超声介导白蛋白微泡破裂促进成纤维细胞生长因子-2转移骨髓间充质干细胞的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:骨髓间充质干细胞(Bone marrow mesenchyme stem cell,BMSCs)来源于中胚层,具有自我更新和多向分化潜能,可以体外分离培养,经一定条件诱导,可以向心肌细胞方向分化。5-氮胞苷(5-azacytidine,5-aza)诱导后,可使得某些基因的肌源性决定部位去甲基化,转录激活,引起细胞向肌源性细胞分化。成纤维细胞生长因子-2(FGF-2)是一种有丝分裂原,具有促进细胞分裂增殖的效应。据报道,此因子还具有心脏保护作用,可以诱导心肌肥大,并且可以提高心肌细胞在缺氧条件下的存活率。超声介导的白蛋白微泡破裂可以促进DNA分子穿透细胞膜和核膜并整合入细胞基因组中。本研究目的:(1)体外克隆FGF-2基因,重组并构建其真核表达载体;(2)探讨BMSCs体外分离培养并诱导其向心肌细胞分化方法;(3)探讨超声介导白蛋白微泡破裂促进FGF-2转移BMSCs的方法,并和脂质体(lipsome2000)介导转移BMSCs相比较。
     方法:(1)采用全骨髓培养法和Ficoll分离法体外分离培养大鼠BMSCs,观察其生长特性,表面抗原表达等,HE染色观察BMSCs细胞形态,胞核和胞浆,MTT法分别测定诱导和未诱导BMSCs的生长曲线。在第4代加入10gmol/L 5-aza预诱导BMSCs24小时(hr),第7代再一次加入10pμmol/L 5-aza诱导24hr;流式细胞仪技术、免疫荧光及RT-PCR实验对诱导前后的BMSCs进行表型鉴定;(2)分离培养新生大鼠心室肌细胞,观察其体外生长的形态、特性,以及抗原表达等特征:(3)收集体外培养的心室肌细胞,Trizol法提取心室肌细胞总mRNA,RT-PCR克隆扩增大鼠FGF-2基因,与PIRES2-EGFP载体连接,构建重组PIRES2-EGFP-FGF-2真核表达载体;(4)调整超声强度和作用时间,寻找最佳作用条件,在超声介导白蛋白微泡破裂作用下促进FGF-2基因转移BMSCs,24hr后荧光显微镜下观察EGFP表达情况;(5)在一定剂量的lipsome2000作用下,促进FGF-2基因转移BMSCs:(6)台盼蓝染色法测定不同超声强度不同作用时间之后BMSCs的活性。(7)流式细胞仪技术检测超声组和脂质体组转移FGF-2之后报告基因EGFP的表达。
     结果:(1)由新生大鼠心室肌组织分离培养得到心室肌细胞呈簇样生长并重叠成致密有边界的细胞团,培养10天左右,倒置相差显微镜下可见成团的心室肌细胞出现节律性收缩,收缩时间长达半个月之久。
     (2)从心室肌细胞中扩增FGF-2基因,构建重组质粒PIRES2-EGFP-FGF-2,测序正确的阳性克隆保种备用。
     (3)由骨髓分离得到的BMSCs体外培养呈长梭形贴壁生长,部分造血细胞悬浮在培养基中,MTT生长曲线显示,细胞在接种后第2天即进入对数生长期,细胞增殖活跃,倒置相差显微镜下观察细胞向外周伸展,两端有轴状突起,细胞呈长梭形,有双核分裂相的BMSCs多见,胞核较圆,核质丰富,核仁可见。随着细胞生长密度增大,彼此相连;7天可铺满瓶底,生长迅速,可大量繁殖,之后如不传代,则有老化现象。12天左右,BMSCs生长缓慢,进入平台期。
     (4)运用免疫荧光和流式细胞仪技术检测显示该群细胞高表达CD44(99.3%),CD54(97.7%),CD90(99.4%),CD71(98.2%),CD106(25.8%)表达相对较低,低表达CD45(8.9%),CD31(15.9%)等造血细胞表面标志。BMSCs经传代之后,细胞形态比较均一,生长速度较快,平均3-4d可铺满瓶底,细胞接种密度较大,接触抑制比较明显。第10代BMSCs HE染色,细胞仍呈长梭形,两端有轴状突起,胞浆丰富深染成红色,胞核圆形或椭圆形,呈蓝色,核仁明显。
     (5)BMSCs经5-aza诱导5天后,倒置相差显微镜下观察,细胞呈集落样生长,体积变大变圆,大小不等,核质丰富深染,比较粗糙,胞核较圆,核仁清楚,多分裂相,增殖能力强,细胞之间互相交联,紧密连接。免疫荧光染色后发现经5-aza诱导后的BMSCs可表达心肌细胞特异性分子肌球蛋白重链(MHC-β)、连接蛋白43(connexin43)、结蛋白(desmin)以及横纹肌肌动蛋白(actinin-α);而部分经诱导的细胞也表达血管内皮细胞特异性分子(Flk-1/VEGFR2/KDR)。经RT-PCR检测,诱导的BMSCs表达心肌细胞早期发育基因NKX2.5和GATA4。
     (6)FGF-2基因在超声介导白蛋白微泡破裂作用下转移到BMSCs。荧光显微镜下可看到绿色荧光,细胞表达EGFP;lipsome2000介导的FGF-2基因转移大鼠BMSCs,24hr后荧光显微镜下观察,可见到绿色荧光,细胞表达EGFP,FGF-2基因转移BMSCs中。
     (7)不同超声强度和作用时间对于BMSCs活力影响不同,通过测定,在不超过0.75W/cm~2的超声强度,32sec的作用时间之内,对于细胞都是安全的。0.75W/cm~2为最好转移强度,32sec为最好转移时间。
     (8)FGF-2转移BMSCs 48hr后进行流式细胞仪技术测定报告基因EGFP的表达,脂质体组报告基因EGFP表达率(49.35a±9.34)%,明显高于超声组(30.42±4.58)%,有统计学差异(P<0.05);脂质体组转移效率高于超声组。
     结论:(1)采用组织块培养法,可体外成功分离培养新生Sprague-Dawley(SD)大鼠心室肌细胞,采用免疫荧光方法,可对表面抗原进行鉴定。
     (2)收集SD大鼠心室肌细胞,Trizol法抽提RNA,依照NCBI Genebank中大鼠FGF-2基因序列,设计适当引物,可克隆出大鼠FGF-2基因,并成功构建了其真核表达载体。
     (3)一定浓度的5-aza可诱导BMSCs向心肌细胞分化。
     (4)不同超声强度、不同作用时间对于BMSCs活力影响不同。
     (5)脂质体和超声介导的白蛋白微泡破裂均可以促进FGF-2转移BMSCs。
     (6)超声介导白蛋白微泡破裂可促进FGF-2转移BMSCs,为非病毒载体进行基因转移提供了新的方法,但转移效率有待进一步提高。
Objective:Bone marrow mesenchymal stem cells(BMSCs)are derived from mesoderm. BMSCs have the ability of differentiation into a variety of tissues.They can be isolated and cultured in vitro,and can differentiate into myocardial cells under some special environments.Induction of 5-azacytidine(5-aza)can cause demethylation of muscle-derived genetic locus,transcription activation and cells differentiation into muscle-derived cells.Fibroblast growth factor-2(FGF-2)is a kind of mitogen.It has the effect of promoting cell division and proliferation.It is reported that FGF-2 can protect heart by inducing myocardial hypertrophy and increasing survival rate of myocardial cells under anoxia condition.Ultrasound-mediated albumin microbubble destruction can promote exogenous gene transfer into genome of eukaryotic cells.In present study,our objectives are as follows:(1)to clone rat FGF-2 gene in vitro and construct its' eukaryotic expression vector.(2)to investigate the method of fractional cultivation of BMSCs and induce its differentiation into myocardial cells.(3)to investigate transfer of FGF-2 into BMSCs in vitro by ultrasound-mediated albumin microbubble destruction method and compare with the lipsome2000 method.
