原发性开角型青光眼中枢视通路形态和功能的磁共振成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     青光眼是世界范围内不可逆性致盲的首要原因,以进行性的视网膜神经节细胞(retinal ganglion cells,RGCs)及其轴突丢失为主要特征。原发性开角型青光眼(primaryopen angle glaucoma, POAG)是青光眼的主要表现类型之一,其发病隐匿,潜在危险性更大。尽管RGCs渐进性丢失是其主要的病理特征,但越来越多的组织学及影像学研究证实可能整个视觉通路均受累及,包括RGCs、外侧膝状体(lateral geniculatenucleus, LGN)以及初级视皮质(primary visual cortex, V1)等。目前POAG被认为是由环境和遗传因素导致的复杂性性视通路病变,但具体的发病机制仍需进一步探讨。
     近年来采用磁共振成像(magnetic resonance imaging,MRI)技术对POAG视觉通路损害的研究引起了广泛关注。该技术可以从视觉皮质结构、视通路白质纤维束、任务态和静息态的脑功能等诸多角度揭示POAG视觉通路的改变情况。但既往的MRI研究多关注于POAG的中晚期,疾病早期的中枢视觉通路是否改变仍不明了,而且POAG患者皮质形态的改变进程以及POAG早期静息状态下功能的改变在疾病神经机制中起到的作用尚不清楚。因此,本项研究基于视皮质通路多参数的形态分析以及静息态功能磁共振(resting-state functional magnetic resonance imaging, R-fMRI)的方法,研究POAG患者特别是疾病早期中枢视区的皮质结构和相关脑区的神经元功能改变,探讨该病可能的发病机制并为临床治疗提供有效的依据。
     材料和方法
     1.采集36例双眼POAG患者和40例匹配的正常志愿者的3D T1加权高分辨率MRI数据,采用CIVIET软件(1.1.9版本,蒙特利尔神经病研究所,加拿大)进行全脑皮质厚度分析,检测POAG患者可能存在的皮质厚度改变并与视网膜神经纤维层(retinal nerve fiber layer, RNFL)厚度做相关分析。随后POAG患者组被分成轻重两个亚组,比较视区皮质厚度随疾病严重程度的改变情况。
     2.采集20例早期(轻度组)、17例中晚期(重度组)的双眼POAG患者和20例匹配的健康志愿者(对照组)的TI加权高分辨率MRI数据。基于感兴趣区(regionof interest, ROI)分析的方法V1、V2(纹前皮质)和V5/MT+(颞中回视区)的皮质厚度,数据处理由FreeSurfer软件(5.3.0版本,麻省总院,波士顿,美国)完成。比较三组间的皮质厚度差异,并分析各ROI双侧的皮质厚度与双侧的RNFL厚度和视野MD值的相关性。
     3.采用第二部分的MRI数据,按照视网膜映射(中心视角10°)把V1和V2分别细分为前后两个亚区,同样纳入V5/MT+区作为ROI。分析V1和V2前、后亚区以及V5/MT+区的多参数皮质结构改变。比较三组间形态学指标的差异,并分析皮质厚度与关键性临床指标之间的相关性。
     4.采集21例POAG早期患者和20例健康志愿者的R-fMRI和高分辨率T1结构像数据,计算全脑比率低频振荡波幅值(fALFF)得到活动改变脑区,并把fALFF改变区(左侧楔前叶)与双侧V1、V2、V5/MT+区一并纳入作为ROI,分析与全脑功能连接的强度改变。
     结果:
     1.全脑皮质厚度分析结果:POAG组在双侧的距状沟前份的视皮质厚度明显变薄(右侧的BA17,左侧的BA17和BA18)。另有较小的皮质厚度减低区呈现在左侧的颞中回(BA37)和梭状回(BA19)。相关分析:左侧和右侧的距状沟皮质厚度与RNFL厚度呈正相关(左侧r=0.44,P=0.01;右侧r=0.38;P=0.03)。重度亚组左侧和右侧的RNFL厚度以及皮质厚度与轻度亚组比较均显著变薄。 RNFL厚度左侧:59.2±18.1vs.77.3±13.0μm(P=0.001);右侧:59.2±14.5vs.73.3±19.0μm(P=0.020);皮质厚度左侧:2.46±0.18vs.2.59±0.10mm(P=0.014);右侧:2.56±0.16vs.2.70±0.14mm(P=0.009)。
     2.基于ROI的皮质厚度分析结果:与正常组比较,重度组左侧的V1和双侧的V2以及V5/MT+区皮质厚度明显减低,轻度组双侧的V5/MT+区皮质厚度显著变薄;三组间的平均皮质厚度随疾病加重呈减低趋势,重度组双侧的V2区皮质厚度较正常组和轻度组均明显变薄。双侧的V2区(r=0.38,P=0.02)和V5/MT+区(r=0.44,P=0.006)的皮质厚度与双侧的RNFL厚度呈正相关。双侧所有ROI的皮质厚度均与双侧的视野MD值呈正相关(V1:r=0.34,P=0.04;V2:r=0.42,P=0.009;V5/MT+:r=0.37,P=0.03)。
     3.基于ROI的形态学分析结果:皮质厚度:与正常对照组比较,重度组的V1前亚区(P=0.010),V2前亚区(P=0.011)和V5/MT+(P=0.016)区皮质厚度显著减低,轻度组V5/MT+区皮质厚度明显变薄(P=0.025)。重度组的V2后亚区皮质厚度较轻度组(P=0.002)和正常对照组(P=0.000)均显著减低。重度组V2后亚区灰质体积较正常对照组(P=0.001)和轻度组(P=0.034)均显著性减少。重度组V5/MT+区的平均曲率较正常组(P=0.031)显著改变。但三组间表面积无显著差异(P>0.05)。皮质厚度相关分析:V5/MT+区与RNFL厚度正相关(r=0.42,P=0.01)。重度组V1前亚区与RNFL厚度有相关趋势(r=0.46,P=0.08)。
     4.全脑静息态fALFF与功能连接分析结果:与对照组比较,POAG早期患者的左侧楔前叶(BA7),左侧角回(BA39)fALFF值呈显著减低(P <0.05,AlphaSim校正)。功能连接结果显示患者组与左侧楔前叶(BA7)和双侧V5/MT+连接强度较对照组减低的区域主要包括:动眼区(BA8)、额回(BA9、BA10、BA11)、前扣带回(BA24)、左侧小脑后叶和小部分颞中回区域(BA39),这些脑区基本与背侧注意网络一致。与V1和V2区连接强度减低的区域包括左侧前扣带回和左侧小脑后叶。患者组未发现fALFF或功能连接强度较对照组增高的区域。
     结论:
     1.全脑皮质厚度分析发现皮质改变区域主要位于距状沟周围皮质(BA17和BA18区),并且与临床关键指标RNFL厚度呈正相关,说明皮质厚度分析结果准确可靠,可作为判断POAG患者疾病严重程度的影像学指标。POAG患者视觉皮质萎缩揭示视觉中枢参与了其中的发病机制,但是基于全脑的皮质厚度分析不能提供解剖或者功能具体分区内的整体特性,也无法进行个体化的诊断。
     2.基于ROI的皮质厚度分析发现POAG早期患者V5/MT+区存在皮质萎缩,并显示随疾病严重程度的增加视皮质厚度的呈进行性减低。结果提示POAG早期视皮质就已参与了其中的病生机制,为临床早期干预治疗和指定策略防止脑神经损伤提供了影像学证据。
     3.基于视网膜皮质映射的形态学结构分析能够提供更多的POAG患者视皮质改变信息,结果表明皮质厚度是POAG患者视皮质改变的敏感性和可靠性指标,且V1和V2细分亚区之后更能客观地评价视区内的改变。结果提示V5/MT+区可能是POAG早期视皮质结构改变的关键脑区。
     4. R-fMRI结果显示POAG早期患者的背侧注意网络受到了影响。楔前叶(BA7)和V5/MT+可能是POAG早期患者功能改变的关键脑区,其所处的背侧视觉通道在POAG早期的发病机制中起到了关键的作用。
Background and purpose
     Glaucoma is the leading cause of irreversible blindness worldwide, characterized byprogressive loss of retinal ganglion cells (RGCs) and degeneration of their axons in opticnerve (ON).Primary open-angle glaucoma (POAG) is the most common type of glaucoma.Although RGCs death is the major pathological hallmark of POAG, findings from animalexperiments, human autopsy and glaucoma patient studies indicated that the whole visualpathway may be involved in glaucomatous damage, including the RGCs, the lateralgeniculate nucleus (LGN) and the primary visual cortex (V1). POAG is currentlyconsidered the complicated optic neuropathy caused by environmental and genetic factors,but the pathogenesis of POAG remains elusive.
     Recently, studies on the disruption of the visual pathway in POAG have been widelyconcerned by using magnetic resonance imaging (MRI) method. Based on the neuroimagingtechnology, the alternations of visual pathway in POAG can be revealed in both thestructure (i.e. grey matter and white matter) and function. However, the previous MRIstudies are mainly focused on the advanced or severe stages of POAG and the alterations ofcentral visual pathway in the early stage of disease are still unknown. In addition,glaucomatous damage of the visual cortex has seldom been studied by usingmulti-parameter shape analysis and resting-state functional magnetic resonance imaging(R-fMRI) method. Thus, the objective of this study was to investigate possiblymorphological and functional changes of central visual pathway in POAG by usingmulti-modal MRI.
     Material and method
     The present study was divided into four parts:
     1. Thirty-six patients with bilateral POAG patients and forty matched health controlswere enrolled in this study.3D high-resolution structural T1images were obtained by using a3-Tesla MR scanner with an8-channel phased-array head coil. Cortical thickness wasprocessed using the automated CIVET pipeline (version1.1.9; Montreal NeurologicalInstitute at McGill University, Montreal, Quebec, Canada) to assess the possible changesbetween the patients and controls, and the correlation between the retinal nerve fiber layer(RNFL) thickness and cortical thickness was also investigated. Finally, the patients weresplit into mild and severe sub-groups for investigation of the relationship between POAGstage and cortical changes.
     2. Twenty normal controls (NC),20mild (MP) and17severe (SP) POAG patientswere recruited and scanned using the3-Tesla MR scanner. Cortical thickness analyses withregions of interest (ROI) was performed using FreeSurfer (version5.3.0,http://surfer.nmr.mgh.harvard.edu) to assess the cortical changes (V1, V2and V5/MT+)among the three groups. Finally, the associations of cortical thickness with RNFL thicknessand mean deviation (MD) of visual field were analyzed.
     3. Twenty normal controls (NC),19mild (MP) and17severe (SP) POAG patientswere recruited and scanned using magnetic resonance imaging. Multi-parametricmorphologic analyses (cortical thickness, volume, surface area and mean curve) with ROIwere performed by using FreeSurfer pipeline to assess the cortical changes (V5/MT+,anterior and posterior subregions of V1and V2) among the three groups. The correlationsbetween cortical thickness and clinical measurements (RNFL thickness and MD of visualfield) were also analyzed.
     4. Twenty-one patients with bilateral early stage of POAG patients and20matchedhealth controls were enrolled in this study. R-fMRI data and3D high-resolution structuralT1images were obtained using the3-Tesla MR scanner. Fractional amplitude of lowfrequency fluctuation (fALFF) method were applied to investigate the functional changesbetween patients and health controls. Functional connectivity was calculated by using theseed voxel correlation approach (precuneus, V1, V2and V5/MT+areas).
     Results:
     1. Compared with the normal controls, POAG patients showed significantlydecreased bilateral cortical thickness in the calcarine sulci (right BA17, left BA17and BA18) and in some smaller other regions including the left middle temporal gyrus (BA37) andthe fusiform gyrus (BA19)(P <0.005, uncorrected). The left and right cortical thickness of the calcarine sulcus correlated positively with the RNFL thickness (left, r=0.44, P=0.01;right, r=0.38, P=0.03).The significant difference was also found in cortical thickness ofthe calcarine sulcus and RNFL thickness between the mild and severe sub-groups. RNFLthickness (mild versus severe group), left:77.3±13.0vs.59.2±18.1μm (P=0.001); right:73.3±19.0vs.59.2±14.5μm (P=0.020). Cortical thickness (mild vs. severe), left:2.59±0.10vs.2.46±0.18mm (P=0.014); right:2.70±0.14vs.2.56±0.16mm (P=0.009).
     2. Compared with the NC group, the SP group had significantly lower thickness in theleft V1area and bilateral V2and V5/MT+visual cortices, whereas the MP group onlyexhibited a significant reduction of cortical thickness in the V5/MT+area. Although thethickness of these visual cortices was reduced in the SP group relative to the MP group, onlythe differences in the bilateral V2regions were statistically significant. The mean RNFLthickness in the POAG patients was positively correlated with cortical thickness in the V2(r=0.38, P=0.02) and V5/MT+(r=0.44, P=0.006) regions. Additionally, the mean MDwas also related to cortical thickness in the V1(r=0.34, P=0.04), V2(r=0.42, P=0.009)and V5/MT+(r=0.37, P=0.03) areas.
     3. Compared with the NC group, the SP group had significantly lower thickness in theanterior subregions of V1, V2and the V5/MT+visual cortices. Unexpectedly, corticalthinning in the posterior subregion of V2was statistically significant in the SP groupcompared with NC and MP group. In addition, the gray matter volume in posteriorsubregion of V2and was significantly decreased in the SP group compared with the NC (P=0.001) and MP (P=0.034) groups. Mean curvature in V5/MT+areas was significantlyincreased in the SP group compared with the NC group (P=0.031). There were nodifferences in surface area in all of the investigated visual areas among the three groups.Cortical thickness of V5/MT+was positively correlated with the mean RNFL thickness (r=0.42, P=0.01). In SP group, cortical thickness of the anterior subregion of V1alsoexhibited a correlation trend with the RNFL thickness (r=0.46, P=0.08).
     4. Significant between-group difference in fALFF was observed in left precuneus(BA7) and left angular gyrus (BA39/40)(P <0.05, AlphaSim corrected). In contrast, noregions in healthy controls showed higher fALFF than in POAG patients (P>0.05).Compared to normal controls, the early stage of POAG patients showed significantlydecreased functional connectivity with ROI in multiple brain regions including frontal gyrus (BA9, BA10and BA11), frontal eye field (BA8), left anterior cingulate gyrus (BA24), rightmiddle temporal gyrus (BA39) and left cerebellum posterior lobe (P <0.05, AlphaSimcorrected).
     Conclusion
     1. Cortical thickness analysis revealed cortical thinning in the visual-related cortex inPOAG patients, and the cortical thickness was correlated positively with the RNFLthickness. The results indicate that cortical thickness may be a sensitive measure fordetection of cortical alterations of the visual system in POAG. However, the whole-braincortical thickness based on vertex-based analysis could not reveal the changes of anatomicalor functional regions.
     2. This study provides direct in vivo evidence of the progressive thinning in the visualcortex in patients with POAG. The most significant novel finding is that cortical thicknessof the bilateral V5/MT+areas decreases in the early stage of POAG. These cortical changesindicated progressive neurodegeneration and early disruption of the visual cortex in POAG.Finally, we showed that the thickness of visual cortex correlated well with RNFL thicknessand visual field defects in POAG patients, which suggested that the thickness of visualcortex is helpful in detecting POAG pathology and could serve as a novel indicator ofdisease severity.
     3. This is the first study that provides direct in vivo evidence of the morphologicalterations in the visual cortex in POAG. The results indicated early disruption of the visualcortex in POAG and the glaucomatous process may be complex and heterogeneous. Ourfindings suggested that the thickness of visual cortex is more sensitive than the othermorphologic parameters.
     4. The dorsal attentional network may be affected inpatients with early POAG. Theprecuneus and V5/MT+may be the key regions and the dorsal visual pathway plays acritical role in the pathogenesis of early POAG.
引文
1Leske MC, Open-angle glaucoma--an epidemiologic overview [J]. Ophthalmic Epidemiol,2007,14(4):166-172.
    2Quigley HA and Broman AT, The number of people with glaucoma worldwide in2010and2020[J]. Br J Ophthalmol,2006,90(3):262-267.
    3Harwerth RS and Quigley HA, Visual field defects and retinal ganglion cell losses in patients with glaucoma [J]. ArchOphthalmol,2006,124(6):853-859.
    4He M, Foster PJ, Ge J, Huang W, Zheng Y, Friedman DS, Lee PS and Khaw PT, Prevalence and clinical characteristicsof glaucoma in adult Chinese: a population-based study in Liwan District, Guangzhou [J]. Invest Ophthalmol Vis Sci,2006,47(7):2782-2788.
    5Boland MV and Quigley HA, Risk factors and open-angle glaucoma: classification and application [J]. J Glaucoma,2007,16(4):406-418.
    6Foster PJ, Buhrmann R, Quigley HA and Johnson GJ, The definition and classification of glaucoma in prevalencesurveys [J]. Br J Ophthalmol,2002,86(2):238-242.
