基于APRIL突变体的新型抗肿瘤分子的筛选与初步鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤严重威胁着人类健康,探寻抗恶性肿瘤的新策略一直是基础与临床研究的热点和难点。APRIL亦TALL-2(TNF and apoptosis ligand-related leukocyte-expressedligand 2),于1998年被发现和克隆,属TNF超家族新成员,细胞表面的APRIL经furin转换酶裂解,其部分胞外区从膜上脱落,成为天然sAPRIL(可溶型,即105-250氨基酸区域),其生物学活性与全长(即膜结合型)APRIL基本一致,研究表明105-250氨基酸为人APRIL发挥功能的主要区域。近年研究表明,在多种恶性肿瘤细胞增殖、存活以及促肿瘤形成过程中,APRIL过表达均发挥独特作用,故有效抑制该分子表达或功能活性,可望为抗肿瘤治疗提供新策略。
     Dalum等人提出,经异源T辅助细胞(T helper cell,Th)表位修饰的自身突变细胞因子,可作为具有交叉反应性的新抗原,诱生内源性抗天然细胞因子抗体。该理论在抗TNF-α的实验研究中得到证实。基于此,本研究开展如下工作:①克隆编码人天然sAPRIL的cDNA,以此为模板,经PCR分别克隆缺失不同区域的sAPRIL cDNA突变体(msAPRIL cDNA);②将HEL Th表位的DNA序列重组于各msAPRIL cDNA的5′端或3′端,然后将重组DNA分别克隆于原核表达载体(本项目选用pQE-80L),制备由msAPRIL和HEL Th表位组成的融合蛋白;③将融合蛋白纯化,并证实相应融合蛋白已丧失正常sAPRIL的功能活性;④用各融合蛋白分别免疫正常小鼠,使融合蛋白交叉诱生抗人sAPRIL抗体,并观察其对人sAPRIL促肿瘤细胞增殖的抑制作用;⑤以人外周血单个核细胞重建裸鼠免疫功能,用能诱导出较高滴度抗人sAPRIL抗体的融合蛋白免疫该裸鼠,观察相应融合蛋白交叉诱生抗人sAPRIL抗体的作用,以及相应抗体对人sAPRIL促肿瘤细胞增殖的抑制作用,并初步探索该策略对白血病小鼠的治疗作用。
     本课题获得如下结果:
     1.构建了编码人sAPRIL的cDNA(aa105-aa250)
     借助RT-PCR,从人外周血单个核细胞中将其克隆,将其构建于pQE-80L,序列分析表明与GenBank所报道编码sAPRIL的cDNA序列完全一致。
     2.构建了经HEL Th表位修饰、缺失不同区域的sAPRIL cDNA突变体(msAPRILcDNA)
     借助PCR,以pQE-80L/sAPRIL为模板,分别克隆缺失不同区域的sAPRIL cDNA突变体,通过核酸连接技术在相应缺失端加入HEL Th表位。
     3.构建了突变体原核表达载体
     将经HEL Th表位修饰、缺失不同区域的sAPRIL cDNA突变体分别克隆于原核表达载体pQE-80L,测序证实序列正确。
     4.制备了融合蛋白
     在大肠杆菌中诱导sAPRIL及各融合蛋白表达,并借助Western blot鉴定表达产物。
     5.纯化了蛋白产物
     表达产物经SDS-PAGE检测,主要以包涵体形式存在。用Ni-NTA柱纯化包涵体溶解物,目的蛋白洗脱液经多步透析法复性后冷冻抽干,获得一定量各种纯化蛋白。
     6.筛选出不具有sAPRIL生物活性的突变体蛋白
     借助MTT法证实:N、C端均连接HEL Th表位的重组sAPRIL突变融合蛋白,其在体外能刺激Raji细胞增殖;经HEL Th表位修饰、N/C端缺失45bp(简称C、D)或90bp(简称E、F)的sAPRIL突变融合蛋白,其在体外不能刺激Raji细胞增殖。由此表明,已成功制备不具活性的sAPRIL突变体C、D、E和F,且HEL Th表位加入并不影响sAPRIL活性。
     7.探讨了不具生物活性的突变融合蛋白诱导小鼠产生多克隆抗体的作用
     将C、D、E和F纯化蛋白加佐剂后免疫小鼠,经ELISA和Western blot鉴定,融合蛋白能刺激小鼠产生多克隆抗体,同时获得抗C、D、E和F的抗血清。
     8.探讨了抗sAPRIL突变体多抗对sAPRIL生物活性的影响
     采用MTT检测发现:抗C、D、E和F抗血清可分别抑制sAPRIL促Raji和Jurkat细胞增殖作用(但抗F抗血清对sAPRIL促Raji细胞增殖作用无影响),其中以抗D抗血清抑制效果最强。
     9.探讨了突变体D及其抗血清的生物学作用
     用突变体D免疫无渗漏的SCID小鼠,采用ELISA和Western blot鉴定抗体产生,MTT检测该多克隆抗体对sAPRIL促Raji和Jurkat细胞增殖的影响。结果发现:成功获得抗人sAPRIL的多克隆交叉抗体;该多克隆抗体能抑制sAPRIL促Raji和Jurkat细胞增殖作用。初步表明:已筛选出基于增殖诱导配体的新型抗瘤效应分子。
     10.验证了突变体D纯化蛋白对白血病动物的疗效
     体外试验证实:sAPRIL呈剂量依赖性促进P388白血病细胞增殖;突变体D丧失刺激P388白血病细胞增殖的活性;用突变体D纯化蛋白干预P388诱导的白血病小鼠,能延长其生存期,但参照T/C值(评价药物抗瘤作用的常用指标)该治疗无效。
Malignant tumors are a great threat to human health, and to seek effective molecules and appropriate methods to counteract them has long been an effort of researchers. APRIL, also called TALL-2 (TNF and apoptosis ligand-related leukocyte-expressed ligand 2), was discovered and cloned in 1998 as a new member of the TNF superfamily. The expressed APRIL is cleaved by furin convertase, and part of the extracellular domain falls off the membrane, resulting in the formation of natural sAPRIL (soluble APRIL, i.e., amino acids 105-250). Full-length (i.e., membrane-bound) APRIL and sAPRIL are basically of the same biological activity. It was shown that amino acids 105-250 constitute the main active domain of human APRIL. Recent studies have also demonstrated that overexpression of APRIL plays a peculiar role in the proliferation and survival of malignant tumor cells as well as in the promotion of tumorigenesis. To effectively inhibit the functional activity of APRIL may provide a new method to treat relevant tumors.
