NiMoS/γ-Al_2O_3汽油加氢精制催化剂上烯烃与H_2S反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外汽油加氢精制装置逐渐显露出的问题之一是加氢后汽油中重硫醇(大分子硫醇)含量上升,并且不能有效将其脱除。随着国内外对汽油硫含量标准越来越严格,研究加氢精制过程中二次硫化物的生成规律非常重要。本文针对汽油加氢精制过程中重硫醇及其它硫化物的生成问题开展系统的基础研究,具有重要的理论和实际意义。
     研究了在非临氢条件下无催化剂时1-己烯与硫化氢的热反应、γ-Al_2O_3上1-己烯与硫化氢的反应、加氢精制催化剂NiMoS/γ-Al_2O_3上1-己烯与硫化氢的反应,得出了不同条件下1-己烯与硫化氢的反应规律。结果表明在上述三种情况下,随着反应温度升高和硫化氢浓度增大,硫化物的生成量明显增加;对于1-己烯与硫化氢的热反应,随着1-己烯体积分数的增加,硫醇硫的量先增加后减少,总硫量呈增加趋势;在γ-Al_2O_3及NiMoS/γ-Al_2O_3催化剂上,硫醇硫及总硫的量都随着烯烃体积分数的增加呈增大趋势。1-己烯与硫化氢的热反应产物主要有己硫醇、己硫醚和二己基二硫化物;γ-氧化铝催化下反应的产物主要有己硫醇和己硫醚;加氢精制催化剂NiMoS/γ-Al_2O_3催化下反应产物主要有烷基噻吩和少量硫醇。根据产物GC-MS分析及反应的热力学分析,得到1-己烯与硫化氢的热反应主要是自由基机理,γ-氧化铝及NiMoS/γ-Al_2O_3催化下1-己烯与硫化氢反应遵循碳正离子反应历程。
     对临氢条件下NiMoS/γ-Al_2O_3催化剂上1-己烯与硫化氢的反应进行了详细研究。随着反应温度升高、氢初压增大、反应时间延长、催化剂用量增加,硫醇硫及总硫均呈先增加后减少的变化趋势;硫化氢的存在促进硫醇及总硫的生成;随着1-己烯体积分数的增加,硫醇硫的量先增加后减少,总硫的量呈增加趋势。通过考察HF改性催化剂和H3PO4改性催化剂对临氢条件下1-己烯与硫化氢反应的影响,发现随着酸浓度增加,改性催化剂上酸性位强度增大,催化生成的硫化物的量越多。综合NiMoS/γ-Al_2O_3催化剂上1-己烯与硫化氢反应规律、产物GC-MS分析及热力学分析,证明了临氢条件下NiMoS/γ-Al_2O_3催化剂上1-己烯与硫化氢的反应为碳正离子机理,并拟定了反应历程。
     临氢条件下对NiMoS/γ-Al_2O_3催化剂上其他烯烃包括环己烯、1,3-戊二烯及1-辛烯与硫化氢的反应进行了探讨,得到了和1-己烯与硫化氢反应相似的反应机理。
     为更贴近工业生产实际,以噻吩和1-己烯作为模型化合物,通过噻吩加氢脱硫原位生成硫化氢,考察了在临氢条件下NiMoS/γ-Al_2O_3催化剂上噻吩-烯烃体系生成重硫醇及其它硫化物的反应规律。随着反应温度的升高,体系中硫化氢含量越来越高,硫醇硫含量先增加后减少,总硫也逐渐减少;随着氢初压升高,反应体系中硫醇硫的量呈先增后减的趋势,噻吩硫含量逐渐减少,总硫含量是先减小后趋于平缓,逐渐表现出加氢脱硫反应强于烯烃与硫化氢的加成反应;随着反应时间的延长,反应体系中噻吩的加氢脱硫程度越来越高,剩余的噻吩硫越来越少,生成的硫化氢越来越多,生成的硫醇硫先增大后减小,总硫的量呈一直减少的趋势;随着催化剂量的增大,反应的加氢脱硫程度越来越大,剩余的噻吩硫、生成的总硫、硫醇硫均减少,生成的硫化氢的量增多。通过GC-MS分析,发现产物主要有四氢噻吩、2-己硫醇、1-己硫醇、烷基噻吩、烷基四氢噻吩、己硫醚、二硫化物等,这一结果为汽油加氢精制过程中重硫醇及其它硫化物的生成提供了证据。
One of the problems for gasoline hydrotreating in our country was appeared gradually, which was in the process of gasoline hydrofining, the content of weight mercaptans was increasing after hydrodesulfurization process, and the weight mercaptans were not removed effectively. Other weight sulfides were formed which accompanied with the formation of weight mercaptans. In the process of gasoline hydrotreating, recombination mercaptans and other sulfides(for example thioether) were formed by the reaction of H2S and olefin, H2S was produced by the sulfides hydrodesulfurization and olefin was mainly from the feedstock of gasoline. With more and more severe standard for the sulfur in gasoline, the formation of weight mercaptan and other sulfides will be a big obstacle for producing clean gasoline. In this work, basic research on the formation of weight mercaptans and other sulfides was conducted systemically, which has important theoretical and practical meaning.