    7Wolfs RC, Borger PH, Ramrattan RS, Klaver CC, Hulsman CA, Hofman A, Vingerling JR, Hitchings RA and de JongPT, Changing views on open-angle glaucoma: definitions and prevalences--The Rotterdam Study [J]. Invest OphthalmolVis Sci,2000,41(11):3309-3321.
    1Weber AJ, Chen H, Hubbard WC and Kaufman PL, Experimental glaucoma and cell size, density, and number in theprimate lateral geniculate nucleus [J]. Invest Ophthalmol Vis Sci,2000,41(6):1370-1379.
    2Yucel YH, Zhang Q, Gupta N, Kaufman PL and Weinreb RN, Loss of neurons in magnocellular and parvocellular layersof the lateral geniculate nucleus in glaucoma [J]. Arch Ophthalmol,2000,118(3):378-384.
    3Crawford ML, Harwerth RS, Smith EL,3rd, Mills S and Ewing B, Experimental glaucoma in primates: changes incytochrome oxidase blobs in V1cortex [J]. Invest Ophthalmol Vis Sci,2001,42(2):358-364.
    4Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Atrophy of relay neurons in magno-and parvocellularlayers in the lateral geniculate nucleus in experimental glaucoma [J]. Invest Ophthalmol Vis Sci,2001,42(13):3216-3222.
    5Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Effects of retinal ganglion cell loss on magno-, parvo-,koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma [J]. Prog Retin Eye Res,2003,22(4):465-481.
    6Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    7Gupta N and Yucel YH, Glaucoma as a neurodegenerative disease [J]. Curr Opin Ophthalmol,2007,18(2):110-114.
    8Yucel Y and Gupta N, Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration [J].Prog Brain Res,2008,173465-478.
    1Chang ST, Xu J, Trinkaus K, Pekmezci M, Arthur SN, Song SK and Barnett EM, Optic Nerve Diffusion Tensor ImagingParameters and Their Correlation With Optic Disc Topography and Disease Severity in Adult Glaucoma Patients andControls [J]. J Glaucoma,2013,
    2Chen Z, Lin F, Wang J, Li Z, Dai H, Mu K, Ge J and Zhang H, Diffusion tensor magnetic resonance imaging revealsvisual pathway damage that correlates with clinical severity in glaucoma [J]. Clin Experiment Ophthalmol,2013,41(1):43-49.
    3Michelson G, Engelhorn T, Warntges S, El Rafei A, Hornegger J and Doerfler A, DTI parameters of axonal integrity anddemyelination of the optic radiation correlate with glaucoma indices [J]. Graefes Arch Clin Exp Ophthalmol,2013,251(1):243-253.
    4Wang MY, Wu K, Xu JM, Dai J, Qin W, Liu J, Tian J and Shi D, Quantitative3-T diffusion tensor imaging in detectingoptic nerve degeneration in patients with glaucoma: association with retinal nerve fiber layer thickness and clinicalseverity [J]. Neuroradiology,2013,55(4):493-498.
    5Ashburner J and Friston KJ, Voxel-based morphometry--the methods [J]. Neuroimage,2000,11(6Pt1):805-821.
    6Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    7Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. InvestOphthalmol Vis Sci,2013,54(1):545-554.
    8Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI, Voxel-based morphometry anddiffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study [J]. AJNR Am JNeuroradiol,2012,33(1):128-134.
    9Hyde KL, Samson F, Evans AC and Mottron L, Neuroanatomical differences in brain areas implicated in perceptual andother core features of autism revealed by cortical thickness analysis and voxel-based morphometry [J]. Hum Brain Mapp,2010,31(4):556-566.
    10Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, Lee JM, Kim SI and Evans AC, Automated3-Dextraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effectclassification [J]. Neuroimage,2005,27(1):210-221.
    11MacDonald D, Kabani N, Avis D and Evans AC, Automated3-D extraction of inner and outer surfaces of cerebralcortex from MRI [J]. Neuroimage,2000,12(3):340-356.
    1Schultz CC, Wagner G, Koch K, Gaser C, Roebel M, Schachtzabel C, Nenadic I, Reichenbach JR, Sauer H and SchlosserRG, The visual cortex in schizophrenia: alterations of gyrification rather than cortical thickness--a combined cortical shapeanalysis [J]. Brain Struct Funct,2013,218(1):51-58.
    2Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopic organization of primary visual cortex inglaucoma: Comparing fMRI measurements of cortical function with visual field loss [J]. Prog Retin Eye Res,2007,26(1):38-56.
    3Song Y, Mu K, Wang J, Lin F, Chen Z, Yan X, Hao Y, Zhu W and Zhang H, Altered spontaneous brain activity inprimary open angle glaucoma: a resting-state functional magnetic resonance imaging study [J]. PLoS One,2014,9(2):e89493.
    4Dai H, Morelli JN, Ai F, Yin D, Hu C, Xu D and Li Y, Resting-state functional MRI: functional connectivity analysis ofthe visual cortex in primary open-angle glaucoma patients [J]. Hum Brain Mapp,2013,34(10):2455-2463.
    1Leske MC, Open-angle glaucoma--an epidemiologic overview [J]. Ophthalmic Epidemiol,2007,14(4):166-172.
    2Quigley HA and Broman AT, The number of people with glaucoma worldwide in2010and2020[J]. Br J Ophthalmol,2006,90(3):262-267.
    3Gupta N and Yucel YH, Glaucoma as a neurodegenerative disease [J]. Curr Opin Ophthalmol,2007,18(2):110-114.4,5Wostyn P, Audenaert K and De Deyn PP, Alzheimer's disease: cerebral glaucoma?[J]. Med Hypotheses,2010,74(6):5973-9776. Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    7Crawford ML, Harwerth RS, Smith EL,3rd, Shen F and Carter-Dawson L, Glaucoma in primates: cytochrome oxidasereactivity in parvo-and magnocellular pathways [J]. Invest Ophthalmol Vis Sci,2000,41(7):1791-1802.
    8Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI, Voxel-based morphometry anddiffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study [J]. AJNR Am JNeuroradiol,2012,33(1):128-134.
    9Williams AL, Lackey J, Wizov SS, Chia TM, Gatla S, Moster ML, Sergott R, Spaeth GL and Lai S, Evidence forwidespread structural brain changes in glaucoma: a preliminary voxel-based MRI study [J]. Invest Ophthalmol Vis Sci,2013,54(8):5880-5887.
    10Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JM and Cornelissen FW, Changes incortical grey matter density associated with long-standing retinal visual field defects [J]. Brain,2009,132(Pt7):1898-1906
    1Nickells RW, Retinal ganglion cell death in glaucoma: the how, the why, and the maybe [J]. J Glaucoma,1996,5(5):345-356.
    Harwerth RS and Quigley HA, Visual field defects and retinal ganglion cell losses in patients with glaucoma [J]. ArchOphthalmol,2006,124(6):853-859.
    Lalezary M, Medeiros FA, Weinreb RN, Bowd C, Sample PA, Tavares IM, Tafreshi A and Zangwill LM, Baseline opticalcoherence tomography predicts the development of glaucomatous change in glaucoma suspects [J]. Am J Ophthalmol,2006,142(4):576-582.
    Parikh RS, Parikh S, Sekhar GC, Kumar RS, Prabakaran S, Babu JG and Thomas R, Diagnostic capability of opticalcoherence tomography (Stratus OCT3) in early glaucoma [J]. Ophthalmology,2007,114(12):2238-2243.
    Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. InvestOphthalmol Vis Sci,2013,54(1):545-554.
    Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI, Voxel-based morphometry anddiffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study [J]. AJNR Am JNeuroradiol,2012,33(1):128-134.
    shburner J and Friston KJ, Voxel-based morphometry--the methods [J]. Neuroimage,2000,11(6Pt1):805-821.
    Park HJ, Lee JD, Kim EY, Park B, Oh MK, Lee S and Kim JJ, Morphological alterations in the congenital blind basedon the analysis of cortical thickness and surface area [J]. Neuroimage,2009,47(1):98-106.
    Voets NL, Hough MG, Douaud G, Matthews PM, James A, Winmill L, Webster P and Smith S, Evidence forabnormalities of cortical development in adolescent-onset schizophrenia [J]. Neuroimage,2008,43(4):665-675.
    1Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, Lee JM, Kim SI and Evans AC, Automated3-Dextraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effectclassification [J]. Neuroimage,2005,27(1):210-221.
    2MacDonald D, Kabani N, Avis D and Evans AC, Automated3-D extraction of inner and outer surfaces of cerebral cortexfrom MRI [J]. Neuroimage,2000,12(3):340-356.
    3Fornito A, Yucel M, Wood SJ, Adamson C, Velakoulis D, Saling MM, McGorry PD and Pantelis C, Surface-basedmorphometry of the anterior cingulate cortex in first episode schizophrenia [J]. Hum Brain Mapp,2008,29(4):478-489.
    4Fischl B, FreeSurfer [J]. Neuroimage,2012,62(2):774-781.
    5Lerch JP and Evans AC, Cortical thickness analysis examined through power analysis and a population simulation [J].Neuroimage,2005,24(1):163-173.
    Oldfield RC, The assessment and analysis of handedness: the Edinburgh inventory [J]. Neuropsychologia,1971,9(1):97-113.
    1Mills RP, Budenz DL, Lee PP, Noecker RJ, Walt JG, Siegartel LR, Evans SJ and Doyle JJ, Categorizing the stage ofglaucoma from pre-diagnosis to end-stage disease [J]. Am J Ophthalmol,2006,141(1):24-30.
    1Sled JG, Zijdenbos AP and Evans AC, A nonparametric method for automatic correction of intensity nonuniformity inMRI data [J]. IEEE Trans Med Imaging,1998,17(1):87-97.
    2Collins DL, Neelin P, Peters TM and Evans AC, Automatic3D intersubject registration of MR volumetric data instandardized Talairach space [J]. J Comput Assist Tomogr,1994,18(2):192-205.
    3Zijdenbos AP, Forghani R and Evans AC, Automatic "pipeline" analysis of3-D MRI data for clinical trials: applicationto multiple sclerosis [J]. IEEE Trans Med Imaging,2002,21(10):1280-1291.
    4Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, Lee JM, Kim SI and Evans AC, Automated3-Dextraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effectclassification [J]. Neuroimage,2005,27(1):210-221.
    5Lyttelton O, Boucher M, Robbins S and Evans A, An unbiased iterative group registration template for cortical surfaceanalysis [J]. Neuroimage,2007,34(4):1535-1544.
    Lerch JP and Evans AC, Cortical thickness analysis examined through power analysis and a population simulation [J].Neuroimage,2005,24(1):163-173.
    1Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ and Evans AC, A unified statistical approach for determiningsignificant signals in images of cerebral activation [J]. Hum Brain Mapp,1996,4(1):58-73.
    2Chen Z, Lin F, Wang J, Li Z, Dai H, Mu K, Ge J and Zhang H, Diffusion tensor magnetic resonance imaging revealsvisual pathway damage that correlates with clinical severity in glaucoma [J]. Clin Experiment Ophthalmol,2013,41(1):43-49.
    1Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    2Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. Invest
    3Ophthalmol Vis Sci,2013,54(1):545-554.Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI, Voxel-based morphometry anddiffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study [J]. AJNR Am JNeuroradiol,2012,33(1):128-134.
    4Ashburner J and Friston KJ, Why voxel-based morphometry should be used [J]. Neuroimage,2001,14(6):1238-1243.
    5Park HJ, Lee JD, Kim EY, Park B, Oh MK, Lee S and Kim JJ, Morphological alterations in the congenital blind basedon the analysis of cortical thickness and surface area [J]. Neuroimage,2009,47(1):98-106.
    6Voets NL, Hough MG, Douaud G, Matthews PM, James A, Winmill L, Webster P and Smith S, Evidence for
    7abnormalities of cortical development in adolescent-onset schizophrenia [J]. Neuroimage,2008,43(4):665-675.Ashburner J, Computational anatomy with the SPM software [J]. Magn Reson Imaging,2009,27(8):1163-1174.
    8Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, Lee JM, Kim SI and Evans AC, Automated3-Dextraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effectclassification [J]. Neuroimage,2005,27(1):210-221.
    9MacDonald D, Kabani N, Avis D and Evans AC, Automated3-D extraction of inner and outer surfaces of cerebral cortexfrom MRI [J]. Neuroimage,2000,12(3):340-356.
    10Lerch JP and Evans AC, Cortical thickness analysis examined through power analysis and a population simulation [J].Neuroimage,2005,24(1):163-173.
    Engel SA, Glover GH and Wandell BA, Retinotopic organization in human visual cortex and the spatial precision offunctional MRI [J]. Cereb Cortex,1997,7(2):181-192.
    1Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A and Zook JM, Somatosensory cortical mapchanges following digit amputation in adult monkeys [J]. J Comp Neurol,1984,224(4):591-605.
    2Johansson BB, Brain plasticity in health and disease [J]. Keio J Med,2004,53(4):231-246.
    3Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. InvestOphthalmol Vis Sci,2013,54(1):545-554.
    4Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JM and Cornelissen FW, Changes incortical grey matter density associated with long-standing retinal visual field defects [J]. Brain,2009,132(Pt7):1898-1906.
    5Chen Z, Lin F, Wang J, Li Z, Dai H, Mu K, Ge J and Zhang H, Diffusion tensor magnetic resonance imaging revealsvisual pathway damage that correlates with clinical severity in glaucoma [J]. Clin Experiment Ophthalmol,2013,41(1):43-49.
    6Wang MY, Wu K, Xu JM, Dai J, Qin W, Liu J, Tian J and Shi D, Quantitative3-T diffusion tensor imaging in detectingoptic nerve degeneration in patients with glaucoma: association with retinal nerve fiber layer thickness and clinicalseverity [J]. Neuroradiology,2013,55(4):493-498.
    1Yucel Y and Gupta N, Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration [J].Prog Brain Res,2008,173465-478.
    Lam D, Jim J, To E, Rasmussen C, Kaufman PL and Matsubara J, Astrocyte and microglial activation in the lateralgeniculate nucleus and visual cortex of glaucomatous and optic nerve transected primates [J]. Mol Vis,2009,152217-2229.
    3Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Effects of retinal ganglion cell loss on magno-, parvo-,koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma [J]. Prog Retin Eye Res,2003,22(4):465-481
    4Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    Vickers JC, Hof PR, Schumer RA, Wang RF, Podos SM and Morrison JH, Magnocellular and parvocellular visualpathways are both affected in a macaque monkey model of glaucoma [J]. Aust N Z J Ophthalmol,1997,25(3):239-243.
    1Quigley HA and Broman AT, The number of people with glaucoma worldwide in2010and2020[J]. Br J Ophthalmol,2006,90(3):262-267.
    2Harwerth RS and Quigley HA, Visual field defects and retinal ganglion cell losses in patients with glaucoma [J]. ArchOphthalmol,2006,124(6):853-859.
    3Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Effects of retinal ganglion cell loss on magno-, parvo-,koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma [J]. Prog Retin Eye Res,2003,22(4):465-481.
    4Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    5Yucel Y and Gupta N, Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration [J].Prog Brain Res,2008,173465-478.
    6Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J and Dai C, Reduced cortical thickness in primary open-angle glaucomaand its relationship to the retinal nerve fiber layer thickness [J]. PLoS One,2013,8(9): e73208.
    7Chen Z, Wang J, Lin F, Dai H, Mu K and Zhang H, Correlation between lateral geniculate nucleus atrophy and damageto the optic disc in glaucoma [J]. J Neuroradiol,2013,40(4):281-287.
    8Bolacchi F, Garaci FG, Martucci A, Meschini A, Fornari M, Marziali S, Mancino R, Squillaci E, Floris R, Cerulli L,Simonetti G and Nucci C, Differences between proximal versus distal intraorbital optic nerve diffusion tensor magneticresonance imaging properties in glaucoma patients [J]. Invest Ophthalmol Vis Sci,2012,53(7):4191-4196.
    1Michelson G, Engelhorn T, Warntges S, El Rafei A, Hornegger J and Doerfler A, DTI parameters of axonal integrity anddemyelination of the optic radiation correlate with glaucoma indices [J]. Graefes Arch Clin Exp Ophthalmol,2013,251(1):243-253.
    2Wang MY, Wu K, Xu JM, Dai J, Qin W, Liu J, Tian J and Shi D, Quantitative3-T diffusion tensor imaging in detectingoptic nerve degeneration in patients with glaucoma: association with retinal nerve fiber layer thickness and clinicalseverity [J]. Neuroradiology,2013,55(4):493-498.
    3Garaci FG, Bolacchi F, Cerulli A, Melis M, Spano A, Cedrone C, Floris R, Simonetti G and Nucci C, Optic nerve andoptic radiation neurodegeneration in patients with glaucoma: in vivo analysis with3-T diffusion-tensor MR imaging [J].Radiology,2009,252(2):496-501
    4Chen Z, Wang J, Lin F, Dai H, Mu K and Zhang H, Correlation between lateral geniculate nucleus atrophy and damageto the optic disc in glaucoma [J]. J Neuroradiol,2013,40(4):281-287.