     The present study was based on the status of research of APRIL-inhibiting molecules, the hypothesis formulated by Dalum et al who held that mutant cytokines modified by heterologous T helper cell (Th) epitopes may act as new antigens inducing endogenous, cross-reactive antibodies against natural cytokines, and precise evidence obtained from studies related to anti-TNF-a. In the present study, cDNA encoding natural human sAPRIL was cloned and used as template to clone sAPRIL cDNA mutants (msAPRIL cDNA) with deletion of different domains by PCR. Then HEL Th epitope-encoding DNA sequences were recombined with 5'- or 3 '-terminal of msAPRIL cDNA, and recombinant DNA was cloned into prokaryotic expression vectors pQE-80L to express the fusion protein composed of msAPRIL and HEL Th epitope. Fusion proteins were purified, and were confirmed to lose the functional activity of normal sAPRIL. Fusion proteins were used to immunize normal mice, and the induction of cross-reactive anti-human sAPRIL antibody by fusion proteins and the inhibition of the antibodies on the enhancement of tumor cell proliferation by human sAPRIL were observed. Fusion proteins that may induce high titres of anti-human sAPRIL antibodies were used to immunize nude mice, the immunity of which was reestablished by human peripheral blood mononuclear cells. The induction of cross-reactive anti-human sAPRIL antibodies by fusion proteins, the inhibition of the antibodies on the enhancement of tumor cell proliferation by human sAPRIL and the therapeutic effect of the antibodies on leukemia mice were observed.
     Based on the analyses above, we carried out the study in attempt to seek novel candidate molecules with multiple advantages for immunotherapy (even prevention of recurrence) of APRIL-related tumors. The main results are as follows:
     1. Human sAPRIL-encoding cDNA (aa105-aa250) was cloned by RT-PCR from human peripheral blood nucleated cells and constructed into pQE-80L. Sequence analysis confirmed that the sequence of the cloned sAPRIL cDNA was identical to that registered in GenBank.
     2. We cloned sAPRIL cDNA mutants (msAPRIL cDNA) with deletion of various domains by PCR using pQE-80L/sAPRIL as template. HEL Th epitope modified sAPRIL cDNA mutants were obtained by linking HEL Th epitopes to the deleted ends using nucleic acid ligation technique.
     3. The resulting HEL Th epitope modified sAPRIL cDNA mutants were cloned into the prokaryotic express vector pQE-80L, and sequence analysis confirmed the sequences of the obtained prokaryotic express vectors carrying cDNA mutants were correct.
     4. To obtain fusion proteins, we induced the expression of sAPRIL and fusion proteins in E. coli. Western blot confirmed the expression of target fusion proteins.
     5. To obtain purified proteins, the expressed proteins were subjected to SDS-PAGE which confirmed that the proteins mainly located in inclusion bodies. Lysates of inclusion bodies were purified by using Ni-NTA column, and the target protein eluent was subjected to renaturation by step-wise dialysis and lyophilization to obtain the purified proteins.
     6. To screen mutant proteins with no biological activity of sAPRIL, the MTT assay was used. The results showed that recombinant sAPRIL and mutant fusion proteins with HEL Th epitopes at both N- and C-terminals can stimulate in vitro proliferation of Raji cells, while mutant sAPRIL modified by HEL Th epitopes with deletions at the N- and C-terminals of 45bp (C, D) or 90bp deletion (E, F) cannot. The results demonstrated that mutants C, D, E and F had no sAPRIL activity and HEL Th epitopes did not affect sAPRIL activity.
     7. To test whether mutant proteins with no biological activity induce polyclonal antibodies in mice, mice were immunized by purified proteins C, D, E and F and immunoadjuvant. ELISA and Western blot analyses confirmed that the fusion proteins may induce polyclonal antibodies in mice. Meanwhile, antisera against proteins C, D, E and F were obtained.
     8. To clarify the effect of polyclonal antibodies on the biological activity of sAPRIL, the inhibition of polyclonal antibodies on Raji and Jurkat cell proliferation stimulated by sAPRIL was assessed by the MTT assay. The results indicated that the antisera may inhibit Raji and Jurkat cell proliferation stimulated by sAPRIL, however, antiserum against protein F did not inhibit Raji cell proliferation stimulated by sAPRIL. Among the four antisera, the antiserum against mutant protein D was the strongest in inhibiting the proliferation of the two kinds of cells.
     9. To verify whether mutant protein D may induce cross-reactive human sAPRIL polyclonal antibodies in SCID mice leaky phenotype and the influence of these polyclonal antibodies on Raji and Jurkat cell proliferation stimulated by sAPRIL, we immunized SCID mice leaky phenotype with mutant D, identified the resulting antibodies by ELISA and Western blot, and assessed by the MTT assay the effect of these polyclonal antibodies on Raji and Jurkat cell proliferation stimulated by sAPRIL. The results indicated that cross-reactive human sAPRIL polyclonal antibodies were obtained successfully, which may inhibit Raji and Jurkat cell proliferation stimulated by sAPRIL. The results preliminarily demonstrated that we have screened novel candidate molecules for proliferation inducing ligand-based tumor immunotherapy.
     10. To clarify the efficacy of the purified mutant protein D in leukemia animal models, we first assayed the influence of sAPRIL and mutant protein D on the proliferation of P388 leukemic cells. The results indicated that sAPRIL may promote the proliferation of P388 leukemic cells in a dose-dependent manner. Mutant protein D stimulated the proliferative activity of P388 leukemic cells, and prolonged the survival of mice with P388 induced leukemia; however, the therapy was ineffective in light of T/C value, a common parameter to evaluate the efficacy of a drug for tumor.