     The reaction of 1-hexene and H2S was studied, which were included no catalyst without hydrogen,γ-Al_2O_3 as catalyst without hydrogen, NiMoS/γ-Al_2O_3 as catalyst without hydrogen and NiMoS/γ-Al_2O_3 catalyst with hydrogen. The formation laws under different reaction conditions were obtained, and the reaction mechanisms were obtained though the analysis of thermodynamic data and GS-MS analysis. When the reaction condition was no catalyst and without hydrogen, the reaction mechanism obey free radical reaction pathway, product was mainly included hexanethiol, dihexyl sulfide and dihexyl disulfide. Whenγ-Al_2O_3 as catalyst without hydrogen, the mechanism was carbonium ion mechanism, sulfide compounds in product were mainly hexanethiol and dihexyl sulfide. When the condition was NiMoS/γ-Al_2O_3 without hydrogen, the mechanism was also carbonium ion mechanism, hexanethiol and thiophene derivatives were major sulfide compounds in product. When NiMoS/γ-Al_2O_3 as catalyst with hydrogen, the mechanism was also carbonium ion mechanism, sulfide compounds in product were mainly hexanethiol and dihexyl sulfide.
     Effects of NiMoS/γ-Al_2O_3 modified by HF or H3PO4 on the reaction of 1-hexene and hydrogen sulfide were detected. With the concentration of acid in the dipping solvent increasing, the content of mercaptan and other sulfide compounds was increasing, which proved that the reaction mechanism of 1-hexene and hydrogen sulfide over NiMoS/γ-Al_2O_3 with hydrogen was obey carbonium ion reaction pathway.
     The reaction of cyclohexene, 1,3-dipentene, 1-octene with hydrogen sulfide over NiMoS/γ-Al_2O_3 under hydrogen were detected, through the thermodynamic data and sulfur compounds in product, the mechanisms of reaction of cyclohexene, 1,3-dipentene, 1-octene with hydrogen sulfide were proposed.
     Take thiophene and 1-hexene as model compounds, the formation law and mechanism for the reaction of 1-hexene and hydrogen sulfide was detected for the thiophene-olefin reaction system over NiMoS/γ-Al_2O_3 under hydrogen. In this process, hydrogen sulfide was produced in situ by thiophene hydrodesulfurization. This work was closed to industry practicality, provided evidence for the formation of weight mercaptan and other sulfides, provided evidence for the formation of weight mercaptan and other sulfides, provided theoretical advices for controlling the formation of weight mercaptans. From the GC-MS analysis, the sulfur compounds in product were mainly tetrahydrothiophene, 2-hexanethiol, 1-hexanethiol, alkylthiophene, alkyltetrahydrothiophene, dihexyl sulfide and bisulfide, through the analysis of product and thermodynamic data, the mechanism was obtained and which was also obey carbonium ion pathway.
引文
[1]苏栋根.打造二十一世纪炼厂[J].长炼科技,2008,34(1):11-13.
    [2]侯祥麟主编.石蜡加氢精致技术[M].中国炼油技术新进展.北京:中国石化出版社,1998.117-123.
