枸杞木虱啮小蜂Tamarixa Lyciumi Yang生物学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枸杞木虱Paratrioza sinica Yang & Li是枸杞的重要害虫,给我国枸杞产业造成了巨大的损失。为了给枸杞木虱的生物防治工作提供科学依据,作者对枸杞木虱的一种重要的专寄生天敌—枸杞木虱啮小蜂Tamarixa lyciumi Yang(膜翅目Hymenoptera:姬小蜂科Eulophidae)的形态、行为、发育、存活、繁殖等生物学特性进行了较为系统的研究。主要研究结果如下:
     1.形态观察:成蜂体黑色,略带金属光泽,雌蜂个体明显大于雄蜂。卵长椭圆形,光滑,一端稍膨大。
     2.枸杞木虱啮小蜂在内蒙古西部地区1a发生5~6代,7月末8月初寄生率达到最高。
     3.枸杞木虱啮小蜂卵多产于枸杞木虱胸足间,产1粒卵需40~80s。羽化时间多集中在清晨6:00~8:00和下午18:00~20:00点间,雄性较雌性早羽化2~3d。雌雄虫均可多次交尾,交尾时间一般30~40s,交尾后便可产卵。成虫趋光性强,在黑暗状态下,行动迟缓,也不交配产卵。
     4.枸杞木虱啮小蜂大多进行两性生殖,少数雌蜂也能进行孤雌生殖,孤雌生殖所羽化的小蜂均为雄性。枸杞木虱啮小蜂的自然性比为1.51:1~2.28:l,平均1.80:1。
     5.第1~3d蜂龄的枸杞木虱啮小蜂的寄生能力较高。该蜂最喜寄生4龄枸杞木虱若虫,其次为5龄和3龄若虫。一头蜂一般一次只产一粒卵,寄生一头寄主,对已被寄生的寄主具有明显的辨别能力。在试验条件下,枸杞木虱啮小蜂不能在沙枣木虱和柽柳木虱等其它寄主上产卵寄生,只有枸杞木虱才能被枸杞木虱啮小蜂雌蜂所寄生。
     6.温度和补充营养对枸杞木虱啮小蜂成蜂寿命有显著影响。在16~36℃间[0],分别以15%蜂蜜水溶液、15%蔗糖溶液、百事可乐、不喂食为营养源时,单头饲养未交配的枸杞木虱啮小蜂成蜂[0],随温度的升高,成蜂的寿命逐渐缩短,补充各种营养的成蜂寿命均在36℃时最短;在相同温度条件下补充营养能延长成虫寿命,取食15%蜂蜜水的寿命最长,不补充营养寿命最短。
     7.营养条件对枸杞木虱啮小蜂的繁殖有显著的影响。喂食20%蜂蜜水时其繁殖力最高,各指标均分别为:雌蜂寿命7.56d、雄蜂3.92 d,产卵期为7.16d、每雌蜂日均产卵5.65粒、一生总产卵量为40.24粒、羽化子蜂总数为35.68头;其次为20%蔗糖溶液,补充清水时只可延长枸杞木虱啮小蜂寿命而不能提高其繁殖力。
     8.通过室内实验发现,温度对枸杞木虱啮小蜂的发育、繁殖均有显著的影响。枸杞木虱啮小蜂卵、幼虫、蛹的发育起点温度分别为8.06℃、9.16℃和7.65℃,有效积温则分别为20.53、69.37和127.49日度;从卵发育到成虫需要8.22℃以上的有效积温217.21日度。成虫寿命与温度之间呈直线负相关,其关系式为:雌蜂y = -0.44x + 17.904(R2 = 0.9571),雄蜂y = -0.1864x + 7.82(R2 = 0.9136);成虫的平均总产卵量y与温度x呈抛物线相关,其关系式为:y = -0.2523x2 + 12.059x– 105.27(R2 = 0.9773)。枸杞木虱啮小蜂在温度为23.45℃时,单雌总产卵量达到理论最大值。
     9. 5℃下冷藏枸杞木虱啮小蜂蛹15天以内,不影响其正常羽化、繁殖。冷藏15d以上时羽化率显著降低;冷藏30d内对雌雄蜂寿命无明显影响,而且雌蜂寄生能力也没有受到显著影响。
     10.分别研究了枸杞木虱啮小蜂在25℃下对不同龄期枸杞木虱若虫及对4龄枸杞木虱若虫在不同温度下的寄生功能反应。结果表明,其功能反应均呈HollingⅡ型,且功能反应受到寄主龄期、温度、寄主密度和寄生物密度的影响。在相同寄主龄期下,枸杞木虱啮小蜂的寄生数量随寄主密度的增大而增加,不同龄期的寄生数量在4龄时最大,5龄时次之,3龄时最少;在同一温度下,寄生数量随寄主密度的增大而增加,在15℃~25℃范围内,随着温度的升高,被寄生的枸杞木虱数量增加,但在25℃~35℃呈相反的趋势。枸杞木虱啮小蜂的寄生功能反应有较强的种内干扰作用,随自身密度(P)的增加,枸杞木虱啮小蜂对枸杞木虱4龄若虫的发现域(a)随之降低,枸杞木虱啮小蜂自身密度对其寄生能力的影响可采用Hassell-varley(1969)模型a = QP -m进行模拟,其关系式为a = 0.1222P -0.4641(25℃,4龄枸杞木虱)。
     上述枸杞木虱啮小蜂寄生生物学和繁殖生物学的研究结果,为以后的大量繁殖和进一步研究利用提供了基本的理论依据,因而具有一定的理论意义和实践价值。