引文
1.Steven A Rosenberg.Progress in human tumor immunology and immunotherapy.Nature.2001,411(17):380-384
    2.Waldmann TA.Immunotherapy:past,present and future.Nat Med.2003,9:269-275
    3.罗荣城,韩焕兴。肿瘤综合诊疗新进展。2003,人民军医出版社。
    4.Hahne M,Kataoka T,Schroter M,et al.APRIL,a new ligand of the tumor necrosis factor family,stimulates tumor cell growth..J Exp Med,1998,188(6):1185-1190
    5.Kolfschoten G,Balade B,Hahne M,et al.TWE-PRIL:a fusion protein of TWEAK and APRIL.Biochemical Pharmacology,2003,16(8):1427-1432
    6.Rennert P,Schneider P,Cachero T,et al.A soluble form of B cell maturation antigen,a receptor for the tumor necrosis factor family member APRIL,inhibits tumor cell growth.J Exp Med,2000,192(11):1677-1684
    7.Roth W,Wagenknecht B,Klumpp A,et al.APRIL,a new member of the tumor necrosis factor family,modulates death ligand-induced apoptosis.Cell Death Differ,2001;8(4):403-410
    8.Wang H,Marsters S A,Baker T,et al.TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice.Nat Immunol,2001,2(7):632-637
    9.Strasser A,Harris A W,Cory S.Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship.Cell,1991,67(5):889-899
    10.Dalum I,Butler DM,Jensen MR,et al.Therapeutic antibodies elicited by immunization against TNF-α.Nat Biotechnol,1999;17(7):666-669
    11.Madry C,Laabi Y,Callebaut I,et al.The characterization of murine BCMA gene defines it as a new member of the tumor necrosis factor receptor superfamily.Int-Immunol,1998,10(11):1693-1702
    12.Marsters SA,Yan M,Pitti RM,et al.Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI.Curr-Biol,2000,10(13):785-788
    13.胡福全.基因操作技术.人民军医出版社.2000年.135-190
    14.J.萨姆布鲁克主编.分子克隆试验指南.第三版,北京:科学出版社,2002
    15.Patra AK,Mukhopadhyay R,Mukhija R,et al.Optimization of inclusion body solutilization and renaturation of recombinant human growth hormone from Escherichia coli.Protein Expression Purif,2000:18:182-192.
    16.Fischer B,Sumner I,Goodenough P.Isolation,renaturation,and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies.Biotechnol Bioeng,1993;41(1):3-13
    17.吴军.蛋白质复性研究进展.生物技术通讯,1998;9(2)128-131.
    18.龙建银,王会信.重组蛋白的体外再折叠.生理科学进展,1998;29(2):103-108
    19.方敏,黄华.包涵体蛋白体外复性的研究进展.生物工程学报,2001;17(6):608-612
    20.纪剑飞,张成刚.包涵体重组蛋白的纯化及复性.沈阳医科大学学报,1998;15(4):303-307
    21.Mackay F,Schneider P,Rennert P,et al.BAFF and APRIL:A tutorial on B cell survival.Annu Rev Immunol,2003,21:231-264.
    22.Lopez-Fraga M,Fernandez R,Albar J P,et al.Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase.EMBO Rep,2001,2(10):945-951
    23.Yu G,Boone T,Delaney J,Hawkins N,et al.APRIL and TALL-Ⅰ and receptors BCMA and TACI:system for regulating humoral immunity.Nat Immunol 2000,1(3):252-256
    24.Hymowitz SG,Patel DR,Wallweber HJ,et al.Structures of APRIL-receptor complexes:like BCMA,TACI employs only a single cysteine-rich domain for high affinity ligand binding.J Biol Chem.2005,280(8):7218-7227
    25.Hendriks J,Planelles L,de-Jong-Odding J,et al.Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation.Cell Death Differ.2005,12(6):637-48
    26.Thangarajh M,Masterman T,et al.Rot U,Increased levels of APRIL(a proliferation-inducing ligand) mRNA in multiple sclerosis.J Exp Med.2005,201(9):1375-1383
    27.Craxton A,Draves KE,Gruppi A,et al.BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway.J Exp Med. 2005,21;202(10):1363-74
    28.Stohl W,Metyas S,Tan SM,et al.Inverse association between circulating APRIL levels and serological and clinical disease activity in patients with systemic lupus erythematosus.Ann Rheum Dis.2004,63(9):1096-1103
    29.Seyler TM,Park YW,Takemura S,et al.BLyS and APRIL in rheumatoid arthritis.J Neuroimmunol.2005,167(1-2):210-214
    30.Roschke V,Sosnovtseva S,Ward C,et al.BlyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases.J Immunol,2002,168(8):4314-4321
    31.Gross JA,Johnston J,Mudri S,et al.TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease.Nature,2000,404(6781):995-999
    32.Patel DR,Wallweber HJ,Yin J,et al.Engineering an APRIL-specific B cell maturation antigen.J Biol Chem,2004,279(16):16727-16735
    33.Kelly K,Manos E,Jensen G,et al.APRIL/TRDL-1,a tumor necrosis factor-like ligand,stimulates cell death.Cancer Res,2000,60(4):1021-1027
    34.Day ES,Cachero TG,Qian F,et al.Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA.Biochemistry,2005,44(6):1919-1931
    35.Stein JV,et al.APRIL modulates B and T cell immunity.J Clin Invest,2002;109(12):1587
    36.史剑慧,许小平,程文英,,等.小鼠微小残留白血病模型的建立.复旦学报(医学版),2002,29(5):383-386
    37.江千里,王健民,温丽敏,等.YCD基因修饰对小鼠P388白血病的体内治疗作用研究.中国肿瘤生物治疗杂志,2003,10(2):84-87
    38.傅先智,王德全,朱明华,等.复合场对s180肉瘤、h22肝癌、p388白血病治疗作用的实验研究.中国医学物理学杂志,2004,21(1):40-41
    39.韩锐.肿瘤化学预防及药物治疗.[M]北京医科大学中国协和医科大学联合出版社,1991.20
    40.张友会.现代肿瘤学(基础部分)[M].北京医科大学中国协和医科大学联合出版社,1993.242
    1. Smith, CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: ctivation,costimulation, and death. Cell, 1994, 76:959-962
    2. Hahne M , Kataoka T ,Schroter M ,et al . APRIL ,a new ligand of the tumor necrosis factor family , stimulates tumor cell growth.. J Exp Med ,1998 ,188 (6): 1185 —1190
    3. Mackay F , Schneider P , Rennert P , et al . BAFF and APRIL : A tutorial on B cell survival. Annu Rev Immunol ,2003 ,21 :231 —264
    4. Roschke V , Sosnovtseva S , Ward C , et al. BlyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune2based rheumatic diseases. J Immunol, 2002 , 168(8) :4314-4321