    [3]侯祥麟主编.中国炼油技术(第二版)[M].北京:中国石化出版社,2001:371
    [4]李大东主编.加氢处理工艺与工程[M].北京:中国石化出版社,2004:1048-1053
    [5]程丽华主编.石油炼制工艺学[M].北京:中国石化出版社,2005:330-343.
    [6]柴永明,安高军,柳云骐,等.过渡金属硫化物催化剂催化加氢作用机理[J].化学进展,2007,19(2):234-242.
    [7]柳云骐,刘晨光,阙国和.二苯并噻吩在Mo:N/A1203催化剂上的加氢脱硫[J].燃料化学学报,2000,28(2),129-133.
    [8]李伟,张明慧.NiMoNx/γ-A1203催化剂用于油品重芳烃饱和加氢[J].石油化工,2002,31(7):505-509.
    [9]李翠清,孙桂大.磷化钨催化剂的制备及加氢脱硫性能[J].石油炼制与化工, 2003,34(7):9-12.
    [10]刘畅,祁兴国,马守波,等.加氢催化剂器外预硫化技术进展[J].化学工程师,2006(1):33-37.
    [11]柴永明,南军,柳云骐,等.SK-1预硫化型柴油加氢精制催化剂的研制[J].石油炼制与化工,2006,37(12):44-47.
    [12]安高军,柴永明,陈照军,等.低温固相法制备非负载型介孔Ni-Mo-W硫化物催化剂[J].中国石油大学学报(自然科学版),2007,31(6):156-160.
    [13]李彦鹏,刘大鹏,刘晓,等.器外预硫化型MoNiP/Al_2O_3催化剂的二苯并噻吩加氢脱硫活性[J].催化学报,2006,27(7):624-630.
    [14]李彦鹏,刘大鹏,柴永明,等.器外预硫化型MoNiP/Al_2O_3催化剂的催化裂化柴油加氢性能研究[J].中国石油大学学报(自然科学版),2007,31(3):124-127.
    [15]李彦鹏,刘大鹏,柴永明,等.器外预硫化型MoNiP/Al_2O_3催化剂的加氢脱硫性能研究[J].石油炼制与化工,2006,37(5):15-19.
    [16]马叶勇,吴楠,马骁驰,等.燃料油加氢深度脱硫催化剂及工艺技术进展[J].工业催化,2007,15(12):18-22.
    [17]孙爱国,汪道明.催化裂化汽油的选择性催化加氢脱硫技术[J].炼油设计,2002,32(10):4-9.
    [18]黄薇,范煜,鲍晓军.FCC汽油加氢改质工艺研究开发进展[J].石油与天然气化工,2005,34(1):26-31.
    [19]李智勇,朱庆云,宫兰斌.降低催化汽油硫含量的技术[J].石化技术,2004,11(2):59-62
    [20]秦小虎,黄磊,赵乐平,等.FRS全馏分FCC汽油加氢脱硫技术开发及工业应用[J].当代化工,2007,36(1):37-39.
    [21]赵乐平,胡永康,庞宏,等.FCC汽油加氢脱硫/降烯烃新技术的开发[J].工业催化,2004,12(4):24-26.
    [22]赵乐平,周勇,段为宇,等.OCT-M FCC汽油选择性加氢脱硫技术的开发和工业应用[J].工业催化, 2004,12(1):16-19.
    [23]高金森,徐春明,白跃华.催化裂化汽油改质降烯烃反应过程规律的研究[J].石油炼制与化工,2004,35(8):41-45.
    [24]赵乐平,李扬,刘继华.全馏分FCC汽油芳构化降烯烃技术(OTA)研究[J].清洁燃料生产技术,2005,3(1):18-22.
    [25]胡永康,赵乐平,李扬,等.纳米ZSM-5沸石在OTA汽油降烯烃技术中的应用[J].中国有色金属学报,2004,14(1):317-322.
    [26]李明丰,夏国富,褚阳,等.FCC汽油选择性加氢脱硫催化剂RSDS-1的开发[J].石油炼制与化工,2003,34(7):1-4.
    [27]李大东,石亚华,杨清雨.生产低硫低烯烃汽油的RIDOS技术[J].中国工程科学,2004,6(4):1-8.