    5Dai H, Mu KT, Qi JP, Wang CY, Zhu WZ, Xia LM, Chen ZQ, Zhang H, Ai F and Morelli JN, Assessment of lateralgeniculate nucleus atrophy with3T MR imaging and correlation with clinical stage of glaucoma [J]. AJNR Am JNeuroradiol,2011,32(7):1347-1353.
    6Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M and Yucel YH, Atrophy of the lateral geniculate nucleus inhuman glaucoma detected by magnetic resonance imaging [J]. Br J Ophthalmol,2009,93(1):56-60.
    7Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. InvestOphthalmol Vis Sci,2013,54(1):545-554.
    9Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI, Voxel-based morphometry anddiffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study [J]. AJNR Am JNeuroradiol,2012,33(1):128-134.
    10He M, Foster PJ, Ge J, Huang W, Zheng Y, Friedman DS, Lee PS and Khaw PT, Prevalence and clinical characteristicsof glaucoma in adult Chinese: a population-based study in Liwan District, Guangzhou [J]. Invest Ophthalmol Vis Sci,2006,47(7):2782-2788.
    11Weinreb RN and Khaw PT, Primary open-angle glaucoma [J]. Lancet,2004,363(9422):1711-1720.
    1Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    2Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. InvestOphthalmol Vis Sci,2013,54(1):545-554.
    3Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI, Voxel-based morphometry anddiffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study [J]. AJNR Am J
    4Neuroradiol,2012,33(1):128-134.Fitzpatrick D, Lund JS and Blasdel GG, Intrinsic connections of macaque striate cortex: afferent and efferent connectionsof lamina4C [J]. J Neurosci,1985,5(12):3329-3349.
    5Weber AJ, Chen H, Hubbard WC and Kaufman PL, Experimental glaucoma and cell size, density, and number in theprimate lateral geniculate nucleus [J]. Invest Ophthalmol Vis Sci,2000,41(6):1370-1379.
    6Yucel YH, Zhang Q, Gupta N, Kaufman PL and Weinreb RN, Loss of neurons in magnocellular and parvocellular layersof the lateral geniculate nucleus in glaucoma [J]. Arch Ophthalmol,2000,118(3):378-384.
    7Crawford ML, Harwerth RS, Smith EL,3rd, Shen F and Carter-Dawson L, Glaucoma in primates: cytochrome oxidase
    8reactivity in parvo-and magnocellular pathways [J]. Invest Ophthalmol Vis Sci,2000,41(7):1791-1802.Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    9Quigley HA, Dunkelberger GR and Green WR, Chronic human glaucoma causing selectively greater loss of large opticnerve fibers [J]. Ophthalmology,1988,95(3):357-363.
    10Quigley HA, Dunkelberger GR and Green WR, Retinal ganglion cell atrophy correlated with automated perimetry inhuman eyes with glaucoma [J]. Am J Ophthalmol,1989,107(5):453-464.
    11Bosworth CF, Sample PA and Weinreb RN, Perimetric motion thresholds are elevated in glaucoma suspects andglaucoma patients [J]. Vision Res,1997,37(14):1989-1997.
    Karwatsky P, Bertone A, Overbury O and Faubert J, Defining the nature of motion perception deficits in glaucomausing simple and complex motion stimuli [J]. Optom Vis Sci,2006,83(7):466-472.
    1Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK and Fischl B, A hybrid approach to the skull strippingproblem in MRI [J]. Neuroimage,2004,22(3):1060-1075.
    2Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT and Dale AM, Sequence-independentsegmentation of magnetic resonance images [J]. Neuroimage,2004,23Suppl1S69-84.
    3Segonne F, Pacheco J and Fischl B, Geometrically accurate topology-correction of cortical surfaces using nonseparatingloops [J]. IEEE Trans Med Imaging,2007,26(4):518-529.
    Fischl B and Dale AM, Measuring the thickness of the human cerebral cortex from magnetic resonance images [J]. Proc
    5Natl Acad Sci U S A,2000,97(20):11050-11055.Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, Diana Rosas H, Potthast A, Schwartz ELand Fischl B, Accurate prediction of V1location from cortical folds in a surface coordinate system [J]. Neuroimage,2008,39(4):1585-1599.
    6Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BT, Mohlberg H, Amunts K and Zilles K, Cortical foldingpatterns and predicting cytoarchitecture [J]. Cereb Cortex,2008,18(8):1973-1980.
    7Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, Palomero-Gallagher N, Armstrong E andZilles K, Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxicm8ap of area hOc5[J]. Cereb Cortex,2007,17(3):562-574.
    1Chen Z, Lin F, Wang J, Li Z, Dai H, Mu K, Ge J and Zhang H, Diffusion tensor magnetic resonance imaging revealsvisual pathway damage that correlates with clinical severity in glaucoma [J]. Clin Experiment Ophthalmol,2013,41(1):43-49.
    1Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J and Dai C, Reduced cortical thickness in primary open-angle glaucomaand its relationship to the retinal nerve fiber layer thickness [J]. PLoS One,2013,8(9): e73208.
    2Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    3Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. InvestOphthalmol Vis Sci,2013,54(1):545-554.
    4Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI, Voxel-based morphometry anddiffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study [J]. AJNR Am JNeuroradiol,2012,33(1):128-134.
    1Yucel Y and Gupta N, Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration [J].Prog Brain Res,2008,173465-478.
    2Lam D, Jim J, To E, Rasmussen C, Kaufman PL and Matsubara J, Astrocyte and microglial activation in the lateralgeniculate nucleus and visual cortex of glaucomatous and optic nerve transected primates [J]. Mol Vis,2009,152217-2229.
    3Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    4Fitzpatrick D, Lund JS and Blasdel GG, Intrinsic connections of macaque striate cortex: afferent and efferent connectionsof lamina4C [J]. J Neurosci,1985,5(12):3329-3349.
    5Lund JS, Anatomical organization of macaque monkey striate visual cortex [J]. Annu Rev Neurosci,1988,11253-288.
    6Luthra A, Gupta N, Kaufman PL, Weinreb RN and Yucel YH, Oxidative injury by peroxynitrite in neural and vasculartissue of the lateral geniculate nucleus in experimental glaucoma [J]. Exp Eye Res,2005,80(1):43-49.
    Merigan WH and Maunsell JH, How parallel are the primate visual pathways?[J]. Annu Rev Neurosci,1993,16369-402.
    8Quigley HA, Dunkelberger GR and Green WR, Chronic human glaucoma causing selectively greater loss of large opticnerve fibers [J]. Ophthalmology,1988,95(3):357-363.
    9Weber AJ, Chen H, Hubbard WC and Kaufman PL, Experimental glaucoma and cell size, density, and number in theprimate lateral geniculate nucleus [J]. Invest Ophthalmol Vis Sci,2000,41(6):1370-1379.
    10Yucel YH, Zhang Q, Gupta N, Kaufman PL and Weinreb RN, Loss of neurons in magnocellular and parvocellular layersof the lateral geniculate nucleus in glaucoma [J]. Arch Ophthalmol,2000,118(3):378-384.
    Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Atrophy of relay neurons in magno-and parvocellularlayers in the lateral geniculate nucleus in experimental glaucoma [J]. Invest Ophthalmol Vis Sci,2001,42(13):3216-3222.
    1Bradley DC, Chang GC and Andersen RA, Encoding of three-dimensional structure-from-motion by primate area MTneurons [J]. Nature,1998,392(6677):714-717.
    2Krug K, Cicmil N, Parker AJ and Cumming BG, A Causal Role for V5/MT Neurons Coding Motion-DisparityConjunctions in Resolving Perceptual Ambiguity [J]. Curr Biol,2013,23(15):1454-1459
    3Wall M and Ketoff KM, Random dot motion perimetry in patients with glaucoma and in normal subjects [J]. Am JOphthalmol,1995,120(5):587-596.
    4Joffe KM, Raymond JE and Chrichton A, Motion coherence perimetry in glaucoma and suspected glaucoma [J]. VisionRes,1997,37(7):955-964
    5Sample PA, Bosworth CF and Weinreb RN, Short-wavelength automated perimetry and motion automated perimetry inpatients with glaucoma [J]. Arch Ophthalmol,1997,115(9):1129-1133.
    6Karwatsky P, Bertone A, Overbury O and Faubert J, Defining the nature of motion perception deficits in glaucoma usingsimple and complex motion stimuli [J]. Optom Vis Sci,2006,83(7):466-472.
    7Gu B, Wu DZ, Liang J and Yu M, Motion perception of short-wavelength sensitive cones in glaucoma using randomdots moving [J]. Yan Ke Xue Bao,2001,17(3):176-179.
    8Rauscher FG, Chisholm CM, Edgar DF and Barbur JL, Assessment of novel binocular colour, motion and contrast testsin glaucoma [J]. Cell Tissue Res,2013,353(2):297-310.
    9Johansson BB, Brain plasticity in health and disease [J]. Keio J Med,2004,53(4):231-246.
    Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J and Dai C, Reduced cortical thickness in primary open-angleglaucoma and its relationship to the retinal nerve fiber layer thickness [J]. PLoS One,2013,8(9): e73208.
    1Leske MC, Open-angle glaucoma--an epidemiologic overview [J]. Ophthalmic Epidemiol,2007,14(4):166-172.
    2Quigley HA, Open-angle glaucoma [J]. N Engl J Med,1993,328(15):1097-1106.
    3Williams AL, Lackey J, Wizov SS, Chia TM, Gatla S, Moster ML, Sergott R, Spaeth GL and Lai S, Evidence forwidespread structural brain changes in glaucoma: a preliminary voxel-based MRI study [J]. Invest Ophthalmol Vis Sci,2013,54(8):5880-5887.
    4Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JM and Cornelissen FW, Changes incortical grey matter density associated with long-standing retinal visual field defects [J]. Brain,2009,132(Pt7):1898-1906.
    Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M and Yucel YH, Atrophy of the lateral geniculate nucleus inhuman glaucoma detected by magnetic resonance imaging [J]. Br J Ophthalmol,2009,93(1):56-60.
    Quigley HA, Dunkelberger GR and Green WR, Chronic human glaucoma causing selectively greater loss of large opticnerve fibers [J]. Ophthalmology,1988,95(3):357-363.
    Quigley HA, Dunkelberger GR and Green WR, Retinal ganglion cell atrophy correlated with automated perimetry inhuman eyes with glaucoma [J]. Am J Ophthalmol,1989,107(5):453-464.
    Falkenberg HK and Bex PJ, Sources of motion-sensitivity loss in glaucoma [J]. Invest Ophthalmol Vis Sci,2007,48(6):2913-2921.
    1Rubenstein JL and Rakic P, Genetic control of cortical development [J]. Cereb Cortex,1999,9(6):521-523.
    Kochunov P, Charlesworth J, Winkler A, Hong LE, Nichols TE, Curran JE, Sprooten E, Jahanshad N, Thompson PM,Johnson MP, Kent JW, Jr., Landman BA, Mitchell B, Cole SA, Dyer TD, Moses EK, Goring HH, Almasy L, Duggirala R,Olvera RL, Glahn DC and Blangero J, Transcriptomics of cortical gray matter thickness decline during normal aging [J].Neuroimage,2013,82273-283
    Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H and Evans AC, Automated cortical thicknessmeasurements from MRI can accurately separateAlzheimer's patients from normal elderly controls [J]. NeurobiolAging,2008,29(1):23-30.
    Schultz CC, Wagner G, Koch K, Gaser C, Roebel M, Schachtzabel C, Nenadic I, Reichenbach JR, Sauer H and SchlosserRG, The visual cortex in schizophrenia: alterations of gyrification rather than cortical thickness--a combined cortical shapeanalysis [J]. Brain Struct Funct,2013,218(1):51-58.
    Palaniyappan L and Liddle PF, Differential effects of surface area, gyrification and cortical thickness on voxel basedmorphometric deficits in schizophrenia [J]. Neuroimage,2012,60(1):693-699.
    Liu T, Lipnicki DM, Zhu W, Tao D, Zhang C, Cui Y, Jin JS, Sachdev PS and Wen W, Cortical gyrification and sulcalspans in early stage Alzheimer's disease [J]. PLoS One,2012,7(2): e31083.
    Mills RP, Budenz DL, Lee PP, Noecker RJ, Walt JG, Siegartel LR, Evans SJ and Doyle JJ, Categorizing the stage ofglaucoma from pre-diagnosis to end-stage disease [J]. Am J Ophthalmol,2006,141(1):24-30.
    1Benson NC, Butt OH, Datta R, Radoeva PD, Brainard DH and Aguirre GK, The retinotopic organization of striate cortexis well predicted by surface topology [J]. Curr Biol,2012,22(21):2081-2085
    1Fischl B and Dale AM, Measuring the thickness of the human cerebral cortex from magnetic resonance images [J]. ProcNatl Acad Sci U S A,2000,97(20):11050-11055.
    2Luders E, Thompson PM, Narr KL, Toga AW, Jancke L and Gaser C, A curvature-based approach to estimate localgyrification on the cortical surface [J]. Neuroimage,2006,29(4):1224-1230.
    3Pienaar R, Fischl B, Caviness V, Makris N and Grant PE, A Methodology for Analyzing Curvature in the DevelopingBrain from Preterm to Adult [J]. Int J Imaging Syst Technol,2008,18(1):42-68.
    Van Essen DC and Drury HA, Structural and functional analyses of human cerebral cortex using a surface-based atlas [J].J Neurosci,1997,17(18):7079-7102.
    1Voets NL, Hough MG, Douaud G, Matthews PM, James A, Winmill L, Webster P and Smith S, Evidence forabnormalities of cortical development in adolescent-onset schizophrenia [J]. Neuroimage,2008,43(4):665-675.
    1Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Effects of retinal ganglion cell loss on magno-, parvo-,koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma [J]. Prog Retin Eye Res,2003,22(4):465-481.
    2Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    4Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. InvestOphthalmol Vis Sci,2013,54(1):545-554.
    5Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JM and Cornelissen FW, Changes incortical grey matter density associated with long-standing retinal visual field defects [J]. Brain,2009,132(Pt7):1898-1906.
    Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopic organization of primary visual cortex inglaucoma: Comparing fMRI measurements of cortical function with visual field loss [J]. Prog Retin Eye Res,2007,26(1):38-56.
    7Duncan RO, Sample PA, Bowd C, Weinreb RN and Zangwill LM, Arterial spin labeling fMRI measurements ofdecreased blood flow in primary visual cortex correlates with decreased visual function in human glaucoma [J]. Vision Res,2012,6051-60.
    8Qing G, Zhang S, Wang B and Wang N, Functional MRI signal changes in primary visual cortex corresponding to thecentral normal visual field of patients with primary open-angle glaucoma [J]. Invest Ophthalmol Vis Sci,2010,51(9):4627-4634.
    9Weinreb RN and Khaw PT, Primary open-angle glaucoma [J]. Lancet,2004,363(9422):1711-1720.
    1Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. InvestOphthalmol Vis Sci,2013,54(1):545-554.
    2Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JM and Cornelissen FW, Changes incortical grey matter density associated with long-standing retinal visual field defects [J]. Brain,2009,132(Pt7):1898-1906.
    3Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J and Dai C, Reduced cortical thickness in primary open-angle glaucomaand its relationship to the retinal nerve fiber layer thickness [J]. PLoS One,2013,8(9): e73208.
    4Hernowo AT, Prins D, Baseler HA, Plank T, Gouws AD, Hooymans JM, Morland AB, Greenlee MW and CornelissenFW, Morphometric analyses of the visual pathways in macular degeneration [J]. Cortex,2013,
    5Plank T, Frolo J, Brandl-Ruhle S, Renner AB, Hufendiek K, Helbig H and Greenlee MW, Gray matter alterations invisual cortex of patients with loss of central vision due to hereditary retinal dystrophies [J]. Neuroimage,2011,56(3):1556-1565.
    6Qing G, Zhang S, Wang B and Wang N, Functional MRI signal changes in primary visual cortex corresponding to thecentral normal visual field of patients with primary open-angle glaucoma [J]. Invest Ophthalmol Vis Sci,2010,51(9):4627-4634.
    7Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopic organization of primary visual cortex inglaucoma: Comparing fMRI measurements of cortical function with visual field loss [J]. Prog Retin Eye Res,2007,26(1):38-56.
    8Fitzpatrick D, Lund JS and Blasdel GG, Intrinsic connections of macaque striate cortex: afferent and efferent connectionsof lamina4C [J]. J Neurosci,1985,5(12):3329-3349
    1Lund JS, Anatomical organization of macaque monkey striate visual cortex [J].Annu Rev Neurosci,1988,11253-288.
    2Luthra A, Gupta N, Kaufman PL, Weinreb RN and Yucel YH, Oxidative injury by peroxynitrite in neural and vasculartissue of the lateral geniculate nucleus in experimental glaucoma [J]. Exp Eye Res,2005,80(1):43-49.
    3Lam D, Jim J, To E, Rasmussen C, Kaufman PL and Matsubara J, Astrocyte and microglial activation in the lateralgeniculate nucleus and visual cortex of glaucomatous and optic nerve transected primates [J]. Mol Vis,2009,152217-2229.
    Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Atrophy of relay neurons in magno-and parvocellularlayers in the lateral geniculate nucleus in experimental glaucoma [J]. Invest Ophthalmol Vis Sci,2001,42(13):3216-3222.
