylbenzothiazoles as amyloid imaging agents. J. Med. Chem., 2009, 52, 7090-7102.
    [57] Okamura, N.; Suemoto, T.; Shimadzu, H.; Suzuki, M.; Shiomitsu, T.; Akatsu, H.; Yamamoto, T.; Staufenbiel, M.; Yanai, K.; Arai, H.; Sasaki, H.; Kudo, Y.; Sawada, T. Styrylbenzoxazole derivatives for in vivo imaging of amyloid plaques in the brain. The Journal of Neuroscience, 2004, 24(10), 2535-2541.
    [58] Kudo, Y.; Okamura, N.; Furumoto, S.; Tashiro, M.; Furukawa, K.; Maruyama, M.; Itoh, M.; Iwata, R.; Yanai, K.; Arai H. 2-(2-[2-Dimethylaminothiazol -5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole: A novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J. Nucl. Med., 2007, 48, 553-561.
    [59] Furukawa, K.; Okamura, N.; Tashiro, M.; Waragai, M.; Furumoto, S.; Iwata, R.; Yanai, K.; Kudo, Y.; Arai, H. Amyloid PET in mild cognitive impairment and Alzheimer's disease with BF-227: comparison to FDG-PET. J. Neurol., 2010, 257(5), 721-727.
    [60] Okamura, N.; Shiga, Y.; Furumoto, S.; Tashiro, M.; Tsuboi, Y.; Furukawa, K.; Yanai, K.; Iwata, R.; Arai, H.; Kudo, Y.; Itoyama, Y.; Doh-ura, K. In vivo detection of prion amyloid plaques using [11C]BF-227 PET. Eur. J. Nucl. Med. Mol. Imaging., 2010, 37, 934-941.
    [61] Shimadzu, H.; Suemoto, T.; Suzuki, M.; Shiomitsu, T.; Okamura, N.; Kudo, Y.; Sawada, T. Novel probes for imaging amyloid-β: F-18 and C-11 labeling of 2-(4-aminostyryl)benzoxazole derivatives. J. Label. Compd. Radiopharm., 2004, 47, 181-190.
    [62] Ono, M.; Kawashima, H.; Nonaka, A.; Kawai, T.; Haratake, M.; Mori, H.; Kung, M. P.; Kung, H. F.; Saji, H.; Nakayama, M. Novel benzofuran derivatives for PET imaging ofβ-amyloid plaques in Alzheimer`s disease brains. J. Med. Chem., 2006, 49, 2725-2730.
    [63] Chang, Y. S.; Jeong, J. M.; Lee, Y. S.; Kim, H. W.; Rai, B. G.; Kim, Y. J.; Lee, D. S.; Chung, J. K.; Lee, M. C. Synthesis and evaluation of benzothiophene derivatives as ligands for imagingβ-amyloid plaques in Alzheimer’s disease. Nucl. Med. Biol., 2006, 33, 811-820.
    [64] Lee, J. H.; Byeon, S. R.; Kim, Y. S.; Lim, S. J.; Oh, S. J.; Moon, D. H.; Yoo, K. H.; Chung, B. Y.; Kim, D. J. [18F]-labeled isoindol-1-one and isoindol-1,3-dione derivatives as potential PET imaging agents for detection ofβ-amyloid fibrils. Bioorg. Med. Chem. Lett., 2008, 18, 5701-5704.
    [65] Newberg, A. B.; Wintering, N. A.; Pl?ssl, K.; Hochold, J.; Stabin, M. G.; Watson, M.; Skovronsky, D.; Clark, C. M.; Kung, M. P.; Kung, H. F. Safety, biodistribution, and dosimetry of 123I-IMPY: a novel amyloid plaque-imaging agent for the diagnosis of Alzheimer's disease. J. Nucl. Med., 2006, 47(5), 748-754.
    [66] Cai, L. S.; Chin, F. T.; Pike, V. W.; Toyama, H.; Liow, J. S.; Zoghbi, S. S.; Modell, K.; Briard, E.; Shetty, H. U.; Sinclair, K.; Donohue, S.; Tipre, D.; Kung, M. P.; Dagostin, C.; Widdowson, D. A.; Green, M.; Gao, W. Y.; Herman, M. M.; Ichise, M.; Innis, R. B. Synthesis and evaluation of two 18F-labeled 6-Iodo-2-(4`-N,N-dimethyl -amino)phenylimidazo[1,2-?]pyridine derivatives as prospective radioligands forβ-amyloid in Alzheimer’s disease. J. Med. Chem., 2004, 47, 2208-2218.
    [67] Zeng, F. X.; Southerland, J. A.; Voll, R. J.; Votaw, J. R.; Williams, L.; Ciliax, B. J.; Levey, A. I.; Goodmana, M. M. Synthesis and evaluation of two 18F-labeled imidazo[1,2-?]pyridine analogues as potential agents for imagingβ-amyloid in Alzheimer`s disease. Bioorg. Med. Chem. Lett., 2006, 16, 3015-3018.