    5. Kolfschoten G , Balade B , Hahne M , et al. TWE2PRIL : a fusion protein of TWEAK and APRIL . Biochemical Pharmacology , 2003 , 16(8) :1427—1432
    6. Rennert P , Schneider P ,Cachero T ,et al. A soluble form of B cell maturation antigen , a receptor for the tumor necrosis factor family member APRIL , inhibits tumor cell growth. J Exp Med ,2000 ,192 (11): 1677-1684
    7. Lopez M , Fernandez R , Hahne M. Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase. EMBO Rep, 2001 ,2(10) :945 —951
    8. Patel DR,Wallweber HJ,Yin J,et al .Engineering an APRIL-specific B cell maturation antigen. J Biol Chem, 2004, 279(16): 16727-16735
    9. Yu G, Boone T, Delaney J,et al .APRIL and TALL-I and receptors BCMA and TACI: system for regulating humoral immunity. Nat-Immunol, 2000, 1(3): 252-256
    10. Marsters SA, Yan M, Pitti RM,et al .Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr-Biol, 2000, 10(13): 785-788
    11. Gross JA, Johnston J, Mudri S,et al .TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease.Nature, 2000, 404(6781): 995-999
    12. Madry C, Laabi Y, Callebaut I,et al .The characterization of murine BCMA gene defines it as a new member of the tumor necrosis factor receptor superfamily. Int-Immunol, 1998, 10(11): 1693-1702
    13. Laabi Y, Gras MP, Brouet JC, et al .The BCMA gene, preferentially expressed during B lymphoid maturation, is bidirectionally transcribed. Nucleic Acids Res, 1994, 22(7): 1147-1154
    14. Schneider P. The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol. 2005, 17(3): 282-289
    15. Liu W, Szalai A, Zhao L, et al. Control of spontaneous B lymphocyte autoimmunity with adenovirus-encoded soluble TACI.Arthritis Rheum. 2004, 50(6): 1884-1896
    16. Hymowitz SG, Patel DR, Wallweber HJ, et al . Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding.J Biol Chem. 2005, 280(8): 7218-7227
    17. Mackay F , Ambrose C. The TNF family members BAFF and APRIL : the growing complexity. Cytokine & Growth Factor Reviews ,2003 ,14(3 -4) :311—324
    18. Roth W , Wagenkneeht B , Klumpp A , et al . APRIL ,a new member of the tumor necrosis factor family , modulates death ligand-induced necrosis. Cell Death Differ ,2001 ;8 (4) :403-410
    19. Wang H , Marsters S A , Baker T , et al . TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat Immunol ,2001 ,2 (7) :632 -637
    20. Jens V , Marta L , Fernando A , et al. APRIL modulates B and T cell immunity. J Clin Invest ,2002 ,109(12) :1587 - 1598
    21. Strasser A , Harris A W, Cory S. Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell ,1991 , 67 (5) :889 - 899
    22. Xu S , Lain K P.B-cell maturation protein , which binds the tumor necrosis factor family members BAFF and APRIL , is dispensable for humoral immune responses.Mol Cell Biol ,2001 ,21(12) :4067 - 4074
    23. Khare S D , Hsu H. The role of TALL21 and APRIL in immune regulation. Trends Immunol ,2001 ,22(2) :61 - 63
    24. Fagarasan S , Honio T. T—independent immune response : new aspects of B cell biology. Science ,2001 ,290(5489) :89 - 92
    25. Moore P ,Belvedere O, Orr A , et al . BLys :member of the tumor necrosis factor family and B lymphocyte stimulator. Science ,1999 ,285(5425) :260 - 279
    26. Stohl W, Metyas S, Tan SM , et al .Inverse association between circulating APRIL levels and serological and clinical disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis. 2004,63(9): 1096-1103
    27. Seyler TM, Park YW, Takemura S, et al .BLyS and APRIL in rheumatoid arthritis.J Neuroimmunol. 2005 ,167(1-2):210-214.
    28. Thangarajh M, Masterman T, et al Rot U, Increased levels of APRIL (a proliferation-inducing ligand) mRNA in multiple sclerosis. J Exp Med. 2005,201(9): 1375-1383
    1.El-Gabalawy HS,Lipsky PE.Why we do not have a cure for rheumatoid arthritis ?The scientific basis of rheumatology.Arthritis Res.2002,4(suppl.3):s297-s301
    2.http://www.fda.Gov
    3.Coiffier B.Rituximab in combination with CHO Pimproves survival in elderly patients with aggressive non-Hodgkin's lymphoma.N Engl J Med.2002,346,235
    4.Witzig TE.Randomized xontrolled trial of yttrirm-90-labeled ibritumomab tiuxitan radioimmunotherapy versus rituximab for patients with repapsed or refractory low grade follicular or transformed B-cell non-Hodgkin's lymphoma.J Cli n Oncol.2002,20:2453
    5.Paul Carter.Improving the efficacy of antibody2based cancer therapies.Nat ure Review(cancer).2001,Nov(1):118-129
    6.Steven A Rosenberg.Progress in human tumor immunology and immunotherapy.Nature.2001,411(17):380-384
    7.Waldmann TA.Immunotherapy:past,present and future.Nat Med.2003,9:269
    8.罗荣城,韩焕兴。肿瘤综合诊疗新进展。2003,人民军医出版社。
    9.http://www.wiley.co.uk/genmed
    10.Kirkwood j.Cancer immunothempy:the interferon-α experience.Semin Onccol.2002,29(3suppl 7):18-26
    11.Smalley RV,Weller E,Hawkins MJ,et al.Final analysis of the ECOG I-COPA trial (E6484) in patients with non-Hodgkin's lymphoma treated with interferon alfa (IFN-alpha2a) plus an anthracycline-based induction regimen.Leukemia.2001 Jul;15(7):1118-22
    12.Mey U,Strehl J,Corschluter M,et al.Adevance in the treatment of hairy-cell leukaemia.Lancet Oncol.2003,4(2):86-94
    13.Hehlmann R.Current.CML therapy:progress and dilemma.Leukemia.2003:17(6):1010-1012
    14.West WH.Constant-infusion recombinant interleukin-2 inadoptive immunotherapy of advanced cancer.N Eng J Med.1987,316(15):898-899.