     Methods:(1)From Sprague-Dawley(SD)rats' bone marrow,BMSCs were isolated and cultured in vitro successfully,their growth characteristic and phenotypes were observed. Nucleus,endochylema and cell morphology of BMSCs were observed with HE staining. Growth curves of induced and non-induced BMSCs were detected by MTT method. BMSCs were induced for 24hr by 5-aza(10μmol/L)during primary culture in generation 4 and 7.The phenotypes of BMSCs induced or not were identified by flow cytometry, immunofluorescence and reverse transcription-polymerase chain raction(RT-PCR).(2) Ventricular myocardial cells were isolated and cultured from neonate SD rat,Growth characteristic and phenos were observed.(3)Ventricular myocardial cells were collected, Total mRNA were extracted through Trizol method.The complementary gene encoding rat FGF-2 was amplified by RT-PCR,and then the target gene fragment was inserted into vector PIRES2-EGFP after being digested with EcoR I and BamH I.Eukaryotic expression vectors was constructed at last.(4)Intensity and time of ultrasound were regulated to confirm the best parameters.The plasmid DNA was mixed gently with microbubbles,and then the mixture were transfered into BMSCs by ultrasound-mediated albumin microbubble destruction method.The green fluorescence was observed under inverted phase contrast Microscope after 24hr,It shows that Green Fluorescence Protein(GFP)was expressed by transfered BMSCs.(5)Lipsome2000 could promote FGF-2 transfer into BMSCs at some does.(6)Cell activity was detected by trypan blue staining after different ultrasound intensity and time.(7)Expression of EGFP was detected by flow cytometry after transferring BMSCs with FGF-2 24hr later.
     Results:(1)BMSCs were derived from SD rat bone marrow,grew adhering to the wall in shuttle shape,part of hematopoietic cells floated in substratum.MTT growth curve indicated that cells came into exponential phase of growth on the second day after inoculation and proliferated actively.Observed under contrast phase microscope,BMSC extended,axle protuberance,in shuttle shape,two or more circular nucleuses,abundant karyoplasms.Cell density increased,connected with each other.After the cells were cultured about seven days,cells-could spread the whole bottom,and expanded rapidly. After the cells were cultured about twelve days,BMSCs grew torpidity and came into platform phase.
     (2)Immunofluorescence and flow cytometer test indicated that BMSCs highly expressed CD44(99.3%),CD54(97.7%),CD90(99.4%),CD71(98.2%),CD106(25.8%) correspondence lower,and lowly expressed CD45(8.9%),CD31(15.9%).After passage, BMSCs was in uniform shape,grew rapidly and spread the whole bottom in 3 to 4 days. Contact inhibition was obvious because of high cell inoculum density.Cell morphology of 10 generation BMSCs in HE staining is shuttle shape,axle protuberance,abundant cytoplasm and blue circular nucleus.