    5Gupta N, Ly T, Zhang Q, Kaufman PL, Weinreb RN and Yucel YH, Chronic ocular hypertension induces dendritepathology in the lateral geniculate nucleus of the brain [J]. Exp Eye Res,2007,84(1):176-184.
    6El-Shamayleh Y, Kumbhani RD, Dhruv NT and Movshon JA, Visual response properties of V1neurons projecting to V2in macaque [J]. J Neurosci,2013,33(42):16594-16605.
    7Lu HD, Chen G, Tanigawa H and Roe AW, A motion direction map in macaque V2[J]. Neuron,2010,68(5):1002-1013.
    1Rettmann ME, Kraut MA, Prince JL and Resnick SM, Cross-sectional and longitudinal analyses of anatomical sulcalchanges associated with aging [J]. Cereb Cortex,2006,16(11):1584-1594
    2Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR and Mattay VS, Normalage-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume?[J].Neurobiol Aging,2012,33(3):617e611-619.
    1Sur M, Nagakura I, Chen N and Sugihara H, Mechanisms of plasticity in the developing and adult visual cortex [J]. ProgBrain Res,2013,207243-254.
    2Safran AB and Landis T, Plasticity in the adult visual cortex: implications for the diagnosis of visual field defects andvisual rehabilitation [J]. Curr Opin Ophthalmol,1996,7(6):53-64.
    3Hossain P, Seetho IW, Browning AC and Amoaku WM, Artificial means for restoring vision [J]. BMJ,2005,330(7481):30-33.
    4Gupta N and Yucel YH, Should we treat the brain in glaucoma?[J]. Canadian Journal of Ophthalmology-JournalCanadien D Ophtalmologie,2007,42(3):409-413.
    Taub E, Uswatte G and Elbert T, New treatments in neurorehabilitation founded on basic research [J]. Nat Rev Neurosci,2002,3(3):228-236.
    12Leske MC, Open-angle glaucoma--an epidemiologic overview [J]. Ophthalmic Epidemiol,2007,14(4):166-172.
    Luthra A, Gupta N, Kaufman PL, Weinreb RN and Yucel YH, Oxidative injury by peroxynitrite in neural and vasculartissue of the lateral geniculate nucleus in experimental glaucoma [J]. Exp Eye Res,2005,80(1):43-49.
    Gupta N, Ly T, Zhang Q, Kaufman PL, Weinreb RN and Yucel YH, Chronic ocular hypertension induces dendritepathology in the lateral geniculate nucleus of the brain [J]. Exp Eye Res,2007,84(1):176-184.
    Shimazawa M, Ito Y, Inokuchi Y, Yamanaka H, Nakanishi T, Hayashi T, Ji B, Higuchi M, Suhara T, Imamura K, Araie M,Watanabe Y, Onoe H and Hara H, An alteration in the lateral geniculate nucleus of experimental glaucoma monkeys: invivo positron emission tomography imaging of glial activation [J]. PLoS One,2012,7(1): e30526.
    Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Atrophy of relay neurons in magno-and parvocellularlayers in the lateral geniculate nucleus in experimental glaucoma [J]. Invest Ophthalmol Vis Sci,2001,42(13):3216-3222.
    7Gupta N and Yucel YH, Glaucoma as a neurodegenerative disease [J]. Curr Opin Ophthalmol,2007,18(2):110-114.Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI, Voxel-based morphometry anddiffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study [J]. AJNR Am J1N0euroradiol,2012,33(1):128-134.
    Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J and Dai C, Reduced cortical thickness in primary open-angleglaucoma and its relationship to the retinal nerve fiber layer thickness [J]. PLoS One,2013,8(9): e73208.
    1Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JM and Cornelissen FW, Changes incortical grey matter density associated with long-standing retinal visual field defects [J]. Brain,2009,132(Pt7):1898-1906.
    2Duncan J, Coordination of what and where in visual attention [J]. Perception,1993,22(11):1261-1270.
    Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    Ogawa S, Lee TM, Kay AR and Tank DW, Brain magnetic resonance imaging with contrast dependent on bloodoxygenation [J]. Proc Natl Acad Sci U S A,1990,87(24):9868-9872.
    5Biswal B, Yetkin FZ, Haughton VM and Hyde JS, Functional connectivity in the motor cortex of resting human brainusing echo-planar MRI [J]. Magn Reson Med,1995,34(4):537-541.
    6Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopic organization of primary visual cortex inglaucoma: Comparing fMRI measurements of cortical function with visual field loss [J]. Prog Retin Eye Res,2007,26(1):38-56.
    7Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopic organization of primary visual cortex inglaucoma: a method for comparing cortical function with damage to the optic disk [J]. Invest Ophthalmol Vis Sci,2007,48(2):733-744.
    1Song Y, Mu K, Wang J, Lin F, Chen Z, Yan X, Hao Y, Zhu W and Zhang H, Altered spontaneous brain activity inprimary open angle glaucoma: a resting-state functional magnetic resonance imaging study [J]. PLoS One,2014,9(2):e89493.
    2Dai H, Morelli JN, Ai F, Yin D, Hu C, Xu D and Li Y, Resting-state functional MRI: functional connectivity analysis ofthe visual cortex in primary open-angle glaucoma patients [J]. Hum Brain Mapp,2013,34(10):2455-2463.
    Shmuel A and Leopold DA, Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex:Implications for functional connectivity at rest [J]. Hum Brain Mapp,2008,29(7):751-761.
    Goncalves SI, de Munck JC, Pouwels PJ, Schoonhoven R, Kuijer JP, Maurits NM, Hoogduin JM, Van Someren EJ,Heethaar RM and Lopes da Silva FH, Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subjectvariability [J]. Neuroimage,2006,30(1):203-213.
    5Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, Wang YF and Zang YF, An improved approach to detection ofamplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF [J]. J Neurosci Methods,2008,172(1):137-141.
    6Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB and Milham MP, Theoscillating brain: complex and reliable [J]. Neuroimage,2010,49(2):1432-1445.
    Mills RP, Budenz DL, Lee PP, Noecker RJ, Walt JG, Siegartel LR, Evans SJ and Doyle JJ, Categorizing the stage ofglaucoma from pre-diagnosis to end-stage disease [J]. Am J Ophthalmol,2006,141(1):24-30.
    1Ashburner J and Friston KJ, Unified segmentation [J]. Neuroimage,2005,26(3):839-851.
    2Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, Wang YF and Zang YF, An improved approach to detection ofamplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF [J]. J Neurosci Methods,2008,172(1):137-141.
    1Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, Diana Rosas H, Potthast A, Schwartz ELand Fischl B, Accurate prediction of V1location from cortical folds in a surface coordinate system [J]. Neuroimage,2008,39(4):1585-1599.
    2Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BT, Mohlberg H, Amunts K and Zilles K, Cortical foldingpatterns and predicting cytoarchitecture [J]. Cereb Cortex,2008,18(8):1973-1980.
    3Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, Palomero-Gallagher N, Armstrong E andZilles K, Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxicmap of area hOc5[J]. Cereb Cortex,2007,17(3):562-574.
    1Gusnard DA, Raichle ME and Raichle ME, Searching for a baseline: functional imaging and the resting human brain [J].Nat Rev Neurosci,2001,2(10):685-694.
    Livingstone M and Hubel D, Segregation of form, color, movement, and depth: anatomy, physiology, and perception [J].Science,1988,240(4853):740-749.
    Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopic organization of primary visual cortex inglaucoma: Comparing fMRI measurements of cortical function with visual field loss [J]. Prog Retin Eye Res,2007,26(1):38-56.
    Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopic organization of primary visual cortex inglaucoma: a method for comparing cortical function with damage to the optic disk [J]. Invest Ophthalmol Vis Sci,2007,48(2):733-744.
    Qing G, Zhang S, Wang B and Wang N, Functional MRI signal changes in primary visual cortex corresponding to thecentral normal visual field of patients with primary open-angle glaucoma [J]. Invest Ophthalmol Vis Sci,2010,51(9):4627-4634.
    Duncan RO, Sample PA, Bowd C, Weinreb RN and Zangwill LM, Arterial spin labeling fMRI measurements ofdecreased blood flow in primary visual cortex correlates with decreased visual function in human glaucoma [J]. Vision Res,2012,6051-60.
    Song Y, Mu K, Wang J, Lin F, Chen Z, Yan X, Hao Y, Zhu W and Zhang H, Altered spontaneous brain activity in primaryopen angle glaucoma: a resting-state functional magnetic resonance imaging study [J]. PLoS One,2014,9(2): e89493
    Dai H, Morelli JN, Ai F, Yin D, Hu C, Xu D and Li Y, Resting-state functional MRI: functional connectivity analysis ofthe visual cortex in primary open-angle glaucoma patients [J]. Hum Brain Mapp,2013,34(10):2455-2463.
    Lin X, Ding K, Liu Y, Yan X, Song S and Jiang T, Altered spontaneous activity in anisometropic amblyopia subjects:revealed by resting-state FMRI [J]. PLoS One,2012,7(8): e43373
    Wang T, Li Q, Guo M, Peng Y, Li Q, Qin W and Yu C, Abnormal Functional Connectivity Density in Children withAnisometropic Amblyopia at Resting-state [J]. Brain Res,2014,
    1Seghier ML, Fagan E and Price CJ, Functional subdivisions in the left angular gyrus where the semantic system meetsand diverges from the default network [J]. J Neurosci,2010,30(50):16809-16817.
    Makris N, Papadimitriou GM, Sorg S, Kennedy DN, Caviness VS and Pandya DN, The occipitofrontal fascicle inhumans: a quantitative, in vivo, DT-MRI study [J]. Neuroimage,2007,37(4):1100-1111.
    Zhang S and Li CS, Functional connectivity mapping of the human precuneus by resting state fMRI [J]. Neuroimage,2012,59(4):3548-3562.
    Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,
    Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. InvestOphthalmol Vis Sci,2013,54(1):545-554.
    ,Mantini D, Perrucci MG, Del Gratta C, Romani GL and Corbetta M, Electrophysiological signatures of resting statenetworks in the human brain [J]. Proc Natl Acad Sci U S A,2007,104(32):13170-13175.
    Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC and Raichle ME, The human brain is intrinsicallyorganized into dynamic, anticorrelated functional networks [J]. Proc Natl Acad Sci U S A,2005,102(27):9673-9678.
    Greicius MD, Krasnow B, Reiss AL and Menon V, Functional connectivity in the resting brain: a network analysis of thedefault mode hypothesis [J]. Proc Natl Acad Sci U S A,2003,100(1):253-258.
    10Fox MD, Corbetta M, Snyder AZ, Vincent JL and Raichle ME, Spontaneous neuronal activity distinguishes humandorsal and ventral attention systems [J]. Proc Natl Acad Sci U S A,2006,103(26):10046-10051.
    D'Agata F, Costa T, Caroppo P, Baudino B, Cauda F, Manfredi M, Geminiani G, Mortara P, Pinessi L, Castellano G andBisi G, Multivariate analysis of brain metabolism reveals chemotherapy effects on prefrontal cerebellar system whenrelated to dorsal attention network [J]. EJNMMI Res,2013,3(1):22.
    1Vincent JL, Kahn I, Snyder AZ, Raichle ME and Buckner RL, Evidence for a frontoparietal control system revealed byintrinsic functional connectivity [J]. J Neurophysiol,2008,100(6):3328-3342.
    Joffe KM, Raymond JE and Chrichton A, Motion coherence perimetry in glaucoma and suspected glaucoma [J]. VisionRes,1997,37(7):955-964.
    Falkenberg HK and Bex PJ, Sources of motion-sensitivity loss in glaucoma [J]. Invest Ophthalmol Vis Sci,2007,48(6):2913-2921.
    Kellermann T, Regenbogen C, De Vos M, Mossnang C, Finkelmeyer A and Habel U, Effective connectivity of the
    5human cerebellum during visual attention [J]. J Neurosci,2012,32(33):11453-11460.
    6Robinson FR and Fuchs AF, The role of the cerebellum in voluntary eye movements [J]. Annu Rev Neurosci,2001,24981-1004.
    Ceravolo R, Fattori B, Nuti A, Dell'Agnello G, Cei G, Casani A, Nacci A, Murri L and Bonuccelli U, Contribution ofcerebellum and brainstem in the control of eye movement: evidence from a functional study in a clinical model [J]. ActaNeurol Scand,2002,105(1):32-39.
    Lin X, Ding K, Liu Y, Yan X, Song S and Jiang T, Altered spontaneous activity in anisometropic amblyopia subjects:revealed by resting-state FMRI [J]. PLoS One,2012,7(8): e43373.
    Ding K, Liu Y, Yan X, Lin X and Jiang T, Altered functional connectivity of the primary visual cortex in subjects withamblyopia [J]. Neural Plast,2013,2013612086.
    1Horton JC, Landau K, Maeder P and Hoyt WF, Magnetic resonance imaging of the human lateral geniculate body [J].Arch Neurol,1990,47(11):1201-1206.
    Saeki N, Fujimoto N, Kubota M and Yamaura A, MR demonstration of partial lesions of the lateral geniculate body andits functional intra-nuclear topography [J]. Clin Neurol Neurosurg,2003,106(1):28-32.
    1Hendry SH and Calkins DJ, Neuronal chemistry and functional organization in the primate visual system [J]. TrendsNeurosci,1998,21(8):344-349.
    2Derrington AM and Lennie P, Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus ofmacaque [J]. J Physiol,1984,357219-240.
    3Hicks TP, Lee BB and Vidyasagar TR, The responses of cells in macaque lateral geniculate nucleus to sinusoidalgratings [J]. J Physiol,1983,337183-200.
    4Hendry SH and Reid RC, The koniocellular pathway in primate vision [J]. Annu Rev Neurosci,2000,23127-153.
    Andrews TJ, Halpern SD and Purves D, Correlated size variations in human visual cortex, lateral geniculate nucleus, andoptic tract [J]. J Neurosci,1997,17(8):2859-2868.
    1Gerding H, Krause K, Timmermann M and Kauffmann-Muhlmeyer T, Early visual evoked potentials: an indicator ofbioelectrical activity of the lateral geniculate nucleus?[J]. Klin Monbl Augenheilkd,2012,229(4):374-378.
    2Andolina IM, Jones HE and Sillito AM, Effects of cortical feedback on the spatial properties of relay cells in the lateralgeniculate nucleus [J]. J Neurophysiol,2013,109(3):889-899.
    Muggleton NG, Banissy MJ and Walsh VZ, Cognitive neuroscience: feedback for natural visual stimuli [J]. Curr Biol,2011,21(8): R282-283.
    4Haynes JD, Deichmann R and Rees G, Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus[J]. Nature,2005,438(7067):496-499
    5Horton JC, Landau K, Maeder P and Hoyt WF, Magnetic resonance imaging of the human lateral geniculate body [J].Arch Neurol,1990,47(11):1201-1206.
    6Fujita N, Tanaka H, Takanashi M, Hirabuki N, Abe K, Yoshimura H and Nakamura H, Lateral geniculate nucleus:anatomic and functional identification by use of MR imaging [J]. AJNR Am J Neuroradiol,2001,22(9):1719-1726.
    7吴永顺,蒋伟,叶瑞心,钟镜联,梁碧玲,黄穗乔,正常成人外侧膝状体MR显示序列的初步研究[J].国际医学放射学杂志,2013,36(3):205-209.
    1Korsholm K, Madsen KH, Frederiksen JL, Skimminge A and Lund TE, Recovery from optic neuritis: an ROI-basedanalysis of LGN and visual cortical areas [J]. Brain,2007,130(Pt5):1244-1253.
    2Li M, He HG, Shi W, Li J, Lv B, Wang CH, Miao QW, Wang ZC, Wang NL, Walter M and Sabel BA, Quantification ofthe human lateral geniculate nucleus in vivo using MR imaging based on morphometry: volume loss with age [J]. AJNRAm J Neuroradiol,2012,33(5):915-921.
    3Kleinschmidt A, Merboldt KD, Hanicke W, Steinmetz H and Frahm J, Correlational imaging of thalamocortical couplingin the primary visual pathway of the human brain [J]. J Cereb Blood Flow Metab,1994,14(6):952-957.
    4Chen W, Kato T, Zhu XH, Strupp J, Ogawa S and Ugurbil K, Mapping of lateral geniculate nucleus activation duringvisual stimulation in human brain using fMRI [J]. Magn Reson Med,1998,39(1):89-96.
    5Chen W and Zhu XH, Correlation of activation sizes between lateral geniculate nucleus and primary visual cortex inhumans [J]. Magn Reson Med,2001,45(2):202-205
    Chen W, Zhu XH, Thulborn KR and Ugurbil K, Retinotopic mapping of lateral geniculate nucleus in humans usingfunctional magnetic resonance imaging [J]. Proc Natl Acad Sci U S A,1999,96(5):2430-2434.
    1Mullen KT, Dumoulin SO and Hess RF, Color responses of the human lateral geniculate nucleus:[corrected] selectiveamplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-fieldfMRI [J]. Eur J Neurosci,2008,28(9):1911-1923.