    15.Tsimberidou AM,Giles FJ,Khouri I,et al Low-dose interleukin-11 in patients with bone marrow failure:update of the M.D.Anderson Cancer Center experience.Ann Oncol.2005,16(1):139-145
    16.官成浓,蔡良真,张英,等。国产重组人白细胞介素—11治疗恶性肿瘤患者化疗所致血小板减少的临床研究。肿瘤研究与临床。2005,17(3):193-194
    17.Davis ID,Maher DW,Cebon JS,et al A phase Ⅰ and pharmacokinetic study of subcutaneously-administered recombinant human interleukin-4(rhuIL-4) in patients with advanced cancer.Growth Factors.2000,17(4):287-300
    18.Whitehead RP,Lew D,Flanigan RC,et al Phase Ⅱ trial of recombinant human interleukin-4 in patients with advanced renal cell carcinoma:a southwest oncology group study.J Immunother.2002,25(4):352-358
    19.Dubinett SM,Huang M,Dhanani,-S,et al Down-regulation of murine fibrosarcoma transforming growth factor-beta 1 expression by interleukin 7.J Natl Cancer Inst.1995,87(8):593-597
    20.Ehlken H,Schadendorf D,Eichmuller S.Humoral immune response against melanoma antigens induced by vaccination with cytokine gene-modified autologous tumor cells.Int J Cancer.2004,108(2):307-313.
    21.Bohm M,Moller P,Kalbfleisch U,et al Lysis of allogeneic and autologous melanoma cells by IL-7-induced lymphokine-activated killer cells.Br J Cancer.1994,70:54-59
    22.Kikuchi K,Lai AY,Hsu CL,et al.IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF.J Exp Med.2005,201(8):1197-1203
    23.Zoll B,Lefterova P,Ebert O,et al.Modulation of cell surface markers on NK-like T lymphocytes by using IL-2,IL-7 or IL-12 in vitro stimulation.Cytokine.2000,12(9):1385-1390
    24.Scofield,-V-L;Montufar-Solis,-D,et al.Intestinal TSH production is localized in crypt enterocytes and in villus 'hotblocks' and is coupled to IL-7 production:evidence for involvement of TSH during acute enteric virus infection.Immunol Lett.2005,99(1):36-44
    25.Bosco,-N;Agenes,-F;Ceredig,-R.Effects of increasing IL-7 availability on lymphocytes during and after lymphopenia-induced proliferation.J Immunol. 2005,175(1): 162-170
    26. Toraldo,-G; Roggia,-C; Qian,-W-P, et al. IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells. Proc Natl Acad Sci USA. 2003,100(1): 125-130
    27. Carsana,-M; Tragni,-G; Nicolini,-G , et al .Comparative assessment of TCRBV diversity in T lymphocytes present in blood, metastatic lesions, and DTH sites of two melanoma patients vaccinated with an IL-7 gene-modified autologous tumor cell vaccine. Cancer Gene Ther. 2002 , 9(3): 243-253
    28. Akiba J ,Yano H ,Ogasawara S ,et al. Expression and function of interl eukin—8 in human hepatocellular carcinoma. Int J Oncol.2001 ,18(2) :257 —264
    29. Haraguchi M ,Komuta K,Akashi A ,et al.Elevated IL-8 levels in the drainage vein of resectable Dukes' C colorectal cancer indicate high risk for developing hepatic metastasis.Oncol Rep .2002 ,9 (1) : 159—165
    30. De Larco J E ,Wuertz BR ,Rosner KA ,et al. A potential role for inter leukin—8 in the metastatic phenotype of breast carcinoma cells.Am J Pathol .2001 ,158 (2) :639—646
    31. Kuwada Y,Sasaki T ,Morinaka K,et al.Potential involvement of IL-8 and its receptors in the invasiveness of pancreatic cancer cells. Int J Oncol .2003 ,22 4 :765-771
    32. Shi Q ,Abbruzzese JL ,Huang S ,et al. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic.Clin Cancer Res .1999 ,5 (11) :3711-3721
    33. Inoue K,Slaton JW,Eve BY,et al.Interleukin 8 expression regulates tumorigenicity and metastases in androgen independent prostate cancer.Clin Cancer Res .2000 ,6 5:2104-2119
    34. Fujimoto J ,Aoki I ,Khatun S ,et al. Clinical implications of expression of interleukin-8 related to myometrial invasion with angiogenesis in uterine endometrial cancers. Ann Oncol.2002,13(3):430-434
    35. Chen JJ ,Yao PL ,Yuan A ,et al.Up-regulation of tumor interleukin-8 expression by infiltrating macrophages :its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer.Clin Cancer Res .2003 ,9 (2) :729-737
    36. Wierda WG,Johnson MM ,Do KA ,et al.Plasma interleukin 8 level predicts for survival in chronic lymphocytic leukaemia.Br J Haematol .2003 ,120 (3) :452-456
    37. Kassim SK, ElSalahy EM , Fayed ST , et al.Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients.Clin Biochem . 2004 ,37(5) :363-369
    38. Wierda WG,Johnson MM ,Do KA ,et al. Plasma interleukin 8 level predicts for survival in chronic lymphocytic leukaemia.Br J Haematol .2003 ,120 (3) :452-456
    39. Li A ,Dubey S ,Varney M L ,et al. IL-8 directly enhanced endothelial cell survival , proliferation , and matrix metalloproteinases production and regulated angiogenesis.J Immunol. 2003 , 170 ( 6 ) :3369-3376
    40. Huang S ,Mills L ,Mian B ,et al. Fully humanized neutralizing nnti-bodies to interleukin-8 ( ABX-IL8 ) inhibit angiogenesis , tumor growth ,and metastasis of human melanoma. Am J Pathol .2002 ,161 1): 125-134
    41. Mian BM ,Dinney CP ,Bermejo CE , et al. Fully human antiinterleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB.Clin Cancer Res .2003 ,9 (8) :3167-3175