     (3)Induced by 5-aza for 5 days,BMSCs size was getting bigger and rounder. Observed under contrast phase microscope,cells were localized in areas with high cell density in different size with abundant cytoplasm and blue circular nucleus.Cells proliferated and connected with each other tightly.Immunofluorescence staining indicated BMSCs induced by 5-aza could express MHC-β,connexin43,desmin and actinin-a.While part of induced cells could also express vascular endothelial cell specific moleculars (Flk-1/VEGFR2/KDR).RT-PCR test indicated that induced BMSCs could express myocardial cell early development gene NKX2.5 and GATA4.
     (4)Ventrieular myocardial cells which were isolated from neonate rats heart grew in cluster and overlapped into compact cell masses.Cultured for about 10 days,conglobate myocardial cells under contrast phase microscope show rhythmic contraction,which continued for half a month.
     (5)The FGF-2 gene was amplificated from ventricular myocardial cells of neonate rat by RT-PCR,and then was inserted into eukaryon expression vector PIRES2-EGFP after being digested with EcoR I and BamH I to construct the plasmid vector PIRES2-EGFP-FGF-2.
     (6)FGF-2 gene was transferred into BMSCs induced by ultrasound-mediated albumin microbubble destruction method.BMSCs could express EGFP observed under fluorescence microscope.FGF-2 gene were transferred into BMSCs mediated by Lipsome2000,after 24hr,BMSCs could express EGFP observed under fluorescence microscope.It showed that FGF-2 has been tansferred into BMSCs.
     (7)After different intensity and time of ultrasound,BMSCs activity was different;it indicated that it was salty within 0.75W/cm~2,32see extent.(8)Expression of EGFP was detected by flow cytometry after transferring BMSCs with FGF-2 24hr.In liposome group, expression efficiency was(49.35±9.34)%,compared with(30.42±4.58)%in ultrasound group,P<0.05.It showed that transfection efficiency in liposome group was higher than in ultrasound group.
     Conclusions:(1)Ventricular myocardial cells were isolated from neonate Sprague-Dawley (SD)rats heart successfully.The antigen of ventricular myocardial cells tested by immunofluorescence.
     (2)Ventricular myocardial cells were collected;Total mRNA was extracted by Trizol method.The complementary gene encoding rat FGF-2 was amplified by RT-PCR,and then the target gene fragment was inserted into vector PIRES2-EGFE Eukaryotic expression vectors was constructed successfully.
     (3)BMSCs could differentiate into myocardial cell which were induced by 5-aza.
     (4)Cell activity could be influenced by different intensity and time of ultrasound.
     (5)Both lipsome and Ultrasound-mediated albumin microbubble destruction could improve FGF-2 transferring into BMSCs.
     (6)Ultrasound-mediated albumin microbubble destruction could promote FGF-2 transfer into BMSCs.It is a new method for transferring with non-virus vector,but transfer efficiency should be increased
引文
1.Smits AM,van Vliet P,Hassink R J,Goumans M J,Doevendans PA.The role of stem cells in cardiac regeneration.J Cell Mol Med 2005;9:25-36.
    2.Tiyyagura SR,Pinney SP.Left ventricular remodeling after myocardial infarction:past,present,and future.Mt Sinai J Med 2006;73:840-851.
    3.Anversa P,Leri A,Kajstura J et al.Myocyte growth and cardiac repair.J Mol Cell Cardiol 2002;34:91-105.
    4.Solomon SD,Zelenkofske S,McMurray J J,et al.Sudden death in patients with myocardial infarction and left ventricular dysfunction,heart failure,or both.N Engl J Med 2005;352:2581-88.
    5. Sun Y, Zhang JQ, Zhang J et al. Cardiac remodeling by fibrous tissue after infarction in rats. J Lab Clin Med 2000;135:316-323.
    