    [68] Cai, L. S.; Liow, J. S.; Zoghbi, S. S.; Cuevas, J.; Baetas, C.; Hong, J. S.; Shetty, H. U.; Seneca, N. M.; Brown, A. K.; Gladding, R.; Temme, S. S.; Herman, M. M.; Innis, R. B.; Pike, V. W. Synthesis and evaluation of N-methyl and S-methyl 11C-labeled 6-methylthio-2-(4′- N,N-dimethylamino) phenylimidazo[1,2-?] pyridines as radioligands for imagingβ-amyloid plaques in Alzheimer’s disease. J. Med. Chem., 2008, 51 (1), 148-158.
    [69] Seneca, N.; Cai, L. S.; Liow, J. S.; Zoghbi, S. S.; Gladding, R.; Little, J. T.; Aisen, P. S.; Hong, J.; Pike, V. W.; Innis, R. B. Low Retention of [S-methyl-11C] MeS-IMPY toβ-amyloid plaques in patients with Alzheimer’s disease. Current Radiopharmaceuticals, 2009, 2(2), 129-136.
    [70] Kung, H. F.; Lee, C. W.; Zhuang, Z. P.; Kung, M. P.; Hou, C.; Pl?ssl, K. Novel stilbenes as probes for amyloid plaques. J. Am. Chem. Soc., 2001, 123, 12740-12741.
    [71] Verhoeff, N. P.; Wilson, A. A.; Takeshita, S.; Trop, L.; Hussey, D.; Singh, K.; Kung, H. F.; Kung, M. P.; Houle, S. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am. J. Geriatr. Psychiatry., 2004, 12(6), 584-595.
    [72] Zhang, W.; Oya, S.; Kung, M. P.; Hou, C.; Maier, D. L.; Kung, H. F.; F-18 stilbenes as PET imaging agents for detectingβ-amyloid plaques in the brain. J. Med. Chem., 2005, 48, 5980-5988.
    [73] Zhang, W.; Oya, S.; Kung, M. P.; Hou, C.; Maier, D. L.; Kung, H. F.; F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Aβaggregates in the brain. Nucl. Med. Biol., 2005, 32, 799-809.
    [74] Rowe, C. C.; Ackerman, U.; Browne, W.; Mulligan, R.; Pike, K. L.; O`Keefe, G.; Tochon-Danguy, H.; Chan, G.; Berlangieri, S. U.; Jones, G.; Dickinson-Rowe, K. L.; Kung H. P.; Zhang, W.; Kung, M. P.; Skovronsky, D.; Dyrks, T.; Holl, G.; Krause, S.; Friebe, M.; Lehman, L.; Lindemann, S.; Dinkelborg, L. M.; Masters, C. L.; Villemagn, V. L. Imaging of amyloidβin Alzheimer`s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. The Lancet Neurology, 2008, 7, 129-135.
    [75] O’Keefe, G. J.; Saunder, T. H.; Ng, S.; Ackerman, U.; Tochon-Danguy, H. J.; Chan, J. G.; Gong, S.; Dyrks, T.; Lindemann, S.; Holl, G.; Dinkelborg, L.; Villemagne, V.; Rowe, C. C. Radiation dosimetry ofβ-Amyloid tracers 11C-PiB and 18F-BAY94-9172. J. Nucl. Med., 2009, 50, 309-315.
    [76] Choi, S. R.; Golding, G.; Zhuang, Z. P.; Zhang, W.; Lim, N.; Hefti, F.; Benedum, T. E.; Kilbourn, M. R.; Skovronsky, D.; Kung, H. F. Preclinical properties of [18F]AV- 45: a PET agent for Aβplaques in the brain. J. Nucl. Med., 2009, 50, 1887-1894.
    [77] Lin, K. J.; Hsu, W. C.; Hsiao, I. T.; Wey, S. P.; Jin, L. W.; Skovronsky, D.; Wai, Y. Y.; Chang, H. P.; Lo, C. W.; Yao, C. H.; Yen, T. C.; Kung, M. P. Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent - a pilot study. Nucl. Med. Biol., 2010, 37, 497-508.
    [78] Chandra, R.; Oya, S.; Kung, M. P.; Hou, C.; Jin, L. W.; Kung, H. F. New diphenylacetylenes as probes for positron emission tomographic imaging of amyloid plaques. J. Med. Chem., 2007, 50(10), 2415-2423.
    [79] Qu, W. C.; Choi, S. R.; Hou, C.; Zhuang, Z. P.; Oya, S.; Zhang, W.; Kung, M. P.; Manchandra, R.; Skovronsky, D. M.; Kung. H. F. Synthesis and evaluation of indolinyl- and indolylphenylacetylenes as PET imaging agents forβ-amyloid plaques. Bioorg. Med. Chem. Lett., 2008, 18, 4823-4827.
    [80] Qu, W. C.; Kung, M. P.; Hou, C.; Oya, S.; Kung, H. F. Quick assembly of 1,4-diphenyltriazoles as probes targetingβ-amyloid aggregates in Alzheimer’s disease. J. Med. Chem., 2007, 50(14), 3380-3387.
    [81] Zhuang, Z. P.; Kung, M. P.; Kung, H. F. Synthesis of biphenyltrienes as probes forβ-amyloid plaques. J. Med. Chem., 2006, 49(9), 2841-2844.
    [82] Chandra, R.; Kung, M. P.; Kung, H. F. Design, synthesis, and structure-activity relationship of novel thiophene derivatives forβ-amyloid plaque imaging. Bioorg. Med. Chem. Lett., 2006, 16, 1350-1352.