    [28]陈鑫,蔡卫,于向真,等.催化汽油加氢脱硫降烯经系列催化剂工业试生产及应用[J].工业催化,2005,13(6):18-21.
    [29] X. Dupain, L. J. Rogier, E. D. Gamas, et al. Cracking behavior of organic sulfur compounds under realistic FCC conditions in a microriser reactor[J]. Applied Catalysis A: General, 2003, 238(2):223–238.
    [30] R.L. Martin, J.A. Grant. Determination of Thiophenic Compounds by Types in petroleum Samples[J]. Anal. Chem., 1965, 37 (6):649-657.
    [31] J.T. Miller, W.J. Reagan, J.A. Kaduk, et al. Selective Hydrodesulfurization of FCC Naphtha with Supported MoS2 Catalysts: The Role of Cobalt[J]. J. Catal., 2000,193: 123-131.
    [32] W. M. Kreucher. Clean fuels and clean cars: Will they match?[A]. Am. Chem. Soc. Prepr. Div. Pet. Chem., 1994, 39 (4): 507-512.
    [33] M. Kulakowski. Reformulated gasoline[A]. Defining the challenge. Am. Chem. Soc. Prepr. Div. Pet. Chem., 1994, 39 (4): 494-500.
    [34] P. Leflaive, J. L. Lemberton, G. Pérot, et al. On the origin of sulfur impurities in fluid catalytic cracking Gasoline-Reactivity of thiophene derivatives and of their possible precursors under FCC conditions[J]. Applied Catalysis A: General, 2002, 227:201–215.
    [35] A. F. Lamic, A. Daudin, S. Brunet, et al. Devers. Effect of H2S partial pressure on the transformation of a model FCC gasoline olefin over unsupported molybdenum sulfide-based catalysts[J]. Applied Catalysis A: General, 2008, 344 :198–204.
    [36] J. Fu, P. Wang, M. Y. He. Reaction chemistry related to FCC gasoline sulfur reduction[A]. Am. Chem. Soc. Prepr. Div. Pet. Chem., 2000, 45(4):697-699.
    [37] T. Myrstad, B. Seljestokken, H. Engan, et al. Effect of nickel and vanadium on sulphur reduction of FCC naphtha[J]. Appl. Catal. A: Gen., 2000, 192:299-305.
    [38] A. Corma, P. Gullbrand, C. Martinez. Gasoline sulfur removal: Kinetics of S compounds in FCC conditions[J]. Studies in Surface Science and catalysis, 2001, 134: 153-165.
    [39] A. Corma, C. Martinez, G. Ketley, et al. On the mechanism of sulfur removal during catalytic cracking[J]. Appl. Catal. A: Gen., 2001, 208(1/2):135-152.
    [40] T. G. Albro, P. A. Dreifuss, R. F. Wormsbecher. Quantitative determination of sulfur compounds in FCC gasolines by AED. A study of the effect of catalyst type and catalytic conditions on sulfur distribution[J]. J. High Res. Chromatogr., 2005, 16(1):13-17.
    [41] W. C. Cheng, G. Kim, A. W. Peters, et al. Environmental fluid catalytic cracking technology Catal[A]. Rev.-Sci. Eng., 1998, 40(1/2):39-79.
    [42] P. Andersson, M. Pirjamali, S. Jaras, et al. Cracking catalyst additives for sulfur removal from FCC gasoline[J]. Catalysis Today, 1999, 53(4): 565–573.
    [43] S. Hatanaka, M. Yamada, O. Sadakane. Hydrodesulfurization of catalytic cracked gasoline. 3. Selective catalytic cracked gasoline hydrodesulfurization on the Co-Mo/γ-Al_2O_3 catalyst modified by coking pretreatment[J]. Ind. Eng. Chem. Res., 1998,37(5):1748-1753.
    [44] C. Yin, G. Zhu, D. Xia. Determination of Organic Sulfur Compounds in Naphtha. Part I. Identification and Quantitative Analysis of Sulfides in FCC and RFCC Naphthas[A]. Am. Chem. Soc. Prepr. Div. Pet. Chem., 2002, 47 (4): 391-395.