    6. Schuleri KH, Boyle AJ, Hare JM. Mesenchymal stem cells for cardiac regenerative therapy. Handb Exp Pharmacol 2007; 180:195-218.
    
    7. Jun Fujita, Mitsuharu Mori , Hiroshi Kawada.Administration of Granulocyte Colony-Stimulating Factor After Myocardial Infarction Enhances the Recruitment of Hematopoietic Stem Cell-Derived Myofibrobiasts and Contributes to Cardiac Repair. Stem Cells 2007; 11:2750-2759.
    
    8. Christman KL, Fok HH, Sievers RE et al. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarctionTissue Eng 2004; 10:403-409.
    
    9. Li RK, Jia ZQ, Weisel RD et al. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol 1999;31:513-522.
    
    10. Hutcheson KA, Atkins BZ, Hueman MT et al. Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplant 2000;9:359-368.
    
    11.Murry CE, Soonpaa MH, Reinecke H et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428: 664- 668.
    12. Zimmermann WH, Didie M, Doker S et al. Heart muscle engineering: An update on cardiac muscle replacement therapy. Cardiovasc Res 2006,71:419-429.
    13.Leor J, Landa N, Cohen S. Renovation of the injured heart with myocardial tissue engineering. Expert Rev Cardiovasc Ther 2006;4:239-252.
    
    14. Laflamme MA, Gold J, Xu C et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 2005; 167:663-671.
    
    15. Kofidis T, de Bruin JL, Hoyt G et al. Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant 2005;24:737-744.
    
    16. Tang YL, Zhao Q, Zhang YC et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium Regul Pept. 2004; 117:3-10.
    
    17. Katya Dolnikov,Mark Shilkrut,Naama Zeevi-levin,et al. Functional Properties of Human Embryonic Stem Cell-Derived Cardiomyocytes: Intracellular Ca2_ Handling and the Role of Sarcoplasmic Reticulum in the Contraction. Stem Cells 2006;24:236-245.
    
    18. Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med 2006; 231:39-49
    
    19. Giselle Chamberlain, James Fox, Brian Ashton,et al. Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells 2007:11: 2739 -2749.
    
    20. H.Kawada, J. Fujita, K. Kinjo, Y. Matsuzaki,M.Tsuma, H. Miyatake,Y. Muguruma, K. Tsuboi, Y. Itabashi, Y. Ikeda, S. Ogawa, H. Okano,T. Hotta, K. Ando, K. Fukuda, Nonhematopoietic mesenchymalstem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction, Blood 2004;104 :3581-3587.
    
    21.Piero Anversa, Annarosa Leri, Marcello Rota,et al. Concise Review: Stem Cells, Myocardial Regeneration, and Methodological Artifacts. Stem Cells. 2005;3:589-601.
    
    22. Andre Tomescot, Julia Leschik, Valerie Bellamy,et al. Differentiation In Vivo of Cardiac Committed Human Embryonic Stem Cells in Postmyocardial Infarcted Rats. Stem Cells 2007:9: 2200 -2205.
    
    23. Urbanek K, Torella D, Sheikh F et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure.Proc Natl Acad Sci USA 2005; 102:8692-8697.
    
    24. Hashemi SM, Ghods S, Kolodgie FD, Parcham-Azad K, Keane M, Hamamdzic D, Young R, Rippy MK, Virmani R, Litt H, Wilensky RL. A placebo controlled, dose-ranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction. Eur Heart J 2008; 29:251-259.
    25. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient's bedside: An update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211:27-35.
    
    26. Ackson KA, Majka SM, Wang H et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395-1402.
    
    27. Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevent cardiomyocyte apoptosis,reduces remodeling and improves cardiac function. Nat Med 2001;7:430-436.
    
    28. Urbanek K, Torella D, Sheikh F et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 2005; 102:8692-8697.
    
    29. Soren Schenk, Niladri Mai, Amanda Finan,et al. Monocyte Chemotactic Protein-3 Is a Myocardial Mesenchymal Stem Cell Homing Factor.Translational and Clinical ResearchStem Cells 2007; 1: 245-251.
    
    30. Yoshioka T, Ageyama N, Shibata H et al. Repair of infracted myocardium mediated by transplanted bone marrow-derived CD34~+stem cells in a nonhuman primate model. StemCells 2005;23:355-364.
    
    31. Evgenios Goussetis,Athanassios Manginas,Maria Koutelou,et al. Intracoronary Infusion of CD133~+ and CD133~+CD34~+ Selected Autologous Bone Marrow Progenitor Cells in Patients with Chronic Ischemic Cardiomyopathy: Cell Isolation, Adherence to the Infarcted Area, and Body Distribution. Stem Cells 2006;24:2279-2283.
    
    32. Ferna'ndez-Avile's F, San Roma'n JA, Garcia-Frade J et al. Experimental and clinical regenerative capability of bone marrow cells after myocardial infarction. Circ Res 2004;95:742-748.
    
    33. Strauer BE, Brehm M, Zeus T et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease J Am Coll Cardiol.2005;46:1651-1658.
    34. Kazue Tsuji-Takayama, Toshiya Inoue, Yoshihiro Ijiri,et al. Demethylating agent, 5-azacytidine, reverses differentiationof embryonic stem cells. Biochemical and Biophysical Research Communications 2004;323: 86-90.
    