    [83] Lee, H. J.; Jeong, J. M.; Rai, G.; Lee, Y. S.; Chang, Y. S.; Kim, Y. J.; Kim, H. W.; Lee, D. S.; Chung, J. K.; Mook-Jung, I.; Lee, M. C. 18F-Labeled benzylideneaniline derivatives as new ligands forβ-amyloid plaque imaging in Alzheimer's disease. Nucl. Med. Biol., 2009, 36, 107-116.
    [84] Ono, M.; Yoshida, N.; Ishibashi, K.; Haratake, M.; Arano, Y.; Mori, H.; Nakayama, M. Radioiodinated flavones for in vivo imaging ofβ-amyloid plaques in the brain. J. Med. Chem., 2005, 48, 7253-7260.
    [85] Ono, M.; Maya, Y.; Haratake, M.; Ito, K.; Mori, H.; Nakayama, M. Aurones serve as probes ofβ-amyloid plaques in Alzheimer`s disease. Biochem. Biophys. Res. Commun., 2007, 361, 116-121.
    [86] Ono, M.; Maya, Y.; Haratake, M.; Nakayama, M. Synthesis and characterization of styrylchromone derivatives asβ-amyloid imaging agents. Bioorg. Med. Chem., 2007, 15, 444-450.
    [87] Maya, Y.; Ono, M.; Watanabe, H.; Haratake, M.; Saji, H.; Nakayama, M. Novel radioiodinated aurones as probes for SPECT imaging ofβ-amyloid plaques in the brain. Bioconjug. Chem., 2009, 20, 95-101.
    [88] Ono, M.; Haratake, M.; Morib, H.; Nakayama, M. Novel chalcones as probes for in vivo imaging ofβ-amyloid plaques in Alzheimer`s brains. Bioorg. Med. Chem., 2007, 15, 6802-6809.
    [89] Ono, M.; Watanabe, R.; Kawashima, H.; Cheng, Y.; Kimura, H.; Watanabe, H.; Haratake, M.; Saji, H.; Nakayama, M. Fluoro-pegylated chalcones as positron emission tomography probes for in vivo imaging ofβ-amyloid plaques in Alzheimer’s disease. J. Med. Chem., 2009, 52, 6394-6401.
    [90] Ono, M.; Watanabe, R.; Kawashima, H.; Kawai, T.; Watanabe, H.; Haratake, M.; Saji, H.; Nakayama, M. 18F-labeled flavones for in vivo imaging ofβ-amyloid plaques in Alzheimer’s brains. Bioorg. Med. Chem., 2009, 17, 2069-2076.
    [91] Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer's disease: an overview. Annals of Indian Academy of Neurology, 2008, 11(1), 13-19.
    [92] Ono, K.; Hasegawa, K.; Naiki, H.; Yamada1, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer`sβ-amyloid fibrils in vitro. Journal of Neuroscience Research, 2004, 75, 742-750.
    [93] Ryu, E. K.; Choe, Y. S.; Lee, K. H.; Choi, Y.; Kim, B. T. Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation forβ-amyloid plaque imaging. J. Med. Chem., 2006, 49 (20), 6111-6119.
    [94] LeVine H. Thioflavine T interaction with synthetic Alzheimer's diseaseβ-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci., 1993, 2, 404-410.
    [95] Wood, S. J.; Maleeff, B.; Hart, T.; Wetzel, R. Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer's amyloid peptide Abeta. J. Mol. Biol., 1996, 256, 870-877.
    [96] Shimadzu, H.; Suemoto, T.; Suzuki, M.; Shiomitsu, T.; Okamura, N.; Kudo, Y.; Sawada, T. A novel probe for imaging amyloid-β: synthesis of F-18 labelled BF-108, an acridine orange analog. J. Label. Compd. Radiopharm., 2003, 46, 765-772.
    [97] Suemoto, T.; Okamura, N.; Shiomitsu, T.; Suzuki, M.; Shimadzu, H.; Akatsu, H.; Yamamoto, T.; Kudo, Y.; Sawada, T. In vivo labeling of amyloid with BF-108. Neurosci. Res., 2004, 48, 65-74.
    [98] Duan, X. H.; Liu, B. L. A beta-binding molecules: possible application as imaging probes and as anti-aggregation agents. J. Sci. China Ser. B Chem., 2008, 51, 801-807.
    [99] Bromley, E. H. C.; Krebs, M. R. H.; Donald, A. M. The binding of Thioflavin-T to amyloid fibrils: localisation and implications. J. Struct. Biol., 2005, 149, 30-37.
    [100] Duan, X. H.; Qiao, J. P.; Yang, Y.; Cui M. C.; Zhou J. N.; Liu, B. L. Novel anilinophthalimide derivatives as potential probes forβ-amyloid plaque in the brain. Bioorg. Med. Chem., 2010, 18, 1337-1343.
    [101] Baur, J. A.; Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews, 2006, 5, 493-506.
    [102] Anekonda, S. T. Resveratrol-A boon for treating Alzheimer’s disease? Brainresearch review, 2006, 52, 316-326.