    2Schneider KA, Richter MC and Kastner S, Retinotopic organization and functional subdivisions of the human lateralgeniculate nucleus: a high-resolution functional magnetic resonance imaging study [J]. J Neurosci,2004,24(41):8975-8985.
    3Zhang N, Zhu XH, Zhang Y, Park JK and Chen W, High-resolution fMRI mapping of ocular dominance layers in catlateral geniculate nucleus [J]. Neuroimage,2010,50(4):1456-1463.
    Koopmans PJ, Barth M and Norris DG, Layer-specific BOLD activation in human V1[J]. Hum Brain Mapp,2010,31(9):1297-1304.
    1Weber AJ, Chen H, Hubbard WC and Kaufman PL, Experimental glaucoma and cell size, density, and number in theprimate lateral geniculate nucleus [J]. Invest Ophthalmol Vis Sci,2000,41(6):1370-1379.
    2Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    3Gupta N and Yucel YH, Glaucoma as a neurodegenerative disease [J]. Curr Opin Ophthalmol,2007,18(2):110-114.
    4Yucel Y and Gupta N, Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration [J].Prog Brain Res,2008,173465-478.
    5Gupta N, Ly T, Zhang Q, Kaufman PL, Weinreb RN and Yucel YH, Chronic ocular hypertension induces dendritepathology in the lateral geniculate nucleus of the brain [J]. Exp Eye Res,2007,84(1):176-184.
    6Yucel YH, Zhang Q, Gupta N, Kaufman PL and Weinreb RN, Loss of neurons in magnocellular and parvocellular layersof the lateral geniculate nucleus in glaucoma [J]. Arch Ophthalmol,2000,118(3):378-384.
    7Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Atrophy of relay neurons in magno-and parvocellularlayers in the lateral geniculate nucleus in experimental glaucoma [J]. Invest Ophthalmol Vis Sci,2001,42(13):3216-3222.
    8Shimazawa M, Ito Y, Inokuchi Y, Yamanaka H, Nakanishi T, Hayashi T, Ji B, Higuchi M, Suhara T, Imamura K, Araie M,Watanabe Y, Onoe H and Hara H, An alteration in the lateral geniculate nucleus of experimental glaucoma monkeys: invivo positron emission tomography imaging of glial activation [J]. PLoS One,2012,7(1): e30526.
    Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    1Karwatsky P, Bertone A, Overbury O and Faubert J, Defining the nature of motion perception deficits in glaucoma usingsimple and complex motion stimuli [J]. Optom Vis Sci,2006,83(7):466-472.
    1Weber AJ, Chen H, Hubbard WC and Kaufman PL, Experimental glaucoma and cell size, density, and number in theprimate lateral geniculate nucleus [J]. Invest Ophthalmol Vis Sci,2000,41(6):1370-1379.
    2Yucel YH, Zhang Q, Gupta N, Kaufman PL and Weinreb RN, Loss of neurons in magnocellular and parvocellular layersof the lateral geniculate nucleus in glaucoma [J]. Arch Ophthalmol,2000,118(3):378-384.
    3Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Atrophy of relay neurons in magno-and parvocellularlayers in the lateral geniculate nucleus in experimental glaucoma [J]. Invest Ophthalmol Vis Sci,2001,42(13):3216-3222.
    4Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M and Yucel YH, Atrophy of the lateral geniculate nucleus inhuman glaucoma detected by magnetic resonance imaging [J]. Br J Ophthalmol,2009,93(1):56-60.
    5Dai H, Mu KT, Qi JP, Wang CY, Zhu WZ, Xia LM, Chen ZQ, Zhang H, Ai F and Morelli JN, Assessment of lateralgeniculate nucleus atrophy with3T MR imaging and correlation with clinical stage of glaucoma [J]. AJNR Am JNeuroradiol,2011,32(7):1347-1353.
    6Chen Z, Wang J, Lin F, Dai H, Mu K and Zhang H, Correlation between lateral geniculate nucleus atrophy and damageto the optic disc in glaucoma [J]. J Neuroradiol,2013,40(4):281-287.
    Korsholm K, Madsen KH, Frederiksen JL, Skimminge A and Lund TE, Recovery from optic neuritis: an ROI-basedanalysis of LGN and visual cortical areas [J]. Brain,2007,130(Pt5):1244-1253.
    1Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP and Mariotti SP, Global data on visualimpairment in the year2002[J]. Bull World Health Organ,2004,82(11):844-851.
    Foster PJ, Buhrmann R, Quigley HA and Johnson GJ, The definition and classification of glaucoma in prevalencesurveys [J]. Br J Ophthalmol,2002,86(2):238-242.
    Kitazawa Y and Yamamoto T, Glaucomatous visual field defects: their characteristics and how to detect them [J]. ClinNeurosci,1997,4(5):279-283.
    5Alexander KL, Glaucomatous cupping--appearance, pathogenesis, detection [J]. J Am Optom Assoc,1978,49(9):1056-1059.
    6Kaushik S, Pandav SS and Ram J, Neuroprotection in glaucoma [J]. J Postgrad Med,2003,49(1):90-95.
    Naskar R and Dreyer EB, New horizons in neuroprotection [J]. Surv Ophthalmol,2001,45Suppl3S250-255;discussion S273-256.
    8Wein FB and Levin LA, Current understanding of neuroprotection in glaucoma [J]. Curr Opin Ophthalmol,2002,13(2):61-67
    Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Atrophy of relay neurons in magno-and parvocellularaers in the lateral geniculate nucleus in experimental glaucoma [J]. Invest Ophthalmol Vis Sci,2001,42(13):3216-3222.
    Yucel YH, Zhang Q, Gupta N, Kaufman PL and Weinreb RN, Loss of neurons in magnocellular and parvocellular layersof the lateral geniculate nucleus in glaucoma [J]. Arch Ophthalmol,2000,118(3):378-384.
    Weber AJ, Chen H, Hubbard WC and Kaufman PL, Experimental glaucoma and cell size, density, and number in theprimate lateral geniculate nucleus [J]. Invest Ophthalmol Vis Sci,2000,41(6):1370-1379.
    1Gunny R and Yousry TA, Imaging anatomy of the vestibular and visual systems [J]. Curr Opin Neurol,2007,20(1):3-11.
    2Lagreze WA, Gaggl M, Weigel M, Schulte-Monting J, Buhler A, Bach M, Munk RD and Bley TA, Retrobulbar opticnerve diameter measured by high-speed magnetic resonance imaging as a biomarker for axonal loss in glaucomatous opticatrophy [J]. Invest Ophthalmol Vis Sci,2009,50(9):4223-4228.
    3Kashiwagi K, Okubo T and Tsukahara S, Association of magnetic resonance imaging of anterior optic pathway withglaucomatous visual field damage and optic disc cupping [J]. J Glaucoma,2004,13(3):189-195.
    4Iwata F, Patronas NJ, Caruso RC, Podgor MJ, Remaley NA, Kupfer C and Kaiser-Kupfer MI, Association of visual field,cup-disc ratio, and magnetic resonance imaging of optic chiasm [J]. Arch Ophthalmol,1997,115(6):729-732.
    5Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M and Yucel YH, Atrophy of the lateral geniculate nucleus inhuman glaucoma detected by magnetic resonance imaging [J]. Br J Ophthalmol,2009,93(1):56-60.
    6Dai H, Mu KT, Qi JP, Wang CY, Zhu WZ, Xia LM, Chen ZQ, Zhang H, Ai F and Morelli JN, Assessment of lateralgeniculate nucleus atrophy with3T MR imaging and correlation with clinical stage of glaucoma [J]. AJNR Am J7Neuroradiol,2011,32(7):1347-1353.
    Chen Z, Wang J, Lin F, Dai H, Mu K and Zhang H, Correlation between lateral geniculate nucleus atrophy and damageto the optic disc in glaucoma [J]. J Neuroradiol,2013,40(4):281-287.
    1Calkins DJ, Horner PJ, Roberts R, Gradianu M and Berkowitz BA, Manganese-enhanced MRI of the DBA/2J mousemodel of hereditary glaucoma [J]. Invest Ophthalmol Vis Sci,2008,49(11):5083-5088.
    Chan KC, Fu QL, Hui ES, So KF and Wu EX, Evaluation of the retina and optic nerve in a rat model of chronicglaucoma using in vivo manganese-enhanced magnetic resonance imaging [J]. Neuroimage,2008,40(3):1166-1174.
    3Dandona L, Hendrickson A and Quigley HA, Selective effects of experimental glaucoma on axonal transport by retinalganglion cells to the dorsal lateral geniculate nucleus [J]. Invest Ophthalmol Vis Sci,1991,32(5):1593-1599.
    4Wieshmann UC, Symms MR, Parker GJ, Clark CA, Lemieux L, Barker GJ and Shorvon SD, Diffusion tensor imagingdemonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumour [J]. J Neurol NeurosurgPsychiatry,2000,68(4):501-503.
    5Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG and Fahlbusch R, Intraoperative diffusion-tensorMR imaging: shifting of white matter tracts during neurosurgical procedures--initial experience [J]. Radiology,2005,234(1):218-225.
    1Sasaoka M, Nakamura K, Shimazawa M, Ito Y, Araie M and Hara H, Changes in visual fields and lateral geniculatenucleus in monkey laser-induced high intraocular pressure model [J]. Exp Eye Res,2008,86(5):770-782.
    Hui ES, Fu QL, So KF and Wu EX, Diffusion tensor MR study of optic nerve degeneration in glaucoma [J]. Conf ProcIEEE Eng Med Biol Soc,2007,20074312-4315.
    Garaci FG, Bolacchi F, Cerulli A, Melis M, Spano A, Cedrone C, Floris R, Simonetti G and Nucci C, Optic nerve andoptic radiation neurodegeneration in patients with glaucoma: in vivo analysis with3-T diffusion-tensor MR imaging [J].Radiology,2009,252(2):496-501.
    Nucci C, Mancino R, Martucci A, Bolacchi F, Manenti G, Cedrone C, Culasso F, Floris R, Cerulli L and Garaci FG,3-TDiffusion tensor imaging of the optic nerve in subjects with glaucoma: correlation with GDx-VCC, HRT-III and Stratusoptical coherence tomography findings [J]. Br J Ophthalmol,2012,96(7):976-980.
    Chang ST, Xu J, Trinkaus K, Pekmezci M, Arthur SN, Song SK and Barnett EM, Optic Nerve Diffusion Tensor ImagingParameters and Their Correlation With Optic Disc Topography and Disease Severity in Adult Glaucoma Patients andControls [J]. J Glaucoma,2013,
    Wang MY, Wu K, Xu JM, Dai J, Qin W, Liu J, Tian J and Shi D, Quantitative3-T diffusion tensor imaging in detectingoptic nerve degeneration in patients with glaucoma: association with retinal nerve fiber layer thickness and clinicalseverity [J]. Neuroradiology,2013,55(4):493-498.
    El-Rafei A, Engelhorn T, Warntges S, Dorfler A, Hornegger J and Michelson G, A framework for voxel-basedmorphometric analysis of the optic radiation using diffusion tensor imaging in glaucoma [J]. Magn Reson Imaging,2011,29(8):1076-1087.
    Engelhorn T, Michelson G, Waerntges S, Struffert T, Haider S and Doerfler A, Diffusion tensor imaging detectsrarefaction of optic radiation in glaucoma patients [J]. Acad Radiol,2011,18(6):764-769.
    Michelson G, Engelhorn T, Warntges S, El Rafei A, Hornegger J and Doerfler A, DTI parameters of axonal integrity anddemyelination of the optic radiation correlate with glaucoma indices [J]. Graefes Arch Clin Exp Ophthalmol,2013,251(1):243-253.
    1Ashburner J and Friston KJ, Voxel-based morphometry--the methods [J]. Neuroimage,2000,11(6Pt1):805-821.
    Hyde KL, Samson F, Evans AC and Mottron L, Neuroanatomical differences in brain areas implicated in perceptual andother core features of autism revealed by cortical thickness analysis and voxel-based morphometry [J]. Hum Brain Mapp,2010,31(4):556-566.
    4Fischl B, FreeSurfer [J]. Neuroimage,2012,62(2):774-781.
    Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma and neural degeneration in intracranialoptic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    Hernowo AT, Boucard CC, Jansonius NM, Hooymans JM and Cornelissen FW, Automated morphometry of the visualpathway in primary open-angle glaucoma [J]. Invest Ophthalmol Vis Sci,2011,52(5):2758-2766.
    Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JM and Cornelissen FW, Changes incortical grey matter density associated with long-standing retinal visual field defects [J]. Brain,2009,132(Pt7):1898-1906.
    1Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X and Gong Q,Structural brain abnormalities in patients with primary open-angle glaucoma: a study with3T MR imaging [J]. InvestOphthalmol Vis Sci,2013,54(1):545-554.
    2Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI, Voxel-based morphometry anddiffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study [J]. AJNR Am JNeuroradiol,2012,33(1):128-134.
    3Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J, Voxel-based morphometry ofthe visual-related cortex in primary open angle glaucoma [J]. Curr Eye Res,2012,37(9):794-802.
    4Chen Z, Wang J, Lin F, Dai H, Mu K and Zhang H, Correlation between lateral geniculate nucleus atrophy and damageto the optic disc in glaucoma [J]. J Neuroradiol,2013,40(4):281-287.
    5Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J and Dai C, Reduced cortical thickness in primary open-angle glaucomaand its relationship to the retinal nerve fiber layer thickness [J]. PLoS One,2013,8(9): e73208.
    6Williams AL, Lackey J, Wizov SS, Chia TM, Gatla S, Moster ML, Sergott R, Spaeth GL and Lai S, Evidence forwidespread structural brain changes in glaucoma: a preliminary voxel-based MRI study [J]. Invest Ophthalmol Vis Sci,2013,54(8):5880-5887.
    1Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopic organization of primary visual cortex inglaucoma: a method for comparing cortical function with damage to the optic disk [J]. Invest Ophthalmol Vis Sci,2007,48(2):733-744.
    2Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopic organization of primary visual cortex inglaucoma: Comparing fMRI measurements of cortical function with visual field loss [J]. Prog Retin Eye Res,2007,26(1):38-56.
    3Qing G, Zhang S, Wang B and Wang N, Functional MRI signal changes in primary visual cortex corresponding to thecentral normal visual field of patients with primary open-angle glaucoma [J]. Invest Ophthalmol Vis Sci,2010,51(9):4627-4634.
    4Dai H, Morelli JN, Ai F, Yin D, Hu C, Xu D and Li Y, Resting-state functional MRI: functional connectivity analysis ofthe visual cortex in primary open-angle glaucoma patients [J]. Hum Brain Mapp,2013,34(10):2455-2463
    5Song Y, Mu K, Wang J, Lin F, Chen Z, Yan X, Hao Y, Zhu W and Zhang H, Altered spontaneous brain activity inprimary open angle glaucoma: a resting-state functional magnetic resonance imaging study [J]. PLoS One,2014,9(2):e89493.
    1Detre JA, Leigh JS, Williams DS and Koretsky AP, Perfusion imaging [J]. Magn Reson Med,1992,23(1):37-45.
    2Kim SG, Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR)technique: application to functional mapping [J]. Magn Reson Med,1995,34(3):293-301.
    3Luh WM, Wong EC, Bandettini PA, Ward BD and Hyde JS, Comparison of simultaneously measured perfusion andBOLD signal increases during brain activation with T(1)-based tissue identification [J]. Magn Reson Med,2000,44(1):137-143.
    4Duncan RO, Sample PA, Bowd C, Weinreb RN and Zangwill LM, Arterial spin labeling fMRI measurements ofdecreased blood flow in primary visual cortex correlates with decreased visual function in human glaucoma [J]. Vision Res,2012,6051-60.
    5Auer DP, In vivo imaging markers of neurodegeneration of the substantia nigra [J]. Exp Gerontol,2009,44(1-2):4-9.
    6Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ and Meuli R, Understanding diffusion MR imaging techniques:from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond [J]. Radiographics,2006,26Suppl1S205-223.
    7Ramli N, Rahmat K, Azmi K and Chong HT, The past, present and future of imaging in multiple sclerosis [J]. J ClinNeurosci,2010,17(4):422-427.
    Chan KC, So KF and Wu EX, Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex inan experimental model of chronic glaucoma [J]. Exp Eye Res,2009,88(1):65-70.
    1Boucard CC, Hoogduin JM, van der Grond J and Cornelissen FW, Occipital proton magnetic resonance spectroscopy(1H-MRS) reveals normal metabolite concentrations in retinal visual field defects [J]. PLoS One,2007,2(2): e222.
    1. Leske MC, Open-angle glaucoma--an epidemiologic overview [J]. OphthalmicEpidemiol,2007,14(4):166-172.
    2. Quigley HA and Broman AT, The number of people with glaucoma worldwide in2010and2020[J]. Br J Ophthalmol,2006,90(3):262-267.
    3. Harwerth RS and Quigley HA, Visual field defects and retinal ganglion cell losses inpatients with glaucoma [J]. Arch Ophthalmol,2006,124(6):853-859.