    42. Lin Y,Huang R ,Chen L ,et al. Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays.Int J Cancer . 2004 , 109 ( 4) :507-515
    43. Kobayashi M, Fitz L , Ryan M, et al . Identification and purification of natural killer cell stimulatory factor (NKSF) , a cytokine with multiple biologic effects on human lymphocytes. J Exp Med .1979 , 170 (3): 827 - 845
    44. D' Andrea A , Rengaraju M, Valiante NM, et al . Production of natural killer cell stimulatory factor (interleukin 12 ) by peripheral blood mononuclear cells. J Exp Med . 1992 , 176 (5) :1387 - 1398
    45. Yu DS , Lee CF , Hsieh DS , et al . Antitumor effects of recombinant BCG and interleukin-12DNA vaccines on xenografted murine bladdercancer. Urology . 2004 , 63(3): 596-560
    46. Parihar R , Dierksheide J , Hu Y, et al . IL-12enhances the natural killer cell cytokine responseto Ab-coated tumor cells. J Clin Invest. 2002 ,110(7): 983 - 992
    47. Yao L , Sgadari C , Furuke K, et al. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood . 1999 , 93 (5): 1612 - 1621
    48. Sugai H , Kono K, Takahashi A , et al . Characteristic alteration of monocytes with increased in tracellular IL-10 and IL-12 in patients with advanced stage gastric cancer. J Surg Res . 2004 ,116(2) :277 - 287
    49. Cavallo F , Qualino E , Cifaldi L , et al . Interleukin 12-activated lymphocytes influence tumor genetic programs. Cancer Res . 2001 , 61 (8) :3518 - 3523
    50. Sunamura M, Sun L , Lozonschi L , et al. Theantiangiogenesis effect of interleukin 12 duringearly growth of human pancreatic cancer in SCIDmice. Pancreas . 2000 , 20 (3) : 227 - 233
    51. Okamura, H., Tsutsui, H., Komatsu, T., et al. Interferon-g-Inducing Factor, a Novel Cytokine, Enhances Fas Ligand-Mediated Cytotoxicity of Murine T Helper .Cells Nature .1995; 378 (2): 88
    52. Micallef MJ, Tanimoto T, Kohno K,et al. Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma. Cancer Res. 1997 , 57(20): 4557-4563
    53. Xiang Y, Moss B .Correspondence of the functional epitopes of poxvirus and human interleukin-18-binding proteins. J Virol. 2001, 75(20): 9947-9954
    54. Cui FD, Asada H, Jin ML,et al. Cytokine genetic adjuvant facilitates prophylactic intravascular DNA vaccine against acute and latent herpes simplex virus infection in mice. Gene Ther. 2005, 12(2): 160-168
    55. Yoshimura K, Hazama S, Iizuka N,et al.Successful immunogene therapy using colon cancer cells (colon 26) transfected with plasmid vector containing mature interleukin-18 cDNA and the Igkappa leader sequence. Cancer Gene Ther. 2001, 8(1): 9-16
    56. Coughlin CM, Salhany KE, Wysocka M, et al.Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest. 1998, 15; 101(6): 1441-1452
    57. Oshikawa K, Shi F, Rakhmilevich AL, e al. Synergistic inhibition of tumor growth in a murine mammary adenocarcinoma model by combinational gene therapy using IL-12, pro-IL-18, and IL-1beta converting enzyme cDNA.Proc Natl Acad Sci USA. 1999. 9; 96(23): 13351-13356
    58. Grabstein, Kh. Cloning of a T-cell growth facto rthatinteracts with the beta chain of the interleukin-2 receptor. Science. 1994, 264: 965-968
    59. Pettit DK. Struture-function studies of interleukin-15 using site-specific mutagenesis polythyleneglycol conjugation, and homology modeling. J Biol Chem. 1997,272 (4) : 2312-2318
    60. Munger W. Studies evaluating the antitumo r act ivityand toxicity of interleukin-15, a new T cell growth factor: comparison w ith interleukin-2. Cell Immunol. 1995, 165 (2): 289-293
    61. Lewko WM. Interleukin-15 and the growth of tumorderived act ivated T-cells. Cell Biother. 1995, 10: 13
    62. Caudell EG,Mumm JB , Poindexter N ,et al.The protein product of the tumor suppressor gene ,melanoma differentiation-associated gene-7 ,exhibits immunostimulatory activity and is designated IL-24.J Immunol .2002 ,168 (12): 6041-6046
    63. Huang EY,Madireddi MT ,Gopalkrishnan RV ,et al. Genomic structure , chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.Oncogene .2001 ,20 (48) .7051-7063
    64. Chada S , Sutton RB , Ekmekcioglu S ,et al.MDA27/ IL224 is a unique cytokine tumor suppressor in the IL-10 Family .Int Immunopharmacol .2004 ,4 (5) :649-667
    65. Lebedeva IV ,Su ZZ , Chang Y,et al.The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene. 2002 ,21 (5) :708-718
    66. Madireddi MT ,Su ZZ ,Young CS ,et al. Mda-7 , a novel melanoma differentiation associated gene with promise for cancer gene therapy1Adv Exp Med Biol. 2000, 465 :239-261
    67. Saeki T ,Mhashilker A , Chada S ,et al.Tumor-suppressive effects by adenovirus-mediated mda-7 gene transfer in non-small cell lung cancer cell in vivo1Gene Ther .2000 ,7 (23) :2051-2057
    68. Ramesh R , Ito I , Gopalan B ,et al.Ectopic production of MDA-7/ IL-24 inhibits invasion and migration of human lung cancer cells.Mol Ther .2004 , 9 (4) :510-518
    69. Pataer A ,Vorburger SA ,Barber GN ,et al.Adenoviral transfer of the melanoma differentiation associated gene-7(mda-7 ) induces apoptosis of lung cancer cells via upregulation of the double-stranded RNA-dependent protein kinase(PKR).Cancer Res.2002,62(8):2239-2243