Tamarixa lyciumi Yang (Hymenoptera:Eulophidae) is a new specie parasitoid of Paratrioza sinica Yang & Li (Homoptera:Psyllidae), which is an important insect of Lycium spp.. The biological characteristics of Tamarixa lyciumi is systematically studied in this paper. Morphology, behavior, davelopmentle, survival and reproduction of the parasitoid were studied under laboratory conditions, the results are briefly summarized as below.
     1. Morphology: The body of the adult T. lyciumi is black, having a metallic sheen. The female is obviously larger than the male. The egg is long oval, somooth , with an inflated end.
     2. T. lyciumi multiply 5~6 generations annually in west Inner Mongolia, and the parasitism is highest in the end of July to the early August.
     3. The egg of T. lyciumi was laid on the prothoracic legs of the host namph, which takes 40-80 seconds for each one. The peak period of eclosion is am6:00~am8:00 and pm6:00~pm8:00, adult male eclosion is 2~3 days earlier than female. Both the male and female can mate more times than once, the mating behavior lasts 30~40s, female will lay eggs after mating. Study of negative phototaxis of adult shows that T. lyciumi has a great negative phototaxis. The adult shows slow-moving and won’t copulate in dark.
     4. Sexual reproduction occurs much more than parthenogenesis, from which the offspring is male only. The sex ratio of T. lyciumi is 1.51:1-2.28:l in nature, with a mean ratio of 1.80:1.
     5. The 1~3 days old T. lyciumi has a stronger parasitic ability, which prefers the 4th nymphal stage of Paratrioza sinica to the 3rd to 5th nymphal stages. One female, lays one egg and parasitizes one nymph at a time, could identify its host easily. Under the controlled condition, the T. lyciumi would never lay eggs on the nymph of Trioza magnisetosa Log. and Eustigmata tamaricina Log., but Paratrioza sinica.
     6. At 16℃to 36℃, feeding the non-mating and non-spawning adult with 15% honey water, 15% sucrose water, pepsi coke and nothing as control, shows that the temperature and nutrition affect the lifetime of adult significantly. A higher temperature offers a shorter life, which happens under all the trophic levels, while the nutrition protracts the lifetime at every temperature. The adult fed by 15% honey water has the longest life, while the control has the shortest life.