    35. MX. Ramirez, I.M. McMorrow, T.M. Sanderson,et al. Lack of Cardiac Differentiation in c-kit-Enriched Porcine Bone Marrow and Spleen Hematopoietic Cell Cultures Using 5-Azacytidine. Cells Tissues Organs 2005; 180:195-203
    
    36. Theo Kofidis, Jorg L. de Bruin, Toshiyuki Yamane,et al. Insulin-Like Growth Factor Promotes Engraftment,Differentiation, and Functional Improvement after Transfer of Embryonic Stem Cells for Myocardial Restoration. Stem cells 2004;22:1239-1245.
    
    37. Hirayama-Yamada K, Kamisago M , Akimoto K, et al. Phenotypes with GATA4 or NKX2. 5 mutations in familial atrial septal defect.Am J Med Genet A 2005; 135:47-52.
    
    38. Fritzenwanger M, Meusel K, Foerster M, Kuethe F, Krack A, Figulla HR. Cardiotrophin-1 induces interleukin-6 synthesis in human umbilical vein endothelial cells. Cytokine 2006; 36:101-106
    
    39. Nathalie Rosenblatt-Velin, Mario G. Lepore, Cristina Cartoni,et al. FGF-2 controls the differentiation of resident cardiac precursorsinto functional cardiomyocytes. J. Clin. Invest 2005; 115:1724-1733.
    
    40. Zhi-Sheng Jiang, Wattamon Srisakuldee, Fabienne Soulet,et al. Non-angiogenic FGF-2 protects the ischemic heart from injury,in the presence or absence of reperfusion. Cardiovascular Research 2004; 62:154-166.
    
    41. Elissavet Kardami, Zhi-Sheng Jiang, Sarah K. Jimenez,et al. Fibroblast growth factor 2 isoforms and cardiac hypertrophy. Cardiovascular Research 2004;63: 458-466.
    
    42. Zhi-Sheng Jiang, Madhumathy Jeyaraman, Ge-Bo Wen,et al. High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. Molecular and Cellular Cardiology 2007;42:222-233.
    
    43. Unger EC, Matsunaga TO, McCreery T, Schumann P, Sweitzer R, Quigley R. Therapeutic applications of microbubbles. Eur J Radiol 2002; 42: 160-168.
    
    44. Zhao YZ, Luo YK, Lu CT, Xu JF, Tang J, Zhang M, Zhang Y, Liang HD. Phospholipids-based microbubbles sonoporation pore size and reseal of cell membrane cultured in vitro.J Drug Target 2008;16:18-25.
    45.LiangHD,Blomley MJK.The role of ultrasound in molecular imaging.Br J Radiol 2003;76:S140-S150.
    46.Bekeredjian R,Chen S,Frenkel PA,Grayburn PA,Shohet RV:Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart.Circulation 2003;108:1022-1026.
    47.Guo DP,Li XY,Sun P,Tang YB,Chen XY,Chen Q,Fan LM,Zang B,Shao LZ,Li XR.Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG2 cells.Biochemical and Biophysical Research Communications 2006;343:470-474.
    48.李肖蓉,邵力正,王如兴,张斌,郭东萍,范乐明.超声介导白蛋白微泡破裂对外源性基因在ECV304细胞和BALB/c鼠心肌中的表达.中华医学超声杂志.2006:3:12-15.
    49.Guo DP,Li XY,Sun P,Wang ZG,Chen XY,Chen Q,Fan LM,Zhang B,Shao LZ,Li XR.Ultrasound/Microbubble enhances foreign gene expression in ECV304 cells and murine myocardium.Acta Biochimica et Biophysica Sinica 2004;36:824-831.
    50.Shujia J,Haider HK,Idris NM,Lu G,Ashraf M.Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair.Cardiovasc Res 2008;77:525-533.
    51.Guo J,Lin G,Bao C,Hu Z,Chu H,Hu M.Insulin-like growth factor 1 improves the efficacy of mesenehymal stem cells transplantation in a rat model of myocardial infarction.J Biomed Sci 2008;15:89-97.
    1. Giannoula Soufla, Filippos Porichis, George Sourvinos. Transcriptional deregulation of VEGF, FGF2, TGF-b1, 2, 3and cognate receptors in breast tumorigenesis. Cancer Letters 2006; 235: 100-113.
    
    2. Detillieux KA, Sheikh F, Kardami E, Cattini PA. Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res 2003;57:8-19.
    
    3. Jiang ZS, Padua RR, Ju H, Doble BW, Jin Y, Hao J, et al. Acute protectionof ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. Am J Physiol: Heart Circ Physiol 2002;282:H1071-80.
    
    4. Jiang ZS, SrisakuldeeW, Soulet F, Bouche G, Kardami E. Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovasc Res 2004;62:154-66.
    
    5. Pellieux C, Foletti A, Peduto G, Aubert JF, Nussberger J, Beermann F,et al. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin Invest 2001;108:1843-51.
    
    6. Schultz JE, Witt SA, Nieman ML, Reiser PJ, Engle SJ, Zhou M, et al.Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J Clin Invest 1999;104:709-19.
    