    [103] Vingtdeux, V.; Dreses-Werringloer, U.; Zhao, H.; Davies, P.; Marambaud, P. Therapeutic potential of resveratrol in Alzheimer's disease. BMC Neuroscience, 2008, 9(Suppl 2), S6.
    [104] Walle, T.; Hsieh, F.; DeLegge, M. H.; Oatis, J. E. Jr.; Walle, U. K. High absorption but very low bioavailability of oral resveratrol in humans. Drug. Metab. Dispos., 2004, 32(12), 1377-1382.
    [105] Rivera, H.; ShiBayama, M.; Tsutsumi, V.; Perez-Alvarez, V.; Muriel, P. Resveratrol and trimethylated resveratrol protect from acute liver damage induced by CCl4 in the rat. J. Appl. Toxicol., 2008, 28, 147-155.
    [106] Rimando, A. M.; Cuendet, M.; Desmarchelier, C.; Mehta, R. G.; Pezzuto, J. M.; Duke, S. O. Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J. Agric. Food. Chem., 2002, 50(12), 3453-3457.
    [107] Joseph, J. A.; Fisher, D. R.; Cheng, V.; Rimando, A. M.; Shukitt-Hale, B. Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J. Agric. Food. Chem., 2008, 56(22), 10544-10551.
    [108]Bastianetto, S.; Brouillette, J.; Quirion, R. Neuroprotective effects of natural products: interaction with intracellular kinases, amyloid peptides and a possible role for transthyretin. Neurochem. Res., 2007, 32(10), 1720-1725.
    [109]Rivière, C.; Richard, T.; Quentin, L.; Krisa, S.; Mérillon, J. M.; Monti, J. P. Inhibitory activity of stilbenes on Alzheimer's beta-amyloid fibrils in vitro. Bioorg. Med. Chem., 2007, 15(2), 1160-1167.
    [110] Riviere, C.; Richard, T.; Vitrac, X.; Merillon, J. M.; Valls, J.; Monti, J. P. New polyphenols active on beta-amyloid aggregation. Bioorg. Med. Chem. Lett., 2008, 18, 828-831.
    [111] Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-βpeptides. J. Biol. Chem., 2005, 280, 37377-37382.
    [112] Han, Y. S.; Zheng, W. H.; Bastianetto, S.; Chabot, J. G.; Quirion, R. Neuroprotective effects of resveratrol againstβ-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br. J. Pharmacol., 2004, 141, 997-1005.
    [113]Ahn, J. S.; Lee, J. H.; Kim, J. H.; Paik, S. R. Novel method for quantitative determination of amyloid fibrils of alpha-synuclein and amyloid beta/A4 protein by using resveratrol. Analytical Biochemistry, 2007, 367, 259-265.
    [114] Jeandet, P.; Bessis, R.; Maume, B. F.; Meunier, P.; Peyron, D.; Trollat, P. Effect of enological practices on the resveratrol isomer content of wine. J. Agric. Food. Chem., 1995, 43(2), 316-319.
    [115]陈祥纪.β-淀粉样斑块显像剂的研究化学进展.化学进展, 2007, 19, 123-129.
    [116] Qu, W. C.; Kung, M. P.; Hou, C.; Benedum, T. E.; Kung, H. F. Novel styrylpyridines as probes for SPECT imaging of amyloid plaques. J. Med. Chem., 2007, 50, 2157-2165.
    [117] Iwata, M.; Kuzuhara, H. N-(ω-tosyloxyalkyl)phthalimides as reactive general synthons for introducing alkylamino groups and their application for the“self-proliferative”synthesis of open-chain polyamines. Chem. Lett., 1986, 15, 369-372.
    [118] Fedorynski, M.; Wojciechowski, K.; Matacz, Z.; Makosza, M. Reactions of organic anions. 86. Sodium and potassium carbonates: efficient strong bases in solid-liquid two-phase systems. J. Org. Chem., 1978, 43, 4682-4684.
    [119] Kolodziejczyk, A. M.; Manning, M. A convenient method for O-alkylation of N-substituted tyrosines using crown ether. J. Org. Chem., 1981, 46, 1944-1946.
    [120] Inagaki, T.; Fukuhara, T.; Hara, S. Effective fluorination reaction with Et3N·3HF under microwave irradiation. Synthesis, 2003, 1157-1159.
    [121] Das, S.; Chandrasekhar, S.; Yadav, J. S.; Grée, R. Ionic liquids as recyclable solvents for diethylaminosulfur trifluoride (DAST) mediated fluorination of alcohols and carbonyl compounds. Tetrahedron Lett., 2007, 48, 5305-5307.
    [122] Sun, H. R.; DiMagno, S. G. Room-temperature nucleophilic aromatic fluorination: experimental and theoretical studies. Angew. Chem. Int. Ed., 2006, 45, 2720-2725.
    [123] Kim, D. W; Song, C. E.; Chi, D. Y. New Method of fluorination using potassium fluoride in ionic liquid: significantly enhanced reactivity of fluoride and improved selectivity. J. Am. Chem. Soc., 2002, 124, 10278-10279.
    [124] Kim, D. W; Song, C. E.; Chi, D. Y. Significantly enhanced reactivities of the nucleophilic Ssubstitution reactions in ionic liquid. J. Org. Chem., 2003, 68, 4281-4285.