     7. Nutrient conditions had significant effect on the fecundity of Tamarixa lyciumi. The adults with 20% honey water supply have the highest fecundity. The adults had the longest longevity of 7.56 days for female and 3.92 days for male. The spawning period of female is 7.16 days, averaging 5.65 eggs per adult per day and totally 40.24 eggs with eclosion number of 35.68 through its life. The adult with 20% sucrose water supply has the secondly highest fecundity, Supplying water, however, could prolong the lifetime but not increase the reproduction.
     8. The interior experiment shows that temperature significantly affects the development of T. lyciumi at the range of 15-35℃,the developmental period of T. lycium is decreased with the temperature increasing. According to the law of effective accumulative temperature , the low temperature threshold of development for the egg, larval, pupa and egg-pupa of T. lycium are estimated to be 8.06℃, 9.16℃, 7.65℃and 8.22℃respectively; the effective accumulative temperature for the egg, larval, pupa and egg-pupa are 20.53, 69.37, 127.49 and 217.21 day-degrees respectively. Both the longevity of adult and generation period decrease with the temperature rising, the relationship between longevity of adult (y) and temperature(x),are described as the following formula: y= -0.44x + 17.904 (R2 = 0.9571)(female), y=-0.1864x + 7.82(R2 = 0.9136)(male), meanwhile, the average total number of eggs laid by per female (y) and temperature (x) were described as the following formula: y = -0.2523x2 + 12.059x– 105.27(R2 = 0.9773)。
     9. There is no significant difference in the [0]progeny number of per female at 5℃cold storage in 15 days. The emergence rate decreased obviously after the pupa cold storage keeps longer than 15 days; the life span of the adults which emerged after the pupa cold storage within 30 days has no significant difference with the no cold ones, and the fecundity of the female has no significant difference also.
     10. the parasitic functional response of Tamarixa lycium adult parasitizes different instar stages host at 25℃, [0]and parasitizes the 4th instar stage Paratrioza sinica at different temperature are also studied in this research. The results showed that all the response of Tamarixa lycium fit Holling TypeⅡequation, and it is affected by the host instar stage, temperature and the densities of host and parasitoid. Supplying the host on the same instar stage at 25℃, the number of parasitized host increase with increasing host density. the number of parasitized comes highest when the host is on 4th instar stages, which on 5th is sencondly, and the 3rd nympha is the lowest. At the same temperature, the number of parasitized host increase with increasing host density also. At 15~25℃, the parasitized number increase with temperature; while at 25~35℃, it is in adverse. There is a strong intraspecific interference in the parasitic functional response of Tamarixa lycium. The relationship between discovered area (a)of T. lycium and its density(P) could be well simulated as a = 0.1222P -0.4641 by Hassell-varley(1969) model a=QP–m, which under the 4th instar stage Paratrioza sinica as the host at 25℃.
引文
[1]蔡霞,郝仲萍,施祖华,等.寄主龄期对半闭弯尾姬蜂生物学特性的影响[J].中国生物防治,2006,22(2):92-95.
    [2]柴正群,邓建华,吴伟.烟蚜重寄生蜂一蚜虫宽缘金小蜂生物学特性研究[J].西南林学院学报,2005,25(2):56-60.
    [3]陈君,程惠珍,丁万隆,等.北京地区枸杞害虫、天敌种类及发生规律调查[J].中国中药杂志,2002,27(11):819-822.
    [4]陈君,程惠珍,张建文,等.宁夏枸杞害虫及天敌种类的发生规律调查[J].中药材,2003,26(6):391-394.
    [5]陈茂华,韩召军,王瑞.烟蚜茧蜂蛹期耐冷藏性研究[J].植物保护,2005,31(2):41-43.
    [6]陈天林,肖克仁,张阔,等.红头阿扁叶蜂蛹、卵发育起点温度和有效积温的研究[J].辽宁林业科技,2006,(6):28-29.
    [7]陈文龙,吴菊芳,仇书红.饲料、温度及成蝇密度对家蝇产卵量的影响[J].上海农学院学报,1996,14(1):17-2l.