    7. Yamamoto T, Suto N, Okubo T, Mikuniya A, Hanada H, Yagihashi S, Fujita M, Okumura K. Intramyocardial delivery of basic fibroblast growth factorimpregnated gelatin hydrogel microspheres enhances collateral circulation to infarcted canine myocardium. Jpn Circ J 2001;65:439-44.
    
    8. Karen A. Detillieux, Farah Sheikh, Elissavet Kardami,et al. B iological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovascular Research 2003;57: 8-19.
    
    9. Tiyyagura SR,Pinney SP.Left ventricular remodeling after myocardial infarction:past, present, and future.Mt Sinai J Med 2006; 73:840-851.
    
    10. Urbanek K, Torella D, Sheikh F et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 2005; 102:8692-8697.
    
    11. Rasmus Sejersten Ripa, Erik J0rgensen, Yongzhong Wang.et al. Stem Cell Mobilization Induced by Subcutaneous Granulocyte-Colony Stimulating Factor to Improve Cardiac Regeneration After Acute ST-Elevation Myocardial Infarction Result of the Double-Blind, Randomized, Placebo-Controlled Stem Cells in Myocardial Infarction(STEMMI) Trial. Circulation 2006; 113:1983-1992.
    
    12. Christman KL, Fok HH, Sievers RE et al. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 2004; 10:403-409.
    
    13. Liu Y, Sun L, Huan Y,et al. Effects of basic fibroblast growth factor microspheres on angiogenesis in ischemic myocardium and cardiac function: analysis with dobutamine cardiovascular magneticresonance tagging. Eur J Cardiothorac Surg 2006;30:103-107.
    
    14. Song H,Kwon K,Lim S,et al.Transfection of Mesenchymal Stem Cells with the FGF-2 Gene Improves Their Survival under Hypoxic Conditions.Molecules and Cells 2005; 19:402-407.
    1.Tocci A,Forte L.Mesenchymal stem cell:Use and perspectives.Hematol J 2003;4:92-96.
    2.Yu-Jen Chang,Daniel Tzu-Bi Shih,Ching-Ping Tseng,et al.Disparate Mesenchyme-Lineage Tendencies in Mesenchymal Stem Cells from Human Bone Marrow and Umbilical Cord Blood.Stem Cells 2006;24:679-685.
    3.Dov Zipori.The Stem State:Plasticity Is Essential,Whereas Self-Renewal and Hierarchy Are Optional.Stem Cell 2005;23:719-726.
    4.Blanpain C,Lowry WE,Geoghegan Aet al.Self-renewal,multipotency,and the existence of two cell populations within an epithelial stem cell niche.Stem Cells 2004;118:635-648.
    5.Marta Magattl,Silvia De Munarl,Elsa Vertua,et al.Human Amnion Mesenchyme Harbors Cells with Allogeneic T-Cell Suppression and Stimulation Capabilities.Stem Cells 2008;26:182-192.
    6.Ken Suzuki,Bari Murtuza,Ryszard T.Smolenski,et al.Cell Transplantation for the Treatment of Acute Myocardial Infarction Using Vascular Endothelial Growth Factor-Expressing Skeletal Myoblasts.Circulation 2001;104:Ⅰ-207.
    7.Giselle Chamberlain,James Fox,Brian Ashton,et al.Concise Review:Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells 2005;11:2739-2749.
    
    8. Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2005;ll:321-334.
    
    9. Piero Anversa, Annarosa Leri, Marcello Rota,et al. Concise Review: Stem Cells, Myocardial Regeneration, and Methodological Artifacts. Stem Cells 25 ;3:589-601.
    
    10. Urbanek K, Torella D, Sheikh F et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure.Proc Natl Acad Sci USA 2005;102:8692-8697.
    
    11. NagayaN,FujiiT,IwaseT,et ai.Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis.Am J Physiol Heart Circ Physiol 2004;287:H2670-2676.
    
    12. Kazue Tsuji-Takayama, Toshiya Inoue, Yoshihiro Ijiri,et al. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells. Biochemical and Biophysical Research Communications 2004;323: 86-90.
    
    13. Makino S,Fukuda K,Miyoshi S,etal.Cardiomyocytes can be generated from marrow stromal cells in vivo.J Clinlnvest 1999; 103:697.
    
    14. Fukuda K.Develepment of regenerative cardiomyocytes from mesenchymal stem Cells for cardiovascular tissue engeneering.Artif Organs 2001;25:287.
    
    15. Pikkarainen S,Tokola H,Kerkela R,et al .GATA transcription factors in the developing and adult heart.Cardiovascular Research 2004;63:196- 207.
    
    16. Kuethe F, Figulla HR, Herzau M, et al.Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. AmHeart J 2005;150:l 15.
    