    [125] Kim, D. W.; Ahn, D.; Oh, Y.; Lee, S.; Kil, H. S.; Oh, S. J.; Lee, S. J.; Kim, J. S.; Ryu, J. S.; Moon, D. H.; Chi, D. Y. A new class of SN2 reactions catalyzed by protic solvents: facile fluorination for isotopic labeling of diagnostic molecules. J. Am. Chem. Soc., 2006, 128, 16394-16397.
    [126] Kim, D. W.; Jeong, H.; Lim, S. T.; Sohn, M.; Katzenellenbogen, J. A.; Chi, D. Y. Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: significantly enhanced reactivity of alkali metal fluorides and improved selectivity. J. Org. Chem., 2008, 73, 957-962.
    [127] Badone, D.; Jommi, G.; Pagliarin, R.; Tavecchia, P. Use of polyethylene glycol in the synthesis of alkyl fluorides from alkyl sulfonates. Synthesis, 1987, 920-921.
    [128] Cox, D. P.; Terpinski, J.; Lawrynowicz, W. "Anhydrous" tetrabutylammonium fluoride: a mild but highly efficient source of nucleophilic fluoride ion. J. Org. Chem., 1984, 49, 3216-3219.
    [129] Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. Pyridinium p-toluenesulfonate a mild and efficient catalyst for the tetrahydropyranylation of alcohols. J. Org. Chem., 1977, 42, 3772-3774.
    [130] Bernady, K. F.; Floyd, M. B.; Poletto, J. F.; Weiss, M. J. Prostaglandins and congeners, 20. Synthesis of prostaglandins via conjugate addition of lithium trans-1-alkenyltrialkylalanate reagents. A novel reagent for conjugate 1, 4-additions. J. Org. Chem., 1979, 4, 1438-1447.
    [131] Pore, D. M.; Desai, U. V.; Mane, R. B.; Wadgaonkar, P. P. Chemoselective tetrahydropyranylation of alcohols and their detetrahydropyranylation using silicasulphuric acid as a reusable catalyst. Synth. Commun., 2004, 34, 2135-2142.
    [132] Namboodiri, V. V.; Varma, R. S. Solvent-free tetrahydropyranylation (THP) of alcohols and phenols and their regeneration by catalytic aluminum chloride hexahydrate. Tetrahedron Lett., 2002, 43, 1143-1146.
    [133] Habibi, M. H.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Mirkhani, V.; Yadollahi, B. Potassium dodecatangestocobaltate trihydrate (K5CoW12O40·3H2O): a mild and efficient catalyst for the tetrahydropyranylation of alcohols and their detetrahydropyranylation. Tetrahedron Lett., 2001, 42, 2851-2853.
    [134] Kumar, H. M. S.; Reddy, B. V. S.; Reddy, E. J.; Yadav, J. S. Iodine-catalyzed mild and efficient tetrahydropyranylation/depyranylation of alcohols. Chem. Lett., 1999, 857-858.
    [135] Moon, B. S.; Lee, T. S.; Lee, K. C.; An, G. I.; Cheon, G. J.; Lim, S.M.; Choi, C. W.; Chi, D. Y.; Chun, K. S. Syntheses of F-18 labeled fluoroalkyltyrosine derivatives and their biological evaluation in rat bearing 9L tumor. Bioorg. Med. Chem. Lett., 2007, 17, 200-204.
    [136] Wey, S. P.; Weng, C. C.; Lin, K. J.; Yao, C. H.; Yen, T. C.; Kung, H. F.; Skovronsky, D.; Kung, M. P. Validation of an 18F-labeled biphenylalkyne as a positron emission tomography imaging agent forβ-amyloid plaques. Nucl. Med. Biol., 2009, 36, 411-417.
    [137]陈波,俞惠新,谭诚,等.碘标白藜芦醇及其小鼠体内分布.原子能科学技术, 2008, 42, 508-511.
    [138] Kerr, J. F.; Wyllie, A. H.; Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implacations in tissue kinetics Br. J. Cancer, 1972, 26, 239-257.
    [139] Neuzil, J.; Wang, X. F.; Dong, L. F.; Low, P.; Ralph, S. J. Molecular mechanism of‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett., 2006, 580(22), 5125-5129
    [140] Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell., 2002, 9, 459-470.
    [141] Bauer, J. H.; Helfand, S. L. New tricks of an oldmolecule: lifespan regulation by p53. Aging Cell, 2006, 5(5), 437-440.
    [142] Raff, M. Cell suicide for beginners. Nature, 1998, 396, 119-122
    [143]张建海,郝俊虎,王俊东等,细胞凋亡的生理意义及其检测技术,中国动物检疫, 2004, 21, 43-45.
    [144] Verhoven, B.; Schlegel, R. A.; Williamson, P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med., 1995; 182(5), 1597-1601.
    [145] Blankenberg, F. G. In vivo detection of apoptosis. J. Nucl. Med., 2008, 49(6), 81S-95S.
    [146] Hirt, U. A.; Leist, M. Rapid, noninflammatory and PS dependent phagocytic clearance of necrotic cells. Cell. Death. Differ., 2003, 10, 1156-1164.