    [8]程凤君,刘义勇,齐中敏,等.松毛虫宽缘金小蜂生物学特性观察初报[J].吉林林业科技,2005,34(6):34-35.
    [9]仇兰芬.天牛卵长尾啮小蜂生物学及寄主选择性研究[D].山东农业大学,2003.
    [10]仇兰芬,杨忠岐,陶万强.茶翅蝽沟卵蜂生物学特性和自然种群动态[J].林业科学, 2007,43(11):62-65.
    [11]丁岩钦.昆虫数学生态学[M].北京:科学出版社,1994:257-264.
    [12]丁岩饮.昆虫种群数学生态学原理与应用[M].北京:科学出版社,1980:256-626.
    [13]段立清,特木钦,冯淑军,等.枸杞木虱自然种群平均生命表及其分析[J].内蒙古农业大学学报,2000,21(1):58-62.
    [14]段立清,冯淑军,李海平,等.枸杞木虱啮小蜂寄生行为及生物学特性的研究[J].昆虫知识,2002,39(6):439-44.
    [15]段立清,王莹,尹凤民,等.枸杞木虱各虫期对三唑磷的敏感性及其与羧酸酯酶活力关系的研究[J].内蒙古农业大学学报,2006,27(1):35-37,58.
    [16]段立清,冯淑军,尹凤民,等.枸杞木虱Paratrioza sinica Yang& Li若虫分泌物中氨基酸的分析[J].内蒙古农业大学学报,2006,25(1):64-67.
    [17]段立青,刘宽余,Imre S.OTVOS,等.木虱啮小蜂对枸杞、枸杞木虱的行为反应[J].昆虫学报,2005,48(5):725-730.
    [18]冯明光,唐启义. DPS数据处理系统-实验设计、统计分析及数据挖掘[M].科学出版社,2007.
    [19]高嵩.天水柳叶蜂第1代各虫态发育起点温度和有效积温研究[J].甘肃林业科技,2006,31(4):38-39.
    [20]甘明,苗雪霞,丁德诚.日本柄瘤蚜茧蜂与其寄主豆蚜的相互作用寄主龄期选择及其对发育的影响[J].昆虫学报,2003,46(5):598-604.
    [21]高连喜,陈家骅,黄居昌,等.潜蝇茧蜂生物学特性的初步研究[J].福建农林大学学报(自然科学版),2002,31(3):308-310.
    [22]高连喜,黄居昌,陈家骅.黄色潜蝇茧蜂发育起点温度与有效积温的研究[J].华东昆虫学报,2003,12(1):35-37.
    [23]胡心宽.枸杞木虱天敌瓢虫的种类调查及鉴别[J].陕西林业科技,1993,(3): 43,56.
    [24]黄大庄,刘辉芳,王志刚,等.桑天牛卵长尾啮小蜂的繁殖生物学研究[J].林业科学,2005,41(2):195-200.
    [25]蒋杰贤,唐昌林,王奎武,等.温度对斜纹夜蛾侧沟茧蜂功能反应的影响[J].上海交通大学学报:农业科学版,2002,20(1):69-72.
    [26]焦懿,陈志麟,余道坚,等.刺桐姬小蜂生物学特性研究[J].昆虫学报,2007,50(1):46-50.
    [27]康晓霞,赵光明,龚一飞,等.棉大卷叶螟绒茧蜂生物学特性观察[J].中国生物防治,2006,22(4):275-278.
    [28]李海平,段立清,冯淑军,等.枸杞林内捕食性蝽类生物学特性及主要种的功能反应[J].内蒙古农业大学学报,2002,23(3):69-71.
    [29]李建成,张青文,刘小侠,等.中红侧沟茧蜂成虫日龄及粘虫及幼虫龄期对寄生效果的影响[J].中国生物防治,2005,21(1):14-17.
    [30]梁光红,陈家骅,季清娥,等.橘小实蝇寄生蜂—切割潜蝇茧蜂的生物学特性[J].福建林学院学报,2007,27(3):253-258.