    17. Fa-Bao Zhang, Li Li, Bo Fang,et al. Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochemical and Biophysical Research Communications 2005;336:784-792.
    1.Toru Yoshioka,Naohide Ageyama,Hiroaki Shibata,et al.Repair of Infarcted Myocardium Mediated by Transplanted Bone Marrow-Derived CD34~+ Stem Cells in a Nonhuman Primate Model.Stem Cells 2005;23:355-364.
    2.Isner JM.Myocardial gene therapy.Nature 2002;415:234-239.
    3.QL Lu,H-D Liang,T Partridge,et al.Mierobubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage.Gene Therapy 2003;10:396-405.
    4.Klibanov,Alexander L.Microbubble Contrast Agents:Targeted Ultrasound Imaging and Ultrasound-Assisted Drug-Delivery Applications.Investigative Radiology 2006;41:354-362.
    5.Chen S,Shohet RV,Bekeredjian R,et al.Optimization of ultrasound parameters for cardiac gene delivery adenoviral and plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction.J Am Coil Cardiol 2003;42:301-308.
    6.R.Bekeredjian,P.A.Grayburn,R.V.Shohet,Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine, J. Am. Coll.Cardiol 2005 ;45 : 329-335.
    
    7. Sun Y, Zhang JQ, Zhang J et al. Cardiac remodeling by fibrous tissue after infarction in rats J Lab Clin Med 2000; 135:316-323.
    
    8. H Dargie. Heart failure post-myocardial infarction: a review of the issues. Heart 2005;91:3-6.
    
    9. Solomon SD, Zelenkofske S, McMurray JJ, et al. Sudden death in patients with myocardial infarction and left ventricular dysfunction,heart failure, or both. N Engl J Med 2005; 352:2581-88.
    
    10. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004;350:2140-50.
    
    11. Tiyyagura SR, Pinney SP. Left ventricular remodeling after myocardial infarction: past, present, and future.Mt Sinai J Med 2006; 73:840-851.
    
    12. Ruixing Y, Dezhai Y, Jiaquan L. Effects of cardiotrophin-1 on hemodynamics and cardiomyocyte apoptosis in rats with acute myocardial infarction. Med Invest 2004; 51:29-37.
    
    13. Prats AC, Prats H. Translational control of gene expression: role of IRESs and consequences for cell transformation and angiogenesis.Prog Nucleic Acid Res Mol Biol 2002;72:367-413.
    
    14. Bao C, Guo J, Lin G, Hu M, Hu Z. TNFR gene-modified mesenchymal stem cells attenuate inflammation and cardiac dysfunction following ML Scand Cardiovasc J 2007; 24:1-7.
    
    15. Unger EC, Hersh E, Vannan M, et al. Gene delivery using ultrasound contrast agents. Echocardiography 2001; 18:355-361.
    
    16. R.H. Ajit, N.D. Anthony, Physical principles of microbubble ultrasound contrast agent, Am. J Cardiol 2002; 90:3J-7J.
    
    17. T. Kodama, Y. Tomita, K. Koshiyama, M.J.K. Blomley, Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble, Ultrasound Med. Biol 2006;32:905-914.
    
    18. R. Bekeredjian, P.A. Grayburn, R.V. Shohet, Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine, J. Am. Coll.Cardiol 2005;45 (3) 329-335.
    
    19. M. Shimamura, N. Sato, Y. Taniyama, H. Kurinami, H. Tanaka, T. Takami,M.Ogihara, Y. Tohyama, R. Morishita, Gene transfer into adult rat spinal cord using naked DNA and ultrasound microbubbles, J. Gene Med 2005;7 (11): 1468-1474
    
    20. Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV: Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003; 108:1022-1026.
    
    21. Zhao YZ, Luo YK, Lu CT, Xu JF, Tang J, Zhang M, Zhang Y, Liang HD. Phospholipids-based microbubbles sonoporation pore size and reseal of cell membrane cultured in vitro. J Drug Target 2008;16(1):18-25.
    