    [147] Kemerink, G. J.; Boersma, H. H.; Thimister, P. W.; Hofstra, L.; Liem, I. H.; Pakbiers, M. T.; Janssen, D.; Reutelingsperger, C. P.; Heidendal, G. A. Biodistribution and dosimetry of 99mTc-BTAP-annexin-V in humans. Eur. J. Nucl. Med., 2001, 28, 1373-1378.
    [148] Blankenberg, F. G.; Vanderheyden, J. L.; Strauss, H. W.; Tait, J. F. Radiolabeling of HYNIC-annexin V with technetium-99m for in vivo imaging of apoptosis. Nature Protocols, 2006, 1, 108-110.
    [149] Kemerink, G. J.; Liem, I. H.; Hofstra, L.; Boersma, H. H.; Buijs, W. C. A. M.; Reutelingsperger, C. P. M.; Heidendal, G. A. K. Patient dosimetry of intravenously administered 99mTc-Annexin V. J. Nucl. Med., 2001, 42, 382-387.
    [150] Kurihara, H.; Yang, D. J.; Cristofanilli, M.; Erwin, W. D.; Yu, D. F.; Kohanim, S.; Mendez, R.; Kim, E. E. Imaging and dosimetry of 99mTc EC Annexin V: Preliminary clinical study targeting apoptosis in breast tumors. Appl. Radiat. Isot., 2008, 66, 1175-1182.
    [151] Kuge, Y.; Sato, M.; Zhao, S.; Takei, T.; Nakada, K.; Seki, K.; Strauss, H. W.; Blankenberg, F. G.; Tait, J. F.; Tamaki, N. Feasibility of 99mTc-Annexin V for repetitive detection of apoptotic tumor response to chemotherapy: an experimental study using a rat tumor model. J. Nucl. Med., 2004, 45, 309-312.
    [152] Ke, S.; Wen, X. X.; Wu, Q. P.; Wallace, S.; Charnsangavej, C.; Stachowiak, A. M.; Stephens, C. L.; Abbruzzese, J. L.; Podoloff, D. A.; Li, C. Imaging taxane-induced tumor apoptosis using PEGylated, 111In-Labeled Annexin V. J. Nucl. Med., 2004, 45, 108-115.
    [153] Ito, M.; Tomiyoshi, K.; Takahashi, N. Development of a new ligand, 11C-labeled Annexin V, for PET imaging of apoptosis. Proc. SNM 49th Annual, Meeting, 2002, NO. 1457.
    [154] Lahorte, C.; Slegers, G.; Philippe, J.; Van de Wiele, C.; Dierckx, R. A. Synthesis and in vitro evaluation of 123I-labelled human recombinant Annexin V. Biomedical engineering, 2001, 17, 51-53.
    [155] Glaser, M.; Collingridge, D. R.; Aboagye, E.; Bouchier-Hayes, L.; Hutchinson, O. C.; Martin, S. J.; Price, P.; Brady, F.; Luthra, S. K. Iodine-124 labelled Annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl. Radiat. Isot., 2003, 58, 55-62.
    [156] Keena, H. G.; Dekker, B. A.; Disley, L.; Hastings, D.; Lyons, S.; Reader, A. J.; Ottewell, P.; Watson, A.; Zweit, J. Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl. Med. Biol., 2005, 32, 395-402.
    [157] Hiroshige, W.; Yuji, M.; Masahiko, M.; Masatoshi, H.; Tadafumi, K.; Hitoshi, S. In-vivo visualization of radiation-induced apoptosis using 125I-annexin V. Nuclear Medicine Communications, 2006, 27, 81-89.
    [158] Meng, X.; McQuade, P.; Belanger, M. J.; anko, A.; Connolly, B.; Schlingmann, K.; Houde, C.; Mehmet, H.; Guenther, I,; Cook, J. Evaluation of [64Cu]-DOTA-annexin V radiotracer in the cycloheximide-induced liver apoptosis model. J. Nucl. Med., 2009, 50, 1950p.
    [159] Smith-Jones, P. M.; Afroze, A.; Zanzonico, P.; Tait, J.; Larson, S. M.; Strauss, H. W. 68Ga labelling of Annexin-V: comparison to 99mTc-Annexin-V and 67Ga-Annexin. Proc. SNM 50th Annual Meeting, 2003, No. 159.
    [160] Zijlstra, S.; Gunawan, J.; Burchert, W. Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl. Radiat. Isot., 2003, 58, 201-207.
    [161] Grierson, J. R.; Yagle, K. J.; Eary, J. F.; Tait, J. F.; Gibson, D. F.; Lewellen, B.; Link, J. M.; Krohn. K. A. Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug. Chem., 2004, 15, 373-379.
    [162] Boisgard, R.; Blondel, A.; Dolle, F. A new 18F tracer for apoptosis imaging in tumor bearing mice. Proc. SNM 50th Annual Meeting, 2003, No. 157.
    [163] Li, X.; Link, J. M.; Stekhova, S.; Yagle, K. J.; Smith, C.; Krohn, K. A.; Tait, J. F. Site-specific labeling of Annexin V with F-18 for apoptosis imaging. Bioconjug. Chem., 2008, 19, 1684-1688.