    4. He M, Foster PJ, Ge J, Huang W, Zheng Y, Friedman DS, Lee PS and Khaw PT,Prevalence and clinical characteristics of glaucoma in adult Chinese: apopulation-based study in Liwan District, Guangzhou [J]. Invest Ophthalmol Vis Sci,2006,47(7):2782-2788.
    5. Boland MV and Quigley HA, Risk factors and open-angle glaucoma: classification andapplication [J]. J Glaucoma,2007,16(4):406-418.
    6. Foster PJ, Buhrmann R, Quigley HA and Johnson GJ, The definition and classificationof glaucoma in prevalence surveys [J]. Br J Ophthalmol,2002,86(2):238-242.
    7. Wolfs RC, Borger PH, Ramrattan RS, Klaver CC, Hulsman CA, Hofman A, VingerlingJR, Hitchings RA and de Jong PT, Changing views on open-angle glaucoma:definitions and prevalences--The Rotterdam Study [J]. Invest Ophthalmol Vis Sci,2000,41(11):3309-3321.
    8. Weber AJ, Chen H, Hubbard WC and Kaufman PL, Experimental glaucoma and cellsize, density, and number in the primate lateral geniculate nucleus [J]. InvestOphthalmol Vis Sci,2000,41(6):1370-1379.
    9. Yucel YH, Zhang Q, Gupta N, Kaufman PL and Weinreb RN, Loss of neurons inmagnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma [J].Arch Ophthalmol,2000,118(3):378-384.
    10. Crawford ML, Harwerth RS, Smith EL,3rd, Mills S and Ewing B, Experimentalglaucoma in primates: changes in cytochrome oxidase blobs in V1cortex [J]. InvestOphthalmol Vis Sci,2001,42(2):358-364.
    11. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Atrophy of relay neuronsin magno-and parvocellular layers in the lateral geniculate nucleus in experimentalglaucoma [J]. Invest Ophthalmol Vis Sci,2001,42(13):3216-3222.
    12. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Effects of retinalganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculatenucleus and visual cortex in glaucoma [J]. Prog Retin Eye Res,2003,22(4):465-481.
    13. Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma andneural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visualcortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    14. Gupta N and Yucel YH, Glaucoma as a neurodegenerative disease [J]. Curr OpinOphthalmol,2007,18(2):110-114.
    15. Yucel Y and Gupta N, Glaucoma of the brain: a disease model for the study oftranssynaptic neural degeneration [J]. Prog Brain Res,2008,173465-478.
    16. Chang ST, Xu J, Trinkaus K, Pekmezci M, Arthur SN, Song SK and Barnett EM, OpticNerve Diffusion Tensor Imaging Parameters and Their Correlation With Optic DiscTopography and Disease Severity in Adult Glaucoma Patients and Controls [J]. JGlaucoma,2013,
    17. Chen Z, Lin F, Wang J, Li Z, Dai H, Mu K, Ge J and Zhang H, Diffusion tensormagnetic resonance imaging reveals visual pathway damage that correlates withclinical severity in glaucoma [J]. Clin Experiment Ophthalmol,2013,41(1):43-49.
    18. Michelson G, Engelhorn T, Warntges S, El Rafei A, Hornegger J and Doerfler A, DTIparameters of axonal integrity and demyelination of the optic radiation correlate withglaucoma indices [J]. Graefes Arch Clin Exp Ophthalmol,2013,251(1):243-253.
    19. Wang MY, Wu K, Xu JM, Dai J, Qin W, Liu J, Tian J and Shi D, Quantitative3-Tdiffusion tensor imaging in detecting optic nerve degeneration in patients withglaucoma: association with retinal nerve fiber layer thickness and clinical severity [J].Neuroradiology,2013,55(4):493-498.
    20. Ashburner J and Friston KJ, Voxel-based morphometry--the methods [J]. Neuroimage,2000,11(6Pt1):805-821.
    21. Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J,Voxel-based morphometry of the visual-related cortex in primary open angle glaucoma[J]. Curr Eye Res,2012,37(9):794-802.
    22. Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB,Chen X, Liu X and Gong Q, Structural brain abnormalities in patients with primaryopen-angle glaucoma: a study with3T MR imaging [J]. Invest Ophthalmol Vis Sci,2013,54(1):545-554.
    23. Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI,Voxel-based morphometry and diffusion tensor imaging of the optic pathway inprimary open-angle glaucoma: a preliminary study [J]. AJNR Am J Neuroradiol,2012,33(1):128-134.
    24. Hyde KL, Samson F, Evans AC and Mottron L, Neuroanatomical differences in brainareas implicated in perceptual and other core features of autism revealed by corticalthickness analysis and voxel-based morphometry [J]. Hum Brain Mapp,2010,31(4):556-566.
    25. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, Lee JM, Kim SI andEvans AC, Automated3-D extraction and evaluation of the inner and outer corticalsurfaces using a Laplacian map and partial volume effect classification [J]. Neuroimage,2005,27(1):210-221.
    26. MacDonald D, Kabani N, Avis D and Evans AC, Automated3-D extraction of innerand outer surfaces of cerebral cortex from MRI [J]. Neuroimage,2000,12(3):340-356.
    27. Schultz CC, Wagner G, Koch K, Gaser C, Roebel M, Schachtzabel C, Nenadic I,Reichenbach JR, Sauer H and Schlosser RG, The visual cortex in schizophrenia:alterations of gyrification rather than cortical thickness--a combined cortical shapeanalysis [J]. Brain Struct Funct,2013,218(1):51-58.
    28. Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopicorganization of primary visual cortex in glaucoma: Comparing fMRI measurements ofcortical function with visual field loss [J]. Prog Retin Eye Res,2007,26(1):38-56.
    29. Song Y, Mu K, Wang J, Lin F, Chen Z, Yan X, Hao Y, Zhu W and Zhang H, Alteredspontaneous brain activity in primary open angle glaucoma: a resting-state functionalmagnetic resonance imaging study [J]. PLoS One,2014,9(2): e89493.
    30. Dai H, Morelli JN, Ai F, Yin D, Hu C, Xu D and Li Y, Resting-state functional MRI:functional connectivity analysis of the visual cortex in primary open-angle glaucomapatients [J]. Hum Brain Mapp,2013,34(10):2455-2463.
    31. Wostyn P, Audenaert K and De Deyn PP, Alzheimer's disease: cerebral glaucoma?[J].Med Hypotheses,2010,74(6):973-977.
    32. Crawford ML, Harwerth RS, Smith EL,3rd, Shen F and Carter-Dawson L, Glaucomain primates: cytochrome oxidase reactivity in parvo-and magnocellular pathways [J].Invest Ophthalmol Vis Sci,2000,41(7):1791-1802.
    33. Williams AL, Lackey J, Wizov SS, Chia TM, Gatla S, Moster ML, Sergott R, SpaethGL and Lai S, Evidence for widespread structural brain changes in glaucoma: apreliminary voxel-based MRI study [J]. Invest Ophthalmol Vis Sci,2013,54(8):5880-5887.
    34. Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JMand Cornelissen FW, Changes in cortical grey matter density associated withlong-standing retinal visual field defects [J]. Brain,2009,132(Pt7):1898-1906.
    35. Nickells RW, Retinal ganglion cell death in glaucoma: the how, the why, and the maybe[J]. J Glaucoma,1996,5(5):345-356.
    36. Lalezary M, Medeiros FA, Weinreb RN, Bowd C, Sample PA, Tavares IM, Tafreshi Aand Zangwill LM, Baseline optical coherence tomography predicts the development ofglaucomatous change in glaucoma suspects [J]. Am J Ophthalmol,2006,142(4):576-582.
    37. Parikh RS, Parikh S, Sekhar GC, Kumar RS, Prabakaran S, Babu JG and Thomas R,Diagnostic capability of optical coherence tomography (Stratus OCT3) in earlyglaucoma [J]. Ophthalmology,2007,114(12):2238-2243.
    38. Park HJ, Lee JD, Kim EY, Park B, Oh MK, Lee S and Kim JJ, Morphologicalalterations in the congenital blind based on the analysis of cortical thickness and surfacearea [J]. Neuroimage,2009,47(1):98-106.
    39. Voets NL, Hough MG, Douaud G, Matthews PM, James A, Winmill L, Webster P andSmith S, Evidence for abnormalities of cortical development in adolescent-onsetschizophrenia [J]. Neuroimage,2008,43(4):665-675.
    40. Fornito A, Yucel M, Wood SJ, Adamson C, Velakoulis D, Saling MM, McGorry PD andPantelis C, Surface-based morphometry of the anterior cingulate cortex in first episodeschizophrenia [J]. Hum Brain Mapp,2008,29(4):478-489.
    41. Fischl B, FreeSurfer [J]. Neuroimage,2012,62(2):774-781.
    42. Lerch JP and Evans AC, Cortical thickness analysis examined through power analysisand a population simulation [J]. Neuroimage,2005,24(1):163-173.
    43. Oldfield RC, The assessment and analysis of handedness: the Edinburgh inventory [J].Neuropsychologia,1971,9(1):97-113.
    44. Mills RP, Budenz DL, Lee PP, Noecker RJ, Walt JG, Siegartel LR, Evans SJ and DoyleJJ, Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease [J]. AmJ Ophthalmol,2006,141(1):24-30.
    45. Sled JG, Zijdenbos AP and Evans AC, A nonparametric method for automatic correctionof intensity nonuniformity in MRI data [J]. IEEE Trans Med Imaging,1998,17(1):87-97.
    46. Collins DL, Neelin P, Peters TM and Evans AC, Automatic3D intersubject registrationof MR volumetric data in standardized Talairach space [J]. J Comput Assist Tomogr,1994,18(2):192-205.
    47. Zijdenbos AP, Forghani R and Evans AC, Automatic "pipeline" analysis of3-D MRIdata for clinical trials: application to multiple sclerosis [J]. IEEE Trans Med Imaging,2002,21(10):1280-1291.
    48. Lyttelton O, Boucher M, Robbins S and Evans A, An unbiased iterative groupregistration template for cortical surface analysis [J]. Neuroimage,2007,34(4):1535-1544.
    49. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ and Evans AC, A unifiedstatistical approach for determining significant signals in images of cerebral activation[J]. Hum Brain Mapp,1996,4(1):58-73.
    50. Ashburner J and Friston KJ, Why voxel-based morphometry should be used [J].Neuroimage,2001,14(6):1238-1243.
    51. Ashburner J, Computational anatomy with the SPM software [J]. Magn Reson Imaging,2009,27(8):1163-1174.
    52. Engel SA, Glover GH and Wandell BA, Retinotopic organization in human visualcortex and the spatial precision of functional MRI [J]. Cereb Cortex,1997,7(2):181-192.
    53. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A and Zook JM,Somatosensory cortical map changes following digit amputation in adult monkeys [J]. JComp Neurol,1984,224(4):591-605.
    54. Johansson BB, Brain plasticity in health and disease [J]. Keio J Med,2004,53(4):231-246.
    55. Lam D, Jim J, To E, Rasmussen C, Kaufman PL and Matsubara J, Astrocyte andmicroglial activation in the lateral geniculate nucleus and visual cortex of glaucomatousand optic nerve transected primates [J]. Mol Vis,2009,152217-2229.
    56. Vickers JC, Hof PR, Schumer RA, Wang RF, Podos SM and Morrison JH,Magnocellular and parvocellular visual pathways are both affected in a macaquemonkey model of glaucoma [J]. Aust N Z J Ophthalmol,1997,25(3):239-243.
    57. Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J and Dai C, Reduced cortical thicknessin primary open-angle glaucoma and its relationship to the retinal nerve fiber layerthickness [J]. PLoS One,2013,8(9): e73208.
    58. Chen Z, Wang J, Lin F, Dai H, Mu K and Zhang H, Correlation between lateralgeniculate nucleus atrophy and damage to the optic disc in glaucoma [J]. J Neuroradiol,2013,40(4):281-287.
    59. Bolacchi F, Garaci FG, Martucci A, Meschini A, Fornari M, Marziali S, Mancino R,Squillaci E, Floris R, Cerulli L, Simonetti G and Nucci C, Differences betweenproximal versus distal intraorbital optic nerve diffusion tensor magnetic resonanceimaging properties in glaucoma patients [J]. Invest Ophthalmol Vis Sci,2012,53(7):4191-4196.
    60. Dai H, Mu KT, Qi JP, Wang CY, Zhu WZ, Xia LM, Chen ZQ, Zhang H, Ai F andMorelli JN, Assessment of lateral geniculate nucleus atrophy with3T MR imaging andcorrelation with clinical stage of glaucoma [J]. AJNR Am J Neuroradiol,2011,32(7):1347-1353.
    61. Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M and Yucel YH, Atrophy ofthe lateral geniculate nucleus in human glaucoma detected by magnetic resonanceimaging [J]. Br J Ophthalmol,2009,93(1):56-60.
    62. Hernowo AT, Boucard CC, Jansonius NM, Hooymans JM and Cornelissen FW,Automated morphometry of the visual pathway in primary open-angle glaucoma [J].Invest Ophthalmol Vis Sci,2011,52(5):2758-2766.
    63. Garaci FG, Bolacchi F, Cerulli A, Melis M, Spano A, Cedrone C, Floris R, Simonetti Gand Nucci C, Optic nerve and optic radiation neurodegeneration in patients withglaucoma: in vivo analysis with3-T diffusion-tensor MR imaging [J]. Radiology,2009,252(2):496-501.
    64. Weinreb RN and Khaw PT, Primary open-angle glaucoma [J]. Lancet,2004,363(9422):1711-1720.
    65. Fitzpatrick D, Lund JS and Blasdel GG, Intrinsic connections of macaque striate cortex:afferent and efferent connections of lamina4C [J]. J Neurosci,1985,5(12):3329-3349.
    66. Quigley HA, Dunkelberger GR and Green WR, Chronic human glaucoma causingselectively greater loss of large optic nerve fibers [J]. Ophthalmology,1988,95(3):357-363.
    67. Quigley HA, Dunkelberger GR and Green WR, Retinal ganglion cell atrophy correlatedwith automated perimetry in human eyes with glaucoma [J]. Am J Ophthalmol,1989,107(5):453-464.
    68. Bosworth CF, Sample PA and Weinreb RN, Perimetric motion thresholds are elevatedin glaucoma suspects and glaucoma patients [J]. Vision Res,1997,37(14):1989-1997.
    69. Karwatsky P, Bertone A, Overbury O and Faubert J, Defining the nature of motionperception deficits in glaucoma using simple and complex motion stimuli [J]. OptomVis Sci,2006,83(7):466-472.
    70. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK and Fischl B, A hybridapproach to the skull stripping problem in MRI [J]. Neuroimage,2004,22(3):1060-1075.
    71. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT and Dale AM,Sequence-independent segmentation of magnetic resonance images [J]. Neuroimage,2004,23Suppl1S69-84.
    72. Segonne F, Pacheco J and Fischl B, Geometrically accurate topology-correction ofcortical surfaces using nonseparating loops [J]. IEEE Trans Med Imaging,2007,26(4):518-529.
    73. Fischl B and Dale AM, Measuring the thickness of the human cerebral cortex frommagnetic resonance images [J]. Proc Natl Acad Sci U S A,2000,97(20):11050-11055.
    74. Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, DianaRosas H, Potthast A, Schwartz EL and Fischl B, Accurate prediction of V1locationfrom cortical folds in a surface coordinate system [J]. Neuroimage,2008,39(4):1585-1599.
    75. Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BT, Mohlberg H, AmuntsK and Zilles K, Cortical folding patterns and predicting cytoarchitecture [J]. CerebCortex,2008,18(8):1973-1980.
    76. Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M,Palomero-Gallagher N, Armstrong E and Zilles K, Cytoarchitectonic analysis of thehuman extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map ofarea hOc5[J]. Cereb Cortex,2007,17(3):562-574.
    77. Lund JS, Anatomical organization of macaque monkey striate visual cortex [J]. AnnuRev Neurosci,1988,11253-288.
    78. Luthra A, Gupta N, Kaufman PL, Weinreb RN and Yucel YH, Oxidative injury byperoxynitrite in neural and vascular tissue of the lateral geniculate nucleus inexperimental glaucoma [J]. Exp Eye Res,2005,80(1):43-49.
    79. Merigan WH and Maunsell JH, How parallel are the primate visual pathways?[J].Annu Rev Neurosci,1993,16369-402.
    80. Bradley DC, Chang GC and Andersen RA, Encoding of three-dimensionalstructure-from-motion by primate area MT neurons [J]. Nature,1998,392(6677):714-717.
    81. Krug K, Cicmil N, Parker AJ and Cumming BG, A Causal Role for V5/MT NeuronsCoding Motion-Disparity Conjunctions in Resolving Perceptual Ambiguity [J]. CurrBiol,2013,23(15):1454-1459.
    82. Wall M and Ketoff KM, Random dot motion perimetry in patients with glaucoma andin normal subjects [J]. Am J Ophthalmol,1995,120(5):587-596.
    83. Joffe KM, Raymond JE and Chrichton A, Motion coherence perimetry in glaucoma andsuspected glaucoma [J]. Vision Res,1997,37(7):955-964.