    70.Jagus R,Joshi B,Barber GN.PKR,apoptosis and cancer.Int J Biochem Cell Biol.1999,31(1):123-138
    71.Sauane M,Lebedeva IV,Su ZZ,et al.Melanoma differentiation associated gene-7/interleukin-24 promote tumor cell-specific apoptosis through both secretory and nonsecretory pathways.Cancer Res.2004,64(9):2988-2993
    72.Lebedeva IV,Sarkar D,Su ZZ,et al.Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7,mda-7/IL-24.Oncogene.2003,22(54):8758-8773
    73.Sarkar D,Su ZZ,Lebedeva IV,et al.Mda-7(IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK.Proc Natl Acad Sci USA.2002,99(15):10054-10059
    74.Saeki T,Mhashilker A,Swanson X,et al.Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo.Oncogene.2002,21(29):4558-4566
    75.Ramesh R,Mhashilkar AM,Tanaka F,et al.Melanoma differentiation associated gene-7/ interleukin-24 is a novel ligand that regulates angiogenesis via IL-22receptor.Cancer Res.2003,63(16):5105-5113
    76.李景峰,王海芳,刘莉,等。nrhTNF对Beagle犬长期毒性的试验。第四军医大学学报.2000,21(10):1191
    77.刘昌孝,陈拯民,顾以保,等。小鼠注射新型重组人肿瘤坏死因子的药代动力学。第四军医大学学报。2002,23(3):216-219
    78.赵宁,张英起,王增禄,等。新型重组人肿瘤坏死因子在小鼠体内的药代动力学。第四军医大学学报。2002,23(12):1065-1067
    79.赵宁,刘磊,王增禄,等。新型基因工程人肿瘤坏死因子-α对小鼠移植性肿瘤生长的抑制作用。细胞与分子免疫学杂志。2002,18(3):296-297
    80.赵凤芹,王英韬,王翠华。基因重组人粒细胞集落刺激因子防治肺癌化疗反应。中国新药与临床杂志。2004,23(3):144-146
    81.代红,刘晶。重组人粒细胞集落刺激因子的临床应用。中国药物应用与监测。2005,1:20-22
    82.Smith RE Jr,Jaiyesimi IA,Meza LA,et al.Novel erythropoiesis stimulating protein (NESP) for the treatment of anaemia of chronic disease associated with cancer.Br J Cancer.2001,84(Suppl 1):24-30
    83.宋恕平。细胞因子在肿瘤治疗中的应用。中国处方药。2005,38:42-44
    84.赵建增。血小板生成素对肿瘤的双重作用。免疫学杂志,。2000,16(4):s55-s58
    85.Shim KS,Kim KH,Han WS,et al.Elevated serum levels of t ransforming growth factor2betal in patients with colorectal carcinoma.Cancer.1999,85(3):554-561
    86.Lang F,Klingel K,Wagner CA,et al.Deranged transcriptional regulation of cell volume sensitive kinase hSGK in diabetic nephropathy.Proc Natl Acad Sci USA.2001,97(14):8157-8162
    87.Etreby MF,Liang Y,Lewis RW.Induction of apoptosis by mifepristone and tamoxifen in human LNCaP prostate cancer cells in culture.Prostate.2000,43(1):31-42
    88.Herbert BS,Sanders BG,Kline K.N-(4-hydroxyphe-nyl) retinamide activation of t ransforming growth factor-beta and induction of apoptosis in human breast cancer cells.Nut r Cancer.1999,34(2):121-132
    89.Turco A,Scarpa S,Coppa A,et al.Increased TGFbeta type Ⅱ receptor expression suppresses the malignant phenotype and induces differentiation of human neuroblastoma cells.Exp Cell Res.2000,255(1):77-85
    90.Bandyopadhyay A,Zhu Y,Cibull ML,et al.A soluble t ransforming growth factor beta type Ⅲ receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells.Cancer Res,1999,59(19):5041-5046
    91.Riethmuller G,Holz E,Schlimok G,et al.Monoclonal antibody therapy for resected Dukes' C colorectal cancer:seven-year outcome of a multicenter randomized trial.J Clin Oncol.1998,16(5):1788-1794
    92.Prewett MC,Hooper AT,Bassi R,et al.Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts.Clin Cancer Res.2002,8(5):994-1003
    93.Zeng ZC,Tang ZY,Liu KD,et al.Improved long-term survival for unresectable hepatocellular carcinoma wit h a combination of surgery and int rahepatic arterial infusion of ~(131)I-anti-HCCmAb Phase I / II clinical t rials. J Cancer Res Clin Oncol. 1998, 124:275-280
    94. Krieg AM, YiAK, Schorr J , et al . The role of CpGdinucleotides in innate DNA vaccines. Trends Microbiol .1998 , 6 (1): 23-27
    95. Moingeon P. Cancer vaccines. Vaccine . 2001 , 19 (11-12): 1305-1326
    96. Rosenberg SA.Progress in human tumour immunology and immunotherapy. Nature .2001 ,411 :380-384
    97. Chang CC ,Campoli M ,Ferrone S.HLA class I antigen expression in malignant cells :why does it not always correlate with CTL - mediated lysis ? Curr Opin Immunol .2004 ,16 :644-650
    98. Rammensee H , Bachmann J , Emmerich NP , et al.SYFPEITHI : database for MHC ligands and peptide motifs. Immunogenetics .1999 ,50 : 213-219
    99. Sarobe P ,Huarte E ,Lasarte JJ ,et al.Carcinoembryonic antigen as a target to induce anti-tumor immune responses.Curr Cancer Drug Targets .2004 ,4 :443-454
    100. Zeng G,Li Y,El Gamil M ,et al.Generation of NY- ESO-1- specific CD4~+ and CD8~+T cells by a single peptide with dual MHC class I and class II specificities : a new strategy for vaccine design. Cancer Res. 2002 ,62 :3630-3635
    101. Parmiani G,Castelli C ,Dalerba P ,et al.Cancer immunotherapy with peptide - based vaccines :what have we achieved ?Where are we going ?J Natl Cancer Inst ,2002 ,94:805-818
    102. Talebi T , Weber JS. Peptide vaccine trials for melanoma : preclinical background and clinical results.Semin Cancer Biol. 2003 , 13 : 431-438
    103. Sadanaga N ,Nagashima H ,Mashino K,et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas.Clin Cancer Res .2001 ,7 :2277-2284