    [164] Neuss, M.; Crow, M. T.; Chesley, A.; Lakatta, E. G. Symposium: programmed cell death-clinical reality and therapeutic strategies. Apoptosis in cardiac disease—what is it—how does it occur. Cardiovasc. Drugs Ther., 2001, 15, 507-523.
    [165] Zhou, D.; Chu, W.; Rothfuss J.; Zeng, C.; Xu, J.; Jones, L.; Welch, M. J.; Mach, R. H. Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis Bioorg. Med. Chem. Lett., 2006, 16, 5041-5046.
    [166] Zhou, D.; Chu, W.; Chen, D. L.; Wang, Q.; Reichert, D. E.; Rothfuss, J.; Avignon, A. D.; Welch, M. J.; Mach R. H. [18F]- and [11C]-Labeled N-benzyl-isatin sulfonamide analogues as PET tracers for apoptosis: synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in fas-treated mice using [11C]WC-98. Org. Biomol. Chem., 2009, 7, 1337-1348.
    [167] Nguyen, Q. D.; Smith, G.; Glaser, M.; Perumal, M.; ?rstad, E.; Aboagye E. O. Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. PNAS, 2009, 106, 16375-16380.
    [168] Damianovich, M.; Ziv I.; Heyman, S. N.; Rosen, S.; Shina, A.; Kidron, D.; Aloya, T.; Grimberg, H.; Levin, G.; Reshef, A.; Bentolila, A.; Cohen, A.; Shirvan, A. Aposense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur. J. Nucl. Med. Mol. Imaging., 2006, 33, 281-291.
    [169] Tait, J. F.; Smith, C.; Wood, B. L. Measurement of phosphatidylserine exposure in leukocytes and platelets by whole-blood flow cytometry with Annexin V. Blood. Cells. Mol. Dis., 1999, 25, 271-278.
    [170] Aloya, R.; Shirvan, A.; Grimberg, H.; Reshef, A.; Levin, G.; Kidron, D.; Cohen, A.; Ziv, I. Molecular imaging of cell death in vivo by a novel small molecule Probe. Apoptosis, 2006, 11, 2089-2101.
    [171] Weissleder, R. Molecular imaging in cancer. Science, 2006, 312, 1168-1171.
    [172] Zeng, W.; Yao, M. L.; Townsend, D.; Kabalka, G.; Wall, J.; Puil, M. L.; Biggerstaff, J.; Miao, W. Synthesis, biological evaluation and radiochemical labeling of a dansylhydrazone derivative as a potential imaging agent for apoptosis. Bioorg. Med. Chem. Lett.; 2008, 18, 3573-3577.
    [173] Zeng, W.; Miao, W.; Kabalka, G.; Puil, M. L.; Biggerstaff, J.; Townsend, D. Design, synthesis and biological evaluation of a dansyled amino and derivative as an imaging agent for apoptosis. Tetrahedron Lett., 2008, 49, 6429-6432.
    [174] Waterhouse, R.; Ziv, I.; Reshef, A.; Zhao, J.; Shirvan, A. Radiolabeling, biodistribution evaluation in normal rats and radiation dose estimates of a low molecular weight apoptosis imaging agent, [18F]-NST ML-10. J. Nucl. Med., 2006, 47, 216P.
    [175] Reshef, A.; Shirvan, A.; Waterhouse, R. N.; Grimberg, H.; Levin, G.; Cohen, A.; Ulysse, L. G.; Friedman, G.; Antoni, G.; Ziv, I. Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET. J. Nucl. Med., 2008, 49, 1520-1528.
    [176]现代医学成像, 2009, 7(5), 12.
    [177]Thornberry, N. A. Caspases: key mediators of apoptosis. Chem. Biol., 1998, 5, R97-R103.
    [178] Gao, M. Z.; Wang, M.; Miller, K. D.; Hutchins, G. D.; Zheng, Q. H. Synthesis of carbon-11-labeled 4-aryl-4H-chromens as new PET agents for imaging of apoptosis in cancer. Appl. Radiat. Isot., 2010, 68, 110-116.
    [179] Pollack, M.; Phaneuf, S.; Dirks, A.; Leeuwenburgh, C. The role of apoptosis in the normal aging brain, skeletal muscle and heart. Ann. N. Y. Acad. Sci., 2002, 959, 93-107.
    [180] Susin, S. A.; Zamzami, N.; Kroemer, G. Mitochondria as regulators of apoptosis: doubt no more. Biochim. Biophys. Acta., 1998, 1366, 151-165.
    [181] Madar, I.; Ravert, H.; Nelkin, B.; Abro, M.; Pomper, M.; Dannals, R.; Frost, J. J. Characterization of membrane potentialdependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation. Eur. J. Nucl. Med. Mol. Imaging., 2007, 34, 2057-2065.
    [182] Madar, I.; Huang, Y.; Ravert, H.; Dalrymple, S. L.; Davidson, N. E.; Isaacs, J. T.; Dannals, R. F.; Frost, J. J. Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenylphosphonium. J. Nucl. Med., 2009, 50, 774-780.
    [183] Haase, H.; W?tjen, W.; Beyersmann, D. Zinc induces apoptosis that can be suppressed by lanthanum in C6 rat glioma cells. Biol. Chem., 2001, 382(8), 1227-234.