    [45] C. Yin, G. Zhu, D. Xia. Determination of Organic Sulfur Compounds in Naphtha. Part II. Identification and Quantitative Analysis of Thiophenes in FCC and RFCC Naphthas[A]. Am. Chem. Soc. Prepr. Div. Pet. Chem., 2002, 47 (4):398-401.
    [46] B.C. Gates. Catalytic Chemistry[M]. New York: Wiley, 1992: 254-266.
    [47] G. Christensen, M. R. Apelian, K. J. Hickey, et al. Future directions in modeling the FCC process: An emphasis on product quality[J]. Chemical Engineering Science, 1999, 54:2753-2764.
    [48] P. Leflaive, J. L. Lemberton, G. Pe′rot, et al. On the origin of sulfur impurities in fluid catalytic cracking gasoline-Reactivity of thiophene derivatives and of their possible precursors under FCC conditions[J]. Appl. Catal. A: Gen., 2002,227(1-2):201-215.
    [49] P. Leyrit, T. Cseri, N. Marchal, et al. Aromatic reduction properties of molybdenum sulfide clusters in HY zeolite[J]. Catalysis Today, 2001, 65: 249-256.
    [50] R. Cid, J. Neira, J. Godoy, et al. Characterization of Tungsten-Modified Ultrastable Y Zeolite Catalysts and Their Activity in Thiophene Hydrodesulfurization[J]. J. Catal., 1993, 141(1):206-218.
    [51] W. J. J. Welters, V. H. J. de Beer, R.A. van Santen. Influence of zeolite acidity on thiophene hydrodesulfurization activity[J]. Appl. Catal. A: Gen., 1994, 119:253-269.
    [52] X. Saintigny, R. A. van Santen, S. Cle′mendot, et al. A Theoretical Study of the Solid Acid Catalyzed Desulfurization of Thiophene[J]. J. Catal., 1999, 183(1):107-118.
    [53] T. G. Kaufmann, A. Kaldor, G. F. Stuntz, et al. Catalysis science and technology for cleaner transportation fuels[J]. Catalysis Today, 2000, 62:77–90
    [54] C. L. Garcia, J. A. Lercher. Adsorption and surface reactions of thiophene on ZSM5 zeolites[J]. J. Phys. Chem., 1992, 96:2669–2675.
    [55] S. Y. Yu, W. Li, E. Iglesia, Desulfurization of Thiophene via Hydrogen Transfer from Alkanes on Cation-Modified H-ZSM5[J]. J. Catal., 1999, 187: 257-261.
    [56] R. M. Navarro, M. A. Pe?a, J. L. G. Fierro. Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass[J]. Chem. Rev, 2007, 107(10): 3952-3991
    [57] C. H. Ding, X. S. Wang, X. W. Guo, et al. Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst[J]. Catalysis Communications, 2007,9:487–493.
    [58] G. Zhu, D. Xia, G. Que. Study on the transformation mechanism of thiophene during FCC process[A]. Am. Chem. Soc. Prepr. Div. Pet. Chem., 2001, 46 (4):329-332.
    [59] A. Drahoradova, M. Zdrazil. Dehydrogenation activity of H-Y and RE-Y zeolites in decomposition of tetrahydrothiophene. React. Kinet[J]. Catal. Lett., 1987, 33 (2): 459-464.
    [60] D. P. Satchell, B. L. Crynes. High olefins content may limit cracked naphtha desulfurization[J]. Oil Gas J., 1975, 73(48):123-124.
    [61] G. G. Podrebarac, M. J. Maraschino, M. Vichailak. HDS Process using selected naphtha streams[P]. US: 7291258B2, 2006-03-30.
    [62] S. Hatanaka, M. Yamada, O. Sadakane. Hydrodesulfurization of Catalytic Cracked Gasoline. 1. InhibitingEffects of Olefins on HDS of Alkyl(benzo)thiophenes Contained in Catalytic Cracked Gasoline[J]. Ind. Eng. Chem. Res., 1997, 36:1519-1523.