    84. Sample PA, Bosworth CF and Weinreb RN, Short-wavelength automated perimetry andmotion automated perimetry in patients with glaucoma [J]. Arch Ophthalmol,1997,115(9):1129-1133.
    85. Gu B, Wu DZ, Liang J and Yu M, Motion perception of short-wavelength sensitivecones in glaucoma using random dots moving [J]. Yan Ke Xue Bao,2001,17(3):176-179.
    86. Shabana N, Cornilleau Peres V, Carkeet A and Chew PT, Motion perception inglaucoma patients: a review [J]. Surv Ophthalmol,2003,48(1):92-106.
    87. McKendrick AM, Badcock DR and Morgan WH, The detection of both global motionand global form is disrupted in glaucoma [J]. Invest Ophthalmol Vis Sci,2005,46(10):3693-3701.
    88. Falkenberg HK and Bex PJ, Sources of motion-sensitivity loss in glaucoma [J]. InvestOphthalmol Vis Sci,2007,48(6):2913-2921.
    89. Rauscher FG, Chisholm CM, Edgar DF and Barbur JL, Assessment of novel binocularcolour, motion and contrast tests in glaucoma [J]. Cell Tissue Res,2013,353(2):297-310.
    90. Quigley HA, Open-angle glaucoma [J]. N Engl J Med,1993,328(15):1097-1106.
    91. Rubenstein JL and Rakic P, Genetic control of cortical development [J]. Cereb Cortex,1999,9(6):521-523.
    92. Kochunov P, Charlesworth J, Winkler A, Hong LE, Nichols TE, Curran JE, Sprooten E,Jahanshad N, Thompson PM, Johnson MP, Kent JW, Jr., Landman BA, Mitchell B,Cole SA, Dyer TD, Moses EK, Goring HH, Almasy L, Duggirala R, Olvera RL, GlahnDC and Blangero J, Transcriptomics of cortical gray matter thickness decline duringnormal aging [J]. Neuroimage,2013,82273-283.
    93. Wenger E, Schaefer S, Noack H, Kuhn S, Martensson J, Heinze HJ, Duzel E, BackmanL, Lindenberger U and Lovden M, Cortical thickness changes following spatialnavigation training in adulthood and aging [J]. Neuroimage,2012,59(4):3389-3397.
    94. Thambisetty M, Wan J, Carass A, An Y, Prince JL and Resnick SM, Longitudinalchanges in cortical thickness associated with normal aging [J]. Neuroimage,2010,52(4):1215-1223.
    95. Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, Giedd J, Castellanos FXand Rapoport J, Longitudinal mapping of cortical thickness and clinical outcome inchildren and adolescents with attention-deficit/hyperactivity disorder [J]. Arch GenPsychiatry,2006,63(5):540-549.
    96. Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H and Evans AC,Automated cortical thickness measurements from MRI can accurately separateAlzheimer's patients from normal elderly controls [J]. Neurobiol Aging,2008,29(1):23-30.
    97. Palaniyappan L and Liddle PF, Differential effects of surface area, gyrification andcortical thickness on voxel based morphometric deficits in schizophrenia [J].Neuroimage,2012,60(1):693-699.
    98. Liu T, Lipnicki DM, Zhu W, Tao D, Zhang C, Cui Y, Jin JS, Sachdev PS and Wen W,Cortical gyrification and sulcal spans in early stage Alzheimer's disease [J]. PLoS One,2012,7(2): e31083.
    99. Benson NC, Butt OH, Datta R, Radoeva PD, Brainard DH and Aguirre GK, Theretinotopic organization of striate cortex is well predicted by surface topology [J]. CurrBiol,2012,22(21):2081-2085.
    100.Luders E, Thompson PM, Narr KL, Toga AW, Jancke L and Gaser C, A curvature-basedapproach to estimate local gyrification on the cortical surface [J]. Neuroimage,2006,29(4):1224-1230.
    101.Pienaar R, Fischl B, Caviness V, Makris N and Grant PE, A Methodology for AnalyzingCurvature in the Developing Brain from Preterm to Adult [J]. Int J Imaging SystTechnol,2008,18(1):42-68.
    102.Van Essen DC and Drury HA, Structural and functional analyses of human cerebralcortex using a surface-based atlas [J]. J Neurosci,1997,17(18):7079-7102.
    103.Duncan RO, Sample PA, Bowd C, Weinreb RN and Zangwill LM, Arterial spin labelingfMRI measurements of decreased blood flow in primary visual cortex correlates withdecreased visual function in human glaucoma [J]. Vision Res,2012,6051-60.
    104.Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopicorganization of primary visual cortex in glaucoma: a method for comparing corticalfunction with damage to the optic disk [J]. Invest Ophthalmol Vis Sci,2007,48(2):733-744.
    105.Qing G, Zhang S, Wang B and Wang N, Functional MRI signal changes in primaryvisual cortex corresponding to the central normal visual field of patients with primaryopen-angle glaucoma [J]. Invest Ophthalmol Vis Sci,2010,51(9):4627-4634.
    106.Hernowo AT, Prins D, Baseler HA, Plank T, Gouws AD, Hooymans JM, Morland AB,Greenlee MW and Cornelissen FW, Morphometric analyses of the visual pathways inmacular degeneration [J]. Cortex,2013,
    107.Plank T, Frolo J, Brandl-Ruhle S, Renner AB, Hufendiek K, Helbig H and GreenleeMW, Gray matter alterations in visual cortex of patients with loss of central vision dueto hereditary retinal dystrophies [J]. Neuroimage,2011,56(3):1556-1565.
    108.Gupta N, Ly T, Zhang Q, Kaufman PL, Weinreb RN and Yucel YH, Chronic ocularhypertension induces dendrite pathology in the lateral geniculate nucleus of the brain[J]. Exp Eye Res,2007,84(1):176-184.
    109.El-Shamayleh Y, Kumbhani RD, Dhruv NT and Movshon JA, Visual responseproperties of V1neurons projecting to V2in macaque [J]. J Neurosci,2013,33(42):16594-16605.
    110.Lu HD, Chen G, Tanigawa H and Roe AW, A motion direction map in macaque V2[J].Neuron,2010,68(5):1002-1013.
    111.Rettmann ME, Kraut MA, Prince JL and Resnick SM, Cross-sectional and longitudinalanalyses of anatomical sulcal changes associated with aging [J]. Cereb Cortex,2006,16(11):1584-1594.
    112.Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A,Weinberger DR and Mattay VS, Normal age-related brain morphometric changes:nonuniformity across cortical thickness, surface area and gray matter volume?[J].Neurobiol Aging,2012,33(3):617e611-619.
    113.Sur M, Nagakura I, Chen N and Sugihara H, Mechanisms of plasticity in thedeveloping and adult visual cortex [J]. Prog Brain Res,2013,207243-254.
    114.Safran AB and Landis T, Plasticity in the adult visual cortex: implications for thediagnosis of visual field defects and visual rehabilitation [J]. Curr Opin Ophthalmol,1996,7(6):53-64.
    115.Hossain P, Seetho IW, Browning AC and Amoaku WM, Artificial means for restoringvision [J]. BMJ,2005,330(7481):30-33.
    116.Gupta N and Yucel YH, Should we treat the brain in glaucoma?[J]. Canadian Journalof Ophthalmology-Journal Canadien D Ophtalmologie,2007,42(3):409-413.
    117.Taub E, Uswatte G and Elbert T, New treatments in neurorehabilitation founded onbasic research [J]. Nat Rev Neurosci,2002,3(3):228-236.
    118.Shimazawa M, Ito Y, Inokuchi Y, Yamanaka H, Nakanishi T, Hayashi T, Ji B, HiguchiM, Suhara T, Imamura K, Araie M, Watanabe Y, Onoe H and Hara H, An alteration inthe lateral geniculate nucleus of experimental glaucoma monkeys: in vivo positronemission tomography imaging of glial activation [J]. PLoS One,2012,7(1): e30526.
    119.Duncan J, Coordination of what and where in visual attention [J]. Perception,1993,22(11):1261-1270.
    120.Ogawa S, Lee TM, Kay AR and Tank DW, Brain magnetic resonance imaging withcontrast dependent on blood oxygenation [J]. Proc Natl Acad Sci U S A,1990,87(24):9868-9872.
    121.Biswal B, Yetkin FZ, Haughton VM and Hyde JS, Functional connectivity in the motorcortex of resting human brain using echo-planar MRI [J]. Magn Reson Med,1995,34(4):537-541.
    122.Shmuel A and Leopold DA, Neuronal correlates of spontaneous fluctuations in fMRIsignals in monkey visual cortex: Implications for functional connectivity at rest [J].Hum Brain Mapp,2008,29(7):751-761.
    123.Leopold DA, Murayama Y and Logothetis NK, Very slow activity fluctuations inmonkey visual cortex: implications for functional brain imaging [J]. Cereb Cortex,2003,13(4):422-433.
    124.Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A and KleinschmidtA, Electroencephalographic signatures of attentional and cognitive default modes inspontaneous brain activity fluctuations at rest [J]. Proc Natl Acad Sci U S A,2003,100(19):11053-11058.
    125.Goncalves SI, de Munck JC, Pouwels PJ, Schoonhoven R, Kuijer JP, Maurits NM,Hoogduin JM, Van Someren EJ, Heethaar RM and Lopes da Silva FH, Correlating thealpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability [J].Neuroimage,2006,30(1):203-213.
    126.Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, Wang YF and Zang YF, Animproved approach to detection of amplitude of low-frequency fluctuation (ALFF) forresting-state fMRI: fractional ALFF [J]. J Neurosci Methods,2008,172(1):137-141.
    127.Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX,Biswal BB and Milham MP, The oscillating brain: complex and reliable [J].Neuroimage,2010,49(2):1432-1445.
    128.Ashburner J and Friston KJ, Unified segmentation [J]. Neuroimage,2005,26(3):839-851.
    129.Gusnard DA, Raichle ME and Raichle ME, Searching for a baseline: functionalimaging and the resting human brain [J]. Nat Rev Neurosci,2001,2(10):685-694.
    130.Livingstone M and Hubel D, Segregation of form, color, movement, and depth:anatomy, physiology, and perception [J]. Science,1988,240(4853):740-749.
    131.Lin X, Ding K, Liu Y, Yan X, Song S and Jiang T, Altered spontaneous activity inanisometropic amblyopia subjects: revealed by resting-state FMRI [J]. PLoS One,2012,7(8): e43373.
    132.Wang T, Li Q, Guo M, Peng Y, Li Q, Qin W and Yu C, Abnormal FunctionalConnectivity Density in Children with Anisometropic Amblyopia at Resting-state [J].Brain Res,2014,
    133.Seghier ML, Fagan E and Price CJ, Functional subdivisions in the left angular gyruswhere the semantic system meets and diverges from the default network [J]. J Neurosci,2010,30(50):16809-16817.
    134.Makris N, Papadimitriou GM, Sorg S, Kennedy DN, Caviness VS and Pandya DN, Theoccipitofrontal fascicle in humans: a quantitative, in vivo, DT-MRI study [J].Neuroimage,2007,37(4):1100-1111.
    135.Zhang S and Li CS, Functional connectivity mapping of the human precuneus byresting state fMRI [J]. Neuroimage,2012,59(4):3548-3562.
    136.Mantini D, Perrucci MG, Del Gratta C, Romani GL and Corbetta M,Electrophysiological signatures of resting state networks in the human brain [J]. ProcNatl Acad Sci U S A,2007,104(32):13170-13175.
    137.Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC and Raichle ME, Thehuman brain is intrinsically organized into dynamic, anticorrelated functional networks[J]. Proc Natl Acad Sci U S A,2005,102(27):9673-9678.
    138.Greicius MD, Krasnow B, Reiss AL and Menon V, Functional connectivity in theresting brain: a network analysis of the default mode hypothesis [J]. Proc Natl Acad SciU S A,2003,100(1):253-258.
    139.Fox MD, Corbetta M, Snyder AZ, Vincent JL and Raichle ME, Spontaneous neuronalactivity distinguishes human dorsal and ventral attention systems [J]. Proc Natl AcadSci U S A,2006,103(26):10046-10051.
    140.D'Agata F, Costa T, Caroppo P, Baudino B, Cauda F, Manfredi M, Geminiani G,Mortara P, Pinessi L, Castellano G and Bisi G, Multivariate analysis of brainmetabolism reveals chemotherapy effects on prefrontal cerebellar system when relatedto dorsal attention network [J]. EJNMMI Res,2013,3(1):22.
    141.Vincent JL, Kahn I, Snyder AZ, Raichle ME and Buckner RL, Evidence for afrontoparietal control system revealed by intrinsic functional connectivity [J]. JNeurophysiol,2008,100(6):3328-3342.
    142.Kellermann T, Regenbogen C, De Vos M, Mossnang C, Finkelmeyer A and Habel U,Effective connectivity of the human cerebellum during visual attention [J]. J Neurosci,2012,32(33):11453-11460.
    143.Robinson FR and Fuchs AF, The role of the cerebellum in voluntary eye movements [J].Annu Rev Neurosci,2001,24981-1004.
    144.Ceravolo R, Fattori B, Nuti A, Dell'Agnello G, Cei G, Casani A, Nacci A, Murri L andBonuccelli U, Contribution of cerebellum and brainstem in the control of eyemovement: evidence from a functional study in a clinical model [J]. Acta Neurol Scand,2002,105(1):32-39.
    145.Ding K, Liu Y, Yan X, Lin X and Jiang T, Altered functional connectivity of theprimary visual cortex in subjects with amblyopia [J]. Neural Plast,2013,2013612086.
    1. Horton JC, Landau K, Maeder P and Hoyt WF, Magnetic resonance imaging of thehuman lateral geniculate body [J]. Arch Neurol,1990,47(11):1201-1206.
    2. Saeki N, Fujimoto N, Kubota M and Yamaura A, MR demonstration of partial lesionsof the lateral geniculate body and its functional intra-nuclear topography [J]. ClinNeurol Neurosurg,2003,106(1):28-32.
    3. Hendry SH and Calkins DJ, Neuronal chemistry and functional organization in theprimate visual system [J]. Trends Neurosci,1998,21(8):344-349.
    4. Derrington AM and Lennie P, Spatial and temporal contrast sensitivities of neurones inlateral geniculate nucleus of macaque [J]. J Physiol,1984,357219-240.
    5. Hicks TP, Lee BB and Vidyasagar TR, The responses of cells in macaque lateralgeniculate nucleus to sinusoidal gratings [J]. J Physiol,1983,337183-200.
    6. Hendry SH and Reid RC, The koniocellular pathway in primate vision [J]. Annu RevNeurosci,2000,23127-153.
    7. Andrews TJ, Halpern SD and Purves D, Correlated size variations in human visualcortex, lateral geniculate nucleus, and optic tract [J]. J Neurosci,1997,17(8):2859-2868.
    8. Gerding H, Krause K, Timmermann M and Kauffmann-Muhlmeyer T, Early visualevoked potentials: an indicator of bioelectrical activity of the lateral geniculate nucleus?[J]. Klin Monbl Augenheilkd,2012,229(4):374-378.
    9. Andolina IM, Jones HE and Sillito AM, Effects of cortical feedback on the spatialproperties of relay cells in the lateral geniculate nucleus [J]. J Neurophysiol,2013,109(3):889-899.
    10. Muggleton NG, Banissy MJ and Walsh VZ, Cognitive neuroscience: feedback fornatural visual stimuli [J]. Curr Biol,2011,21(8): R282-283.
    11. Haynes JD, Deichmann R and Rees G, Eye-specific effects of binocular rivalry in thehuman lateral geniculate nucleus [J]. Nature,2005,438(7067):496-499.
    12. Fujita N, Tanaka H, Takanashi M, Hirabuki N, Abe K, Yoshimura H and Nakamura H,Lateral geniculate nucleus: anatomic and functional identification by use of MRimaging [J]. AJNR Am J Neuroradiol,2001,22(9):1719-1726.
    13.吴永顺,蒋伟,叶瑞心,钟镜联,梁碧玲,黄穗乔,正常成人外侧膝状体MR显示序列的初步研究[J].国际医学放射学杂志,2013,36(3):205-209.
    14. Korsholm K, Madsen KH, Frederiksen JL, Skimminge A and Lund TE, Recovery fromoptic neuritis: an ROI-based analysis of LGN and visual cortical areas [J]. Brain,2007,130(Pt5):1244-1253.
    15. Li M, He HG, Shi W, Li J, Lv B, Wang CH, Miao QW, Wang ZC, Wang NL, Walter Mand Sabel BA, Quantification of the human lateral geniculate nucleus in vivo using MRimaging based on morphometry: volume loss with age [J]. AJNR Am J Neuroradiol,2012,33(5):915-921.
    16. Kleinschmidt A, Merboldt KD, Hanicke W, Steinmetz H and Frahm J, Correlationalimaging of thalamocortical coupling in the primary visual pathway of the human brain[J]. J Cereb Blood Flow Metab,1994,14(6):952-957.