    [184] Chen, W.; Wang, Z.; Zhang, Y. The effect of zinc on the apoptosis of cultured human retinal pigment epithelial cells. Journal of Huazhong University of Science and Technology [Med Sci], 2003, 23, 414-417.
    [185] Iitaka, M.; Kakinuma, S.; Fujimaki, S.; Oosuga, I.; Fujita, T.; Yamanaka, K.; Wada, S.; Katayama, S. Induction of apoptosis and necrosis by zinc in human thyroid cancer cell lines. Journal of Endocrinology, 2001, 169, 417-424.
    [186] Ghavami, S.; Hashemi, M.; Tehrani, F. K.; Farzami, B.; Taghikhani, M. The apoptotic effect of extracellular zinc sequestration on HT29/219 and SW742 cell lines. Iranian Biomedical Journal, 2005, 9(4), 169-175.
    [187] Kimura, E.; Aoki, S. Chemistry of zinc (II) fluorophore sensors. BioMetals, 2001, 14, 191-204.
    [188] Walkup, G. K.; Burdette, S. C.; Lippard, S. J.; Tsien, R. Y. A new cellpermeable fluorescent probe for Zn2+. J. Am. Chem. Soc., 2000, 122, 5644-5645.
    [189] Koulov, A. V.; Stucker, K. A.; Lakshmi, C.; Robinson, J. P.; Smith, B. D. Detection of apoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine. Cell. Death. Differ., 2003, 10, 1357-1359.
    [190] Hanshaw, R. G.; Hilkert, S. M.; Jiang, H.; Smith, B. D. An indicator displacement system for fluorescent detection of phosphate oxyanions under physiological conditions. Tetrahedron Lett., 2004, 45, 8721-8724.
    [191] Kimura, E.; Aoki, S.; Kikuta, E.; Koike, T. A macrocyclic zinc (II) fluorophore as a detector of apoptosis. PNAS, 2003, 100(7), 3731-3736.
    [192] Trabzuni, D.; Famulski, K. S.; Ahmad, M. Functional analysis of tumour necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL): cysteine-230 plays a critical role in the homotrimerization and biological activity of this novel tumoricidal cytokine. Biochem. J., 2000, 350(2), 505-510.
    [193] Lakshmi, C.; Hanshaw, R. G.; Smith, B. D. Fluorophore linked zinc (II) dipicolylamine coordination complexes as sensors for phosphatidylserine containing membranes. Tetrahedron, 2004, 60, 11307-11315.
    [194] Sigel, H.; Hofstetter, F.; Martin, R. B.; Milburn, R. M.; Scheller-Krattiger, V.; Scheller, K. H. General considerations on transphosphorylations: mechanism of the metal ion facilitated dephosphorylation of nucleoside 5'-triphosphates, including promotion of ATP dephosphorylation by addition of adenosine 5'-monophosphate. J. Am. Chem. Soc., 1984, 106, 7935-7946.
    [195] Tang, X. L.; Luo, L.; Gan, M. Q. Pharmacokinetics and radiation dosimetry estimation of O-(2-[18F]fluoroethyl)-L-tyrosine as oncologic PET tracer. Appl. Radiat. Isot., 2003, 58, 219-225.
    [196] Vaidyanathan, G.; Zalutsky, M. R. Improved synthesis of N-succinimidyl 4-[18F]dluorobenzoate and its application to the labeling of a monoclonal antibody fragment. Bioconjug. Chem., 1994, 5, 352-356.
    [197] Toretsky, J.; Levenson, A.; Weinberg, I. N.; Tait, J. F.;üren, A.; Measet, R. C. Preparation of F-18 labeled annexin V: a potential PET radiopharmaceutical for imaging cell death. Nucl. Med. Biol., 2004, 31, 747-752.
    [198] Chen, X. Y.; Park, R.; Shahinian, A. H.; Tohme, M.; Khankaldyyan, V.; Bozorgzadeh, M. H.; Bading, J. R.; Moats, R.; Laug, W. E.; Conti, P. S. 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl. Med. Biol., 2004, 31, 179-189.
    [199] Zijlstra, S.; Gunawan, J.; Burchert, W. Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl. Radiat. Isot., 2003, 58, 201-207.
    [200] Tang, G.; Zeng, W.; Yu, M.; Kabalka, G. Facile synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) for protein labeling. J. Label. Compd. Radiopharm., 2008, 51, 68-71.
    [201] Sabine, Z. K.; Ulrike, B. W.; Michael, E.; Doerte, O. A compound for imaging cell death. WO 2010006755, 2010-01-12.
    [202] Tahtaoui, C.; Parrot, I.; Klotz, P.; Guillier, F.; Galzi, J.; Hibert, M,; Ilien, B. Fluorescent pirenzepine derivatives as potential bitopic ligands of the human M1 muscarinic receptor. J. Med. Chem., 2004, 47, 4300-4315.
    [203] Rimando, A. M.; Cuendet, M.; Desmarchelier, C.; Mehta, R. G.; Pezzuto, J. M.; Duke, S. O. Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J. Agric. Food. Chem., 2002, 50, 3453-3457.
    [204] Motesharei, K.; Myles, D. C. Molecular recognition on functionalized self-assembled monolayers of alkanethiols on gold. J. Am. Chem. Soc., 1998, 120, 7328-7336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700