    104. Wang RF ,Wang HY. Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells.Nat Biotechnol .2002 ,20 : 149-154
    105. Ridolfi L , Ridolfi R , Riccobon A , et al . Adjuvant immunotherapy with tumor infiltrating lymphocytes and interleukin-2 in patients with resected stage Ⅲand Ⅳ melanoma. J Immunother . 2003 ,26(2): 156-162
    106. Becker C , Pohla H , Frankenberger B , et al . Adoptive tumor therapy with T lymphocytes enriched through an IFN-gamma capture assay . Nat Med .2001 ,7 (10):1159-1162
    107. Dudley ME , Wunderlich JR , Robbins PF , et al . Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science , 2002 ,298(5594) :850-854
    108. Mulders P , Tso CL , Gitlitz B , et al . Presentation of renal tumor antigens by human dendritic cells activates tumor-infiltrating lymphocytes against autologous tumor : implications for live kidney cancer vaccines. Clin Cancer Res .1999 ,5(2) :445-454
    109. Kawamura AJr , Sekine T , Sekiguchi M, et al . Six-year disease-free survival of a patient with metastatic eyelid squamous cell carcinoma and colon adenocarcinoma after repeated postoperative adoptive immunotherapy Jpn J Clin Oncol .2000 , 30(6) : 267-277
    110. Takayama T , Sekine T , Makuuchi M, et al . Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma : a randomised trial . Lancet .2000 ,356(9232) :802-808
    111. Marten A , Ziske C , Schottker B , et al . Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations . J Immunother . 2001 ,24 (6) :502-510
    112. Mattes J , Hulett M, Xie W, et al. Immunotherapy of cytotoxic T cell-resistant tumors by T helper -cells : an eotaxin and STAT6-dependent process. J Exp Med . 2003 ,197 (3) :387-393
    113. Dudley ME , Wunderlich JR , Yang JC , et al . A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma . J Immunother . 2002 ,25(3): 243-251
    114. von Bergwelt Baildon MS , Vonderheide RH , Maecker B , et al. Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen-presenting cells :potential for clinical application . Blood .2002 ,99(9) :3319-3325
    115. Knutson KL , Disis ML. IL-12 enhances the generation of tumour antigen-specific Th1 CD4 T cells during exvivo expansion. Clin Exp Immunol, 2004 ,135 (2) :322-329
    116. Xu S , Koski GK, Faries M , et al. Rapid high efficiency sensitization of CD8 + T cells to tumor antigens by dendritic cells leads to enhanced functional avidity and direct tumor recognition through an IL-12-dependent mechanism. J Immunol . 2003 ,171 (5) : 2251-2261
    117. Li J , Huston G, Swain SL . IL-7 promotes the transition of CD4 effectors to persistent memory cells. J Exp Med . 2003 ,198 (12) : 1807-1815
    118. Robinson KL , Ayello J , Hughes R , et al. Exvivo expansion , maturation , and activation of umbilical cord blood-derived T lymphocytes with IL-2 , IL-12 , anti-CD3 , and IL-7. Potential for adoptive cellular immunotherapy post2umbilical cord blood transplantation. Exp Hematol .2002 ,30 (3) :245-251
    119. Fehniger TA , Cooper MA , Caligiuri MA. Interleukin-2 and interleukin-15 : immunotherapy for cancer. Cytokine Growth Factor Rev .2002 ,13 (2): 1692183
    120. Ma A , Boone DL , Lodolce JP , et al. The pleiotropic functions of interleukin 15 : not so interleukin-2 like after all. J Exp Med . 2000 ,191 (5) :753-756
    121. Weninger W, Crowley MA , Manjuath N , et al. Migratory properties of naive , effector , and memory CD8 (+) T cells. J Exp Med .2001 ,194 (7) :953-966
    122. Chong H , Hutchinson G, Hart IR , et al . Expression of B7 costimulatory molecules by B16 melanoma result s in a natural killer cell dependent systemic immuneity only against B7 expressing tumors. Br J Cancer .1998 ,78 (8): 1043-1050
    123. Hsu FJ , Benike C , Fagnoni P , et al . Vaccination of patient swith B-cell lymphoma using autologous antigen-pulse dendritic cell. Nat Med .1996 ,2 (1) :52-58
    124. Ikeguchi M , Cai J , Yamane N , et al. Clinical significance of spontaneous apoptosiss in advanced gast ric adenocarcinoma . Cancer .1999 ,85 (11) :2329-2335
    125. Maier T , Tun2kyi A , Tassis A , et al . Vaccination of patient swit h cutaneous T-cell lymphoma using int ranodal injection of autologous tumor-lysate-pulsed dendritic cells . Blood .2003 ,102 (7) :2338-2344
    126. Kugler A , Stuhler G, Walden P , et al . Regression of human metastatic renal cell carcinoma after vaccination with cell-dendritic cell hybrids. Nature Medicine .2000 ,6 (3) :332-336
    127. Marten A , Flieger D , Renot h S , et al . Therapeutic vaccination against metastatic renal cell carcinoma by autologous dendritic cells:preclinical result s and outcome of a first clinical phase Ⅰ/Ⅱ tria.Cancer Immunol Immunother.2002,51(11-12):637-644
    128.Nestle F,Conrad C.Dendritic cell therapy for skin cancer.Vax Sanguinis.2004,87(Suppl.2):S112-S114
    129.Study ID Numbers:NCRR2M01RR0003020177;M01RR00030.National Center for Research Resources(NCRR),February,2002,NCT00006430.http://clinicalt rials.gov/show/NCT00006430.(临床试验数据库的网上公告)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700