    [63] S. Hatanaka, M. Yamada, O. Sadakane. Hydrodesulfurization of Catalytic Cracked Gasoline. 2. The Difference between HDS Active Site and Olefin Hydrogenation Active Site[J]. Ind. Eng. Chem. Res., 1997, 36:5110-5117.
    [64] S. Hatanaka, M. Yamada, O. Sadakane. Hydrodesulfurization of Catalytic Cracked Gasoline. 3. SelectiveCatalytic Cracked Gasoline Hydrodesulfurization on the Co-Mo/γ-Al_2O_3 Catalyst Modified by Coking Pretreatment[J]. Ind. Eng. Chem. Res., 1998, 37, 1748-1754.
    [65] S. Texier, G. Berhault, G. Pe′rot, Fabrice Diehl.Activation of alumina-supported hydrotreating catalystsby organosulfides or H2S: Effect of the H2S partial pressure used during the activation process[J]. Applied Catalysis A: General, 2005, 293:105–119.
    [66] H. Mizutani, Y. Korai, I. Mochida. Behavior of sulfur species present in atmospheric residuein fluid catalytic cracking[J]. Fuel, 2007, 86: 2898–2905.
    [67] P. Leflaive, J. L. Lemberton, G. Pérot, et al. On the origin of sulfur impurities in fluid catalytic cracking gasoline-Reactivity of thiophene derivatives and of their possible precursors under FCC conditions[J]. Applied Catalysis A: General, 2002, 227: 201–215.
    [68] A. F. Lamic, A. Daudin, S. Brunet, et al. Effect of H2S partial pressure on the transformation of a model FCC gasoline olefin over unsupported molybdenum sulfide-based catalysts[J]. Applied Catalysis A: General, 2008, 344:198–204.
    [69] T. Mochizuki, H. Itou, M. Toba, et al. Effects of Acidic Properties on the Catalytic Performance of CoMo Sulfide Catalysts in Selective Hydrodesulfurization of Gasoline Fractions[J]. Energy & Fuels, 2008, 22: 1456–1462
    [70] T. Todorova, R. Prins, T. Weber. A density functional theory study of the hydrogenolysis reaction of CH3SH to CH4 on the catalytically active (100) edge of 2H-MoS2[J]. Journal of Catalysis, 2005, 236:190–204.
    [71] H. Wang, R. Prins. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over sulfided Mo/γ-Al_2O_3[J]. Journal of Catalysis, 2008, 258: 153–164.
    [72] E. Ito, J.A. R.van Veen. On novel processes for removing sulphur from refinery streams[J]. Catalysis Today, 2006, 116: 446–460.
    [73] A. Corma, C. Martínez, G. Ketley, et al. On the mechanism of sulfur removal during catalytic cracking[J]. Applied Catalysis A: General, 2001, 208: 135–152.
    [74] M. Toba, Y. Miki, T. Matsui, et al. Reactivity of olefins in the hydrodesulfurization of FCC gasoline over CoMo sulfide catalyst[J]. Applied Catalysis B: Environmental, 2007, 70: 542–547.
    [75] M. Toba , Y. Miki, Y. Kanda, et al. Selective hydrodesulfurization of FCC gasoline over CoMo/Al_2O_3 sulfide catalyst[J]. Catalysis Today, 2005, 104: 64–69.
    [76] C. F. Cai, R. H. Worden, S. H. Bottrell, et al. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China[J]. Chemical Geology, 2003, 202: 39– 57.
    [77] J. Mijoin, C. Pommier, F. Richard, et al. Transformation of ketones over sulfided CoMo/Al_2O_3 catalyst-factors affecting thiol selectivity[J]. Journal of Molecular Catalysis A: Chemical, 2001, 169: 171–175.
    [78]郭群,董建伟,石玉林.直馏汽油掺炼催化裂化汽油加氢作重整原料的研究[J].石油炼制与化工,2003,34(6):10-13.
    [79] S. A. Ali, J. A. Anabtawi. Olefin Can Limit Desulfurization of Reformer Feedstock[J]. Oil and Gas J, 1995, 3: 48-54.
    [80]梁文萍,王艳涛,于吉平,等.OCT - M技术生产硫质量分数≯150μg/ g和≯50μg/ g清洁汽油的工业应用[J].当代化工,2007,36(1):29-32.