    [31]刘树生.苦苣菜蚜茧蜂的生物学、生态学特性研究[J].昆虫天敌,1988,10(1):44-47.
    [32]刘树生,何俊华.松毛虫赤眼蜂产卵行为观察[J].昆虫知识,19991,28(2):103-105.
    [33]刘彦宁,任月萍.几种农药防治枸杞木虱和枸杞刺皮瘿螨的药效评价[J].农业科学研究,2005,26(3): 96-98.
    [34]吕宝乾,彭正强,唐超,等.椰心叶甲寄生蜂—椰甲截脉姬小蜂的生物学特性[J].昆虫学报,2005,48(6):943-948.
    [35]吕宝乾,彭正强,许春霭,等.椰心叶甲蛹寄生蜂—椰心叶甲啮小蜂的生物学特性[J].昆虫学报,2006,49(4):643-649.
    [36]马子龙,周祥,赵松林,等.温度对椰心叶甲啮小蜂发育历期及寄生力的影响[J].热带作物学报,2006,27(3):61-65.
    [37]孟庆祥.枸杞木虱的生活史及防治研究一宁夏枸杞研究[M].银川:宁夏人民出版社,1982.
    [38]浦冠勤,毛建萍,谢立群,等.桑螟绒茧蜂的生物学特性研究[J].苏州大学学报(工科版),2005,25(2):20-23.
    [39]邱鸿贵,邱中良,沈伯钧,等.啮小蜂寄主接受行为的研究[J].昆虫天敌,2001,(3):97-108.
    [40]宋丽群,高燕,张文庆,等.美丽青背姬小蜂生物学特性研究[J].昆虫学报,2005,48(1): 90-94.
    [41]单艳敏.木虱啮小蜂Tetrastichus sp.寄主选择性及其机理的研究[D].内蒙古农业大学, 2006.
    [42]史银龙,白效令.枸杞主要害虫及药剂防治[J].植物保护,1987,13(1):31.
    [43]唐桦.枸杞木虱天敌的保护与利用[J].昆虫知识,1997,34(6):341-343.
    [44]唐慧锋,赵世华,谢施诒,等.几种杀虫剂对枸杞木虱、蚜虫的防治效果[J].北方果树,2003(2):8-9.
    [45]谭大凤,陈阿兰.枸杞木虱的生物学特性及其防治[J].青海师范大学学报,2006,4: 91-94.
    [46]韦德卫,王助引,黎柳锋,等.温度对双纹须歧角螟生长发育和繁殖的影响[J].昆虫学报,2005,48(6):910-913.
    [47]吴福桢,高兆宁.宁夏农业昆虫图志[M].北京:农业出版社,1978.
    [48]吴福桢,高兆宁.宁夏枸杞害虫区系分析及种类记述[J].宁夏农林科技,1984(5): 22-26.
    [49]吴启松,曾玲,梁广文.甘蓝潜蝇茧蜂对美洲斑潜蝇幼虫寄生作用的研究[J].华南农业大学学报:自然科学版,2002,23(3):40-42.
    [50]王金耀,屈振刚.管侧沟茧蜂寄生行为生物学特性研究[J].华北农学报,2007,22(2):149-151.
    [51]王平,佟德艳,王艳,等.颜色对枸杞木虱成虫引诱作用的研究[J].内蒙古农业大学学报,2006,27(4):102-104.
    [52]王小艺,杨忠岐,武辉,等.白蜡吉丁柄腹茧蜂的寄生和繁殖生物学[J].昆虫学报,2007,50(9):920-926.
    [53]王志刚,刘辉芳,黄大庄,等.桑天牛卵啮小蜂Aprostocems prolixus的寄生生物学研究[J].蚕业科学,2003,29(3):217-222.
    [54]辛金慧.枸杞和党参病虫害的防治[J].山西农业科技,1988(11):29-30.
    [55]徐天森.林木病虫防治手册[M].北京:中国林业出版社,1987.