    22. LiangHD, Blomley MJK. The role of ultrasound in molecular imaging. Br J Radiol 2003; 76: S140-S150.
    
    23. Guo DP, Li XY, Sun P, Tang YB, Chen XY, Chen Q, Fan LM, Zang B, Shao LZ, Li XR. Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG2 cells. Biochemical and Biophysical Research Communications 2006; 343(3):470-474.
    1.G.H.Brancaleoni,M.R.Lourenzoni,L.Degrève.Study of the influence of ethanol on basic fibroblast growth factor structure.Genetics and Molecular Research 2006;5:350-372.
    2.Karen A.Detillieux,Farah Sheikh,Elissavet Kardami,et al.Biological act-ivities of fibroblast growth factor-2 in the adult myocardium.Cardiovascular Research 2003;57:8-19.
    3.Ornitz DM,Itoh N.Fibroblast growth factors.Genome Biol 2001;2(3):3005.1-3005.12.Piotrowicz RS,Ding L,Maher P,Levin EG.Inhibition of cell migration by 24-kDa fibroblast growth factor-2 is dependent upon the estrogen receptor.J Biol Chem 2001;276:3963-3970.
    4.Delrieu I.The high molecular weight isoforms of basic fibroblast growth factor (FGF-2):an insight into an intracrine mechanism.FEBS Lett 2000;468:6-10.
    5.Sheikh F,Sontag DP,Fandrich RR,Kardami E,Cattini PA.Overexpression of FGF-2increases cardiac myocyte viability after injury in isolated mouse hearts.Am J Physiol Heart Circ Physiol 2001;280:H1039-H1050.
    6.白秉学,徐东刚,范明.碱性成纤维细胞生长因子的研究进展.国外医学遗传学分册.2004;7:197-199.
    7.许英蕾,孙建义.成纤维细胞生长因子与其受体的研究进展.药物生物技术.2004;1:194-198.
    8.Okada-Ban M,Thiery JP,Jouanneau J.Fibroblast growth factor-2.Int J Biochem Cell Biol.2000;2:263-267.
    9.Szebenyi,G.,and Fallon,J.F.Fibroblast growth factors as multifunctional signaling factors.Int.Rev.Cytol 1999;85:45-106.
    10.Heesang Song,Kihwan Kwon,Soyeon Lim,et al.Transfection of Mesenchymal Stem Cells with the FGF-2 Gene Improves Their Survival under Hypoxic Conditions.Molecules and Cells 2005;9:402-407.
    11.Eugene W.M.Ng,MD,MBA;Anthony P.Adamis,MD.Targeting angiogenesis,the underlying disorder in neovascular age-related macular degeneration.Can J Ophthalmol 2005;10:352-368.Review.
    12.钉缨,温进坤.碱性成纤维细胞生长因子新生小牛血清和肝素对大鼠血管平滑肌细胞迁移的影响.国动脉硬化杂志.2001;3:189.
    13.Pun S.Folrio L,Wronski TJ.Anabolic effects of basic fibroblast growth factor in the tibial diaphysis of ovariectomized rats.Boue 2000;7:197.
    14.李春明,杨春艳,刘宝林等.bFGF对骨髓基质干细胞体外培养及诱导分化时生物学特性的影响.哈尔滨医科大学学报.2005;9:18-20.
    15.杨辉俊,杨宏宇,张继斌等.bFGF基因转移对骨髓基质细胞生物学特性的影响.中国口腔颌面外科杂志.2006;1:53-57.
    16.Mika Nakae,Hideki Kamiya,Keiko Naruse,et al.Effects of Basic Fibroblast Growth Factor on Experimental Diabetic Neuropathy in Rats.Diabetes 2006;55:1470-1477.
    17.Dafang Wu.Neuroprotection in experimental stroke with targeted neurotrophins.NeuroRx 2005;1:120-128.
    18.张燎.闫立军.诸葛春耕.碱性成纤维细胞生长因子研究进展.社区医学杂志.2004;6:32-34.
    19.Yang Song,Jing Zheng.Establishment of a Functional Ovine Fetoplacental Artery Endothelial Cell Line with a Prolonged Lifespan.BOR Papers in Press 2006;as DOI:10.1095/biolreprod.106.055921.
    20.谭震 赵青 宫苹.bFGF对成骨细胞和成纤维细胞生物学特性的影响.口腔颌面修复学杂志.2005;3:161-164.
    21.刘晓花,商文芝,杜毅等.体外培养碱性成纤维细胞因子对人牙周膜成纤维细胞生物学特性的影响.临床口腔医学杂志.2006;2:339-341.
    22.解晶心综述,王东林审校.碱性成纤维细胞生长因子生物学特性及与胶质瘤关系.南通大学学报.2005;5:77-78.
    23.Detillieux,K.A.,Sheikh,F.,Kardami,E.,and Cattini,P.A.Biological activ-ities of fibroblast growth factor-2 in the adult myocardium.Cardiovasc.Res 2003;7:8-19.
    24.Nathalie Rosenblatt-Velin,Mario G.Lepore,Cristina Cartoni,et al.FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes.Clinical Investigation 2005;115:1724-1733.
    25.Jiang,Z.S.,et al.Acute protection of ischemicheart by FGF-2:involvement of FGF-2receptors and protein kinase C.Am J Physiol Heart Circ Phsiol 2002;82:H1071-H1080.
    26.Simons,M.,Ware,J.A.Therapeutic angiogenesis in cardiovascular disease.Nat.Rev.Drug Discov 2003;2:3-871.
    27.Solloway,M.J.,and Harvey,R.P.Molecular pathways in myocardial development:a stem cell perspective.Cardiovasc.Res 2003;8:264-277.
    28.Elissavet Kardami,Zhi-Sheng Jiang,Sarah K.Jimenez,et al.Fibroblast growth factor 2isoforms and cardiac hypertrophy.Cardiovascular Research 2004;3:458-466.
    29.Tanaka K,Abe M,Sato Y.Roles of extracellular signal-regulated kinase 1/2 and p38mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis.Jpn J Cancer Res 1999;10:647-654.
    30.Han J,Molkentin JD.Regulation of MEF2 by p38 MAPK and its implication in cardiomyocyte biology.Trends Cardiovasc Med 2000;10:19-22.
    31.Hunter JJ,Chien KR.Signaling pathways for cardiac hypertrophy and failure.N Engl J Med 1999;41:1276-1283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700