    [81]刘继华,赵乐平,方向晨,等.OCT– M技术生产清洁汽油的工业应用[J].当代化工,2007,36(3):240-242.
    [82]温广明.全馏分FCC汽油选择性加氢脱硫催化剂的研究[D].大连:大连理工大学,20070618.
    [83]郇维芳,欧阳福生.FCC汽油脱硫降烯烃技术最新进展[J].工业催化,2004,12(8):6-10.
    [84]伊西青.清洁汽油生产现状及技术进展[J].石油与天然气化工,2005,34(3):187-191.
    [85] P. Gyanesh. Process for the production of a sulfur sorbent [P]. US: 6184176, 2001-02-06.
    [86] P. Gyanesh. Desulfurization with zinc titanate sorbent [P]. US: 6338794, 2002-01-15.
    [87]刘晓欣,王艳涛,赵乐平,等.FCC汽油选择性加氢脱硫降烯烃工艺技术的工业应用[J].石油炼制与化工,2006,37(8):44-48.
    [88] B. R. Cook, R. H. Ernst, R. A. Demmin. High temperature depressurization for naphtha mercaptan removal [P]. US: 6387249 B1, 2002-03-14.
    [89] S. Hatanaka, M. Yanmada. Hydrodesulfurization of cratalytic cracked gasoline[J]. Ind Eng Chem Res, 1997, 36:1519-1523.
    [90] M. S. Rana, R. Navarro, J. Leglise. Competitive effects of nitrogen and sulfur content on activity of hydrotreating CoMo/Al_2O_3 catalysts: a batch reactor study[J]. Catalysis Today, 2004, 98: 67-72.
    [91]姚颂东,梁相程,刘雪玲,等.H2S分压对1-十二烯在NiMo/Al_2O_3催化剂上加氢反应的影响[J].辽宁化工,2003,32(6):249-251.
    [92]蔡力.OCT-M加氢汽油硫醇硫含量影响因素分析[J].炼油技术与工程,2007,37(6):16-18.
    [93]赵乐平,庞宏,尤百玲,等.硫化氢对催化裂化汽油重馏分加氢脱硫性能的影响[J].石油炼制与化工,2006,37(7):1-5.
    [94]周庆水,郝振岐,王艳涛,等.OCT-M FCC汽油深度加氢脱硫技术的研究及工业应用[J].石油炼制与化工,2007,38(9):28-31.
    [95]张广建.OCT-M汽油选择加氢工艺工业应用[J].石化技术,2006,13(2):17-20.
    [96]闻德忠,罗重春.催化裂化汽油全馏分选择性加氢脱硫技术的应用[J].炼油技术与工程,2007,37(2):6-10.
    [97]陶兴,张广建.催化裂化汽油脱臭后硫醇超标原因分析与对策[J].石化技术,2002,9(4):206-209.
    [98]段为宇,赵乐平,刘继华,等.催化裂化汽油选择性加氢脱硫技术OCT-M的工业应用[J].炼油技术与工程,2006,36(5):9-10.
    [99]潘光成,吴明清,陶志平,等.催化裂化汽油重馏分催化氧化脱硫醇的实验室研究[J].石油炼制与化工,2005,36(12):11-13.
    [100]金德浩.加氢裂化装置产品重石脑油硫含量的控制[J].石油炼制与化工,2006,37(5):35-38.
    [101]赵乐平,庞宏,尤百玲,等.硫化氢对催化裂化汽油重馏分加氢脱硫性能的影响[J].石油炼制与化工,2006,37(7):1-5.
    [102]张广建.汽油加氢脱臭后硫醇超标的原因分析与对策[J].石油化工安全环保技术,2007,23(2):48-51.
    [103]张广建.汽油选择加氢技术的工业应用[J].河南化工,2006,23(9):26-28.
    [104]张广建,郑伟华.汽油选择加氢脱硫技术工业应用[J].中外能源,2006,11(6):70-74.
    [105]岳永伟,彭丙贵,王玉华,等.全馏分催化汽油加氢脱硫降烯烃技术研究[J].当代化工,2006,35(4):243-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700