    17. Chen W, Kato T, Zhu XH, Strupp J, Ogawa S and Ugurbil K, Mapping of lateralgeniculate nucleus activation during visual stimulation in human brain using fMRI [J].Magn Reson Med,1998,39(1):89-96.
    18. Chen W and Zhu XH, Correlation of activation sizes between lateral geniculate nucleusand primary visual cortex in humans [J]. Magn Reson Med,2001,45(2):202-205.
    19. Chen W, Zhu XH, Thulborn KR and Ugurbil K, Retinotopic mapping of lateralgeniculate nucleus in humans using functional magnetic resonance imaging [J]. ProcNatl Acad Sci U S A,1999,96(5):2430-2434.
    20. Mullen KT, Dumoulin SO and Hess RF, Color responses of the human lateralgeniculate nucleus:[corrected] selective amplification of S-cone signals between thelateral geniculate nucleno and primary visual cortex measured with high-field fMRI [J].Eur J Neurosci,2008,28(9):1911-1923.
    21. Schneider KA, Richter MC and Kastner S, Retinotopic organization and functionalsubdivisions of the human lateral geniculate nucleus: a high-resolution functionalmagnetic resonance imaging study [J]. J Neurosci,2004,24(41):8975-8985.
    22. Zhang N, Zhu XH, Zhang Y, Park JK and Chen W, High-resolution fMRI mapping ofocular dominance layers in cat lateral geniculate nucleus [J]. Neuroimage,2010,50(4):1456-1463.
    23. Koopmans PJ, Barth M and Norris DG, Layer-specific BOLD activation in human V1[J]. Hum Brain Mapp,2010,31(9):1297-1304.
    24. Weber AJ, Chen H, Hubbard WC and Kaufman PL, Experimental glaucoma and cellsize, density, and number in the primate lateral geniculate nucleus [J]. InvestOphthalmol Vis Sci,2000,41(6):1370-1379.
    25. Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma andneural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visualcortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    26. Gupta N and Yucel YH, Glaucoma as a neurodegenerative disease [J]. Curr OpinOphthalmol,2007,18(2):110-114.
    27. Yucel Y and Gupta N, Glaucoma of the brain: a disease model for the study oftranssynaptic neural degeneration [J]. Prog Brain Res,2008,173465-478.
    28. Gupta N, Ly T, Zhang Q, Kaufman PL, Weinreb RN and Yucel YH, Chronic ocularhypertension induces dendrite pathology in the lateral geniculate nucleus of the brain[J]. Exp Eye Res,2007,84(1):176-184.
    29. Yucel YH, Zhang Q, Gupta N, Kaufman PL and Weinreb RN, Loss of neurons inmagnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma [J].Arch Ophthalmol,2000,118(3):378-384.
    30. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Atrophy of relay neuronsin magno-and parvocellular layers in the lateral geniculate nucleus in experimentalglaucoma [J]. Invest Ophthalmol Vis Sci,2001,42(13):3216-3222.
    31. Shimazawa M, Ito Y, Inokuchi Y, Yamanaka H, Nakanishi T, Hayashi T, Ji B, HiguchiM, Suhara T, Imamura K, Araie M, Watanabe Y, Onoe H and Hara H, An alteration inthe lateral geniculate nucleus of experimental glaucoma monkeys: in vivo positronemission tomography imaging of glial activation [J]. PLoS One,2012,7(1): e30526.
    32. Karwatsky P, Bertone A, Overbury O and Faubert J, Defining the nature of motionperception deficits in glaucoma using simple and complex motion stimuli [J]. OptomVis Sci,2006,83(7):466-472.
    33. Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M and Yucel YH, Atrophy ofthe lateral geniculate nucleus in human glaucoma detected by magnetic resonanceimaging [J]. Br J Ophthalmol,2009,93(1):56-60.
    34. Dai H, Mu KT, Qi JP, Wang CY, Zhu WZ, Xia LM, Chen ZQ, Zhang H, Ai F andMorelli JN, Assessment of lateral geniculate nucleus atrophy with3T MR imaging andcorrelation with clinical stage of glaucoma [J]. AJNR Am J Neuroradiol,2011,32(7):1347-1353.
    35. Chen Z, Wang J, Lin F, Dai H, Mu K and Zhang H, Correlation between lateralgeniculate nucleus atrophy and damage to the optic disc in glaucoma [J]. J Neuroradiol,2013,40(4):281-287.
    1. Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP andMariotti SP, Global data on visual impairment in the year2002[J]. Bull World HealthOrgan,2004,82(11):844-851.
    2. Foster PJ, Buhrmann R, Quigley HA and Johnson GJ, The definition and classificationof glaucoma in prevalence surveys [J]. Br J Ophthalmol,2002,86(2):238-242.
    3. Kitazawa Y and Yamamoto T, Glaucomatous visual field defects: their characteristicsand how to detect them [J]. Clin Neurosci,1997,4(5):279-283.
    4. Alexander KL, Glaucomatous cupping--appearance, pathogenesis, detection [J]. J AmOptom Assoc,1978,49(9):1056-1059.
    5. Kaushik S, Pandav SS and Ram J, Neuroprotection in glaucoma [J]. J Postgrad Med,2003,49(1):90-95.
    6. Naskar R and Dreyer EB, New horizons in neuroprotection [J]. Surv Ophthalmol,2001,45Suppl3S250-255; discussion S273-256.
    7. Wein FB and Levin LA, Current understanding of neuroprotection in glaucoma [J].Curr Opin Ophthalmol,2002,13(2):61-67.
    8. Gupta N, Ang LC, Noel de Tilly L, Bidaisee L and Yucel YH, Human glaucoma andneural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visualcortex [J]. Br J Ophthalmol,2006,90(6):674-678.
    9. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL and Gupta N, Atrophy of relay neuronsin magno-and parvocellular layers in the lateral geniculate nucleus in experimentalglaucoma [J]. Invest Ophthalmol Vis Sci,2001,42(13):3216-3222.
    10. Yucel YH, Zhang Q, Gupta N, Kaufman PL and Weinreb RN, Loss of neurons inmagnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma [J].Arch Ophthalmol,2000,118(3):378-384.
    11. Weber AJ, Chen H, Hubbard WC and Kaufman PL, Experimental glaucoma and cellsize, density, and number in the primate lateral geniculate nucleus [J]. InvestOphthalmol Vis Sci,2000,41(6):1370-1379.
    12. Gunny R and Yousry TA, Imaging anatomy of the vestibular and visual systems [J].Curr Opin Neurol,2007,20(1):3-11.
    13. Lagreze WA, Gaggl M, Weigel M, Schulte-Monting J, Buhler A, Bach M, Munk RDand Bley TA, Retrobulbar optic nerve diameter measured by high-speed magneticresonance imaging as a biomarker for axonal loss in glaucomatous optic atrophy [J].Invest Ophthalmol Vis Sci,2009,50(9):4223-4228.
    14. Kashiwagi K, Okubo T and Tsukahara S, Association of magnetic resonance imaging ofanterior optic pathway with glaucomatous visual field damage and optic disc cupping[J]. J Glaucoma,2004,13(3):189-195.
    15. Iwata F, Patronas NJ, Caruso RC, Podgor MJ, Remaley NA, Kupfer C andKaiser-Kupfer MI, Association of visual field, cup-disc ratio, and magnetic resonanceimaging of optic chiasm [J]. Arch Ophthalmol,1997,115(6):729-732.
    16. Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M and Yucel YH, Atrophy ofthe lateral geniculate nucleus in human glaucoma detected by magnetic resonanceimaging [J]. Br J Ophthalmol,2009,93(1):56-60.
    17. Dai H, Mu KT, Qi JP, Wang CY, Zhu WZ, Xia LM, Chen ZQ, Zhang H, Ai F andMorelli JN, Assessment of lateral geniculate nucleus atrophy with3T MR imaging andcorrelation with clinical stage of glaucoma [J]. AJNR Am J Neuroradiol,2011,32(7):1347-1353.
    18. Chen Z, Wang J, Lin F, Dai H, Mu K and Zhang H, Correlation between lateralgeniculate nucleus atrophy and damage to the optic disc in glaucoma [J]. J Neuroradiol,2013,40(4):281-287.
    19. Calkins DJ, Horner PJ, Roberts R, Gradianu M and Berkowitz BA,Manganese-enhanced MRI of the DBA/2J mouse model of hereditary glaucoma [J].Invest Ophthalmol Vis Sci,2008,49(11):5083-5088.
    20. Chan KC, Fu QL, Hui ES, So KF and Wu EX, Evaluation of the retina and optic nervein a rat model of chronic glaucoma using in vivo manganese-enhanced magneticresonance imaging [J]. Neuroimage,2008,40(3):1166-1174.
    21. Dandona L, Hendrickson A and Quigley HA, Selective effects of experimentalglaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculatenucleus [J]. Invest Ophthalmol Vis Sci,1991,32(5):1593-1599.
    22. Wieshmann UC, Symms MR, Parker GJ, Clark CA, Lemieux L, Barker GJ andShorvon SD, Diffusion tensor imaging demonstrates deviation of fibres in normalappearing white matter adjacent to a brain tumour [J]. J Neurol Neurosurg Psychiatry,2000,68(4):501-503.
    23. Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG and FahlbuschR, Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts duringneurosurgical procedures--initial experience [J]. Radiology,2005,234(1):218-225.
    24. Sasaoka M, Nakamura K, Shimazawa M, Ito Y, Araie M and Hara H, Changes in visualfields and lateral geniculate nucleus in monkey laser-induced high intraocular pressuremodel [J]. Exp Eye Res,2008,86(5):770-782.
    25. Hui ES, Fu QL, So KF and Wu EX, Diffusion tensor MR study of optic nervedegeneration in glaucoma [J]. Conf Proc IEEE Eng Med Biol Soc,2007,20074312-4315.
    26. Garaci FG, Bolacchi F, Cerulli A, Melis M, Spano A, Cedrone C, Floris R, Simonetti Gand Nucci C, Optic nerve and optic radiation neurodegeneration in patients withglaucoma: in vivo analysis with3-T diffusion-tensor MR imaging [J]. Radiology,2009,252(2):496-501.
    27. Nucci C, Mancino R, Martucci A, Bolacchi F, Manenti G, Cedrone C, Culasso F, FlorisR, Cerulli L and Garaci FG,3-T Diffusion tensor imaging of the optic nerve in subjectswith glaucoma: correlation with GDx-VCC, HRT-III and Stratus optical coherencetomography findings [J]. Br J Ophthalmol,2012,96(7):976-980.
    28. Chang ST, Xu J, Trinkaus K, Pekmezci M, Arthur SN, Song SK and Barnett EM, OpticNerve Diffusion Tensor Imaging Parameters and Their Correlation With Optic DiscTopography and Disease Severity in Adult Glaucoma Patients and Controls [J]. JGlaucoma,2013,
    29. Wang MY, Wu K, Xu JM, Dai J, Qin W, Liu J, Tian J and Shi D, Quantitative3-Tdiffusion tensor imaging in detecting optic nerve degeneration in patients withglaucoma: association with retinal nerve fiber layer thickness and clinical severity [J].Neuroradiology,2013,55(4):493-498.
    30. El-Rafei A, Engelhorn T, Warntges S, Dorfler A, Hornegger J and Michelson G, Aframework for voxel-based morphometric analysis of the optic radiation using diffusiontensor imaging in glaucoma [J]. Magn Reson Imaging,2011,29(8):1076-1087.
    31. Engelhorn T, Michelson G, Waerntges S, Struffert T, Haider S and Doerfler A, Diffusiontensor imaging detects rarefaction of optic radiation in glaucoma patients [J]. AcadRadiol,2011,18(6):764-769.
    32. Michelson G, Engelhorn T, Warntges S, El Rafei A, Hornegger J and Doerfler A, DTIparameters of axonal integrity and demyelination of the optic radiation correlate withglaucoma indices [J]. Graefes Arch Clin Exp Ophthalmol,2013,251(1):243-253.
    33. Ashburner J and Friston KJ, Voxel-based morphometry--the methods [J]. Neuroimage,2000,11(6Pt1):805-821.
    34. Hyde KL, Samson F, Evans AC and Mottron L, Neuroanatomical differences in brainareas implicated in perceptual and other core features of autism revealed by corticalthickness analysis and voxel-based morphometry [J]. Hum Brain Mapp,2010,31(4):556-566.
    35. Fischl B, FreeSurfer [J]. Neuroimage,2012,62(2):774-781.
    36. Hernowo AT, Boucard CC, Jansonius NM, Hooymans JM and Cornelissen FW,Automated morphometry of the visual pathway in primary open-angle glaucoma [J].Invest Ophthalmol Vis Sci,2011,52(5):2758-2766.
    37. Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JMand Cornelissen FW, Changes in cortical grey matter density associated withlong-standing retinal visual field defects [J]. Brain,2009,132(Pt7):1898-1906.
    38. Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB,Chen X, Liu X and Gong Q, Structural brain abnormalities in patients with primaryopen-angle glaucoma: a study with3T MR imaging [J]. Invest Ophthalmol Vis Sci,2013,54(1):545-554.
    39. Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA and Argyropoulou MI,Voxel-based morphometry and diffusion tensor imaging of the optic pathway inprimary open-angle glaucoma: a preliminary study [J]. AJNR Am J Neuroradiol,2012,33(1):128-134.
    40. Li C, Cai P, Shi L, Lin Y, Zhang J, Liu S, Xie B, Shi Y, Yang H, Li S, Du H and Wang J,Voxel-based morphometry of the visual-related cortex in primary open angle glaucoma[J]. Curr Eye Res,2012,37(9):794-802.
    41. Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J and Dai C, Reduced cortical thicknessin primary open-angle glaucoma and its relationship to the retinal nerve fiber layerthickness [J]. PLoS One,2013,8(9): e73208.
    42. Williams AL, Lackey J, Wizov SS, Chia TM, Gatla S, Moster ML, Sergott R, SpaethGL and Lai S, Evidence for widespread structural brain changes in glaucoma: apreliminary voxel-based MRI study [J]. Invest Ophthalmol Vis Sci,2013,54(8):5880-5887.
    43. Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopicorganization of primary visual cortex in glaucoma: a method for comparing corticalfunction with damage to the optic disk [J]. Invest Ophthalmol Vis Sci,2007,48(2):733-744.
    44. Duncan RO, Sample PA, Weinreb RN, Bowd C and Zangwill LM, Retinotopicorganization of primary visual cortex in glaucoma: Comparing fMRI measurements ofcortical function with visual field loss [J]. Prog Retin Eye Res,2007,26(1):38-56.
    45. Qing G, Zhang S, Wang B and Wang N, Functional MRI signal changes in primaryvisual cortex corresponding to the central normal visual field of patients with primaryopen-angle glaucoma [J]. Invest Ophthalmol Vis Sci,2010,51(9):4627-4634.
    46. Dai H, Morelli JN, Ai F, Yin D, Hu C, Xu D and Li Y, Resting-state functional MRI:functional connectivity analysis of the visual cortex in primary open-angle glaucomapatients [J]. Hum Brain Mapp,2013,34(10):2455-2463.
    47. Song Y, Mu K, Wang J, Lin F, Chen Z, Yan X, Hao Y, Zhu W and Zhang H, Alteredspontaneous brain activity in primary open angle glaucoma: a resting-state functionalmagnetic resonance imaging study [J]. PLoS One,2014,9(2): e89493.
    48. Detre JA, Leigh JS, Williams DS and Koretsky AP, Perfusion imaging [J]. Magn ResonMed,1992,23(1):37-45.
    49. Kim SG, Quantification of relative cerebral blood flow change by flow-sensitivealternating inversion recovery (FAIR) technique: application to functional mapping [J].Magn Reson Med,1995,34(3):293-301.
    50. Luh WM, Wong EC, Bandettini PA, Ward BD and Hyde JS, Comparison ofsimultaneously measured perfusion and BOLD signal increases during brain activationwith T(1)-based tissue identification [J]. Magn Reson Med,2000,44(1):137-143.
    51. Duncan RO, Sample PA, Bowd C, Weinreb RN and Zangwill LM, Arterial spin labelingfMRI measurements of decreased blood flow in primary visual cortex correlates withdecreased visual function in human glaucoma [J]. Vision Res,2012,6051-60.
    52. Auer DP, In vivo imaging markers of neurodegeneration of the substantia nigra [J]. ExpGerontol,2009,44(1-2):4-9.
    53. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ and Meuli R, Understandingdiffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusiontensor imaging and beyond [J]. Radiographics,2006,26Suppl1S205-223.
    54. Ramli N, Rahmat K, Azmi K and Chong HT, The past, present and future of imaging inmultiple sclerosis [J]. J Clin Neurosci,2010,17(4):422-427.
    55. Chan KC, So KF and Wu EX, Proton magnetic resonance spectroscopy revealedcholine reduction in the visual cortex in an experimental model of chronic glaucoma [J].Exp Eye Res,2009,88(1):65-70.
    56. Boucard CC, Hoogduin JM, van der Grond J and Cornelissen FW, Occipital protonmagnetic resonance spectroscopy (1H-MRS) reveals normal metabolite concentrationsin retinal visual field defects [J]. PLoS One,2007,2(2): e222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700