    [56]徐维红,朱国仁,李桂兰,等.温度对丽蚜小蜂寄生烟粉虱生物学特性的影响[J].中国生物防治,2003,19(3):103-106.
    [57]杨集昆,李法圣.中草药害虫枸杞木虱(同翅目:木虱科)新种描述及生物学记要[J].北京农业大学学报,1982(1):39-46.
    [58]杨忠歧,姚艳霞,段立清.寄生枸杞的重要害虫—枸杞木虱的啮小蜂一新种(膜翅目:姬小蜂科)[J].动物分类学报,2009,45(5).
    [59]杨忠岐.白蛾周氏啮小蜂的有效积温及发育起点温度研究[J].林业科学,2000,36(6):119-122.
    [60]尹承山,陈学新,郎法勇,等.美洲斑潜蝇寄生蜂—黄腹潜蝇茧蜂成虫的生物学特性[J].昆虫学报,2003,46(4):505-511.
    [61]于军香,毛建萍,谢立群,等.桑螟绒茧蜂的生物学特性[J].昆虫知识,2005,42(2): 199-201.
    [62]曾爱平,王奎武,蒋杰贤,等.淡足侧沟茧蜂生物学特性研究[J].湖南农业大学学报(自然科学版),2005,31(5):502-505.
    [63]张长海,马玉玲.哈密枸杞木虱的初步观察[J].新疆农业科学,1983(5):13-l4.
    [64]张李香.阿氏啮小蜂生物学和生态学研究[D].福建农林大学,2003.
    [65]张李香,吴珍泉.温度对哈氏啮小蜂生长发育的影响[J].中国生物防治,2007,23(2): 295-297.
    [66]张世泽,万方浩,张帆,等.丽蚜小蜂两个品系对烟粉虱若虫的寄生适宜性[J].中国生物防治,2003,19(4):149-153.
    [67]张宗山,杜玉宁,沈瑞清.枸杞木虱(Paratrioza sinica Yang et Li)有效积温和发育起点温度的室内测定[J].植物保护,2007,33(2): 67-69.
    [68]周琳.不同温度对黑色软蚧蚜小蜂生长发育的影响[J].河南农业科学,2004,(1):26-28.
    [69] Agelopoulos, N. G., Keller, M. A.. Plant-natural enemy association in the tritrophic system. Cotesia rubecula-Pieris rapae-Brassicaceae(Cruciferae). Preference of C.rubecula for landing and searching[J]. J.Chem.Ecol. ,1994, 20(7): 1735-1748.
    [70] Appel, A. G. and Rust, M. K.. Outdoor activity and distribution of the smokybrown cockroach, periplaneta fuliginosa (Dictyoptera:Blattidae) [J].Environmental Entomology, 1985, 14: 669-673.
    [71] Bai, B. & Smith, S.M.. Effect of host availability on reproduction and survival of the parasitoid wasp Trichogramma minutum[J]. Ecological Entomology, 1993, 18:279-286.
    [72] Bin, F., Vinson, S. B., Strand, M. R. et al. Source of an egg kairomone for Trissolcus basalis, a parasitoid of Nezara viridula[J]. Physiological Entomology, 1993, 18: 7-15.
    [73] Drukker, B., Scutareanu, P., and Sabelis, M. W.. Do anthocorid predators respond to synomones from Psylla infested pear trees under field conditions[J]. Entomol Experi et Appli, 1995, 77(2): 193-203.
    [74] Floate, K. D.. Production of filth fly parasitoids (Hymenoptera:Pteromalidae) on fresh and on freeze-killed and stored house fly pupae, Biocontrol Science And Technology, 2002, 12(5): 595-603.
    [75] Hagley, E. A. C., Laing, J. E.. Biology of Trichogramma minutum Riley collected from Apples in Southern Ontario[J]. Environmental Entomology, 1984, 13:1324-1329.
    [76] Harris, R. J. & Rose, E. A. F.. Factors influencing reproductive strategies of the vespid parasitoid Sphecophaga vesparum vesparum (Hymenoptera:Ichneumonidae) [J]. New Zealand Journal of Zoology, 1999, 26(2):89-96.
    [77] Hassell, M. P. & Rogers, D. J.. Insect parasite responses in the development of population model[J]. Journal of Animal Ecology, 1972, 41: 661-667.
    [78] Holling, C. S.. Some characteristics of simple type of predation and parasitism[J].Canadian Entomologist, 1959, 91:385-398
    [79] Keiji Takasu, Yoshimi Hirose. Host acceptance behavior by the host-feeding egg parasitoid, Ooencyrtus nezarae (Hymenoptera: Encyrtidae): host age effects [J]. Annals of the Entomological Society of America, 1993, 86(1): 117-121.
    [80] Kerkut, G. A. & Gibert, L. I.. Comprehensive insect physiology, biochemistry and pharmacology [J]. New York: Pergamon Press, 1985,11:647-712.
    [81] Laetemia, J. A., Laing, J. E. and Corrigan, J. E.. Effects of adult nutrition on longevity, fecundity, and offspring sex ratio of Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae) [J].The Canadian Entomologist, 1995, 127:245-254.
    [82] Mckay Tanja,Galloway Terry. Survey and release of parasitoids attacking house and stable flies in dairy operation[J]. Canadian Entomolorist,1999, 131(6):743-756.
    [83] Michael, R., Hamerski, M. R., Hall, R. W.. Adult emergence, courtship, mating, and ovipositional behavior of Tetrastichus gallerucae (Hymenoptera:Eulophidae), a parasitoid of the Elmleaf beetle(Coleoptera:Chrysomelidae)[J]. Environ Entomol,1989,18(5):791-794.
    [84] Park, G. A.. Behavioural variations among strains of Trichogramma spp.: a review of the literature on host-age selection[J]. J. Appl. Ent., 1986, 101:55-64.
    [85] Rahim, A., Hashmi, A., Khan, N. A.. Effects of temperature and relative humidity on longevity and development of Oencyrtus papilionis Ashmead (Hymenoptera:Eulophidae),a parasite of the sugarcane pest, Pyrilla perpusilla Walker(Homoptera:Cicadellidae)[J].Environmental Entomology, 1991,20(3):774-775.
    [86] Ren Shun-xiang, Wang Zhen-zhong, Qiu Bao-li, et a1. The pest status of Bemisia tabaci in China and nonchemical control strategies[J]. Entomologia Sinica, 2001, 8(3):79-288.
    [87] Richard L.Doutt. The biology of parasitic Hymenoptera[J]. Annu. Rev. Entomol, 1959, (4):161-182.
    [88] Son, D. M., Fadamiro, H., Lundgren, J. G., et. Effects of sugar feeding on carbohydrate and lipid metabolism in a parasitoid wasp[J].Physiological Entomology,2000,25(1):17-26.
    [89] Takagi, M. & Murakami, K.. Effect of temperature on development of Paratelenomus saccharalis (Hymenoptera:Scelionidae), an egg parasitoid of Megacopta punctatissimum (Hemiptera: Plataspidae) [J]. Applied Entomology and Zoology, 1997, 32(4): 659-660.
    [90] Takahashi, S., Sugai, T.. Mating behavior of the parasitoid wasp Terastichus hagenowii (Hymen- ptera :Eulophidae) [J]. Entomologia Generalis,1982,7(4):287-293.
    [91] Tumlinson, J. H., Lewis, W. J., Vet, L .E M.. How parasitic wasps find their hosts[J]. Scientific American, 1993, 268: 100-106.
    [92] Vinson, S. B. & Iwantsch, G. F.. Host suitability for insect parasitoids[J]. Annual Review of Entomology, 1980, 25: 397-419.
    [93] Went, D. F. & Krause, G.. Alteration of egg architecture and egg activation in an endoparasitic Hymenopteran as a result of natural or imitated oviposition[J]. Development Genes and Evolution, 1974,175: 173-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700