石墨烯基复合材料的制备及其在电化学分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯因其独特的光、电、磁、力学与量子特性被公认为是继碳纳米管后又一令人关注的碳纳米材料。石墨烯独特的结构和优异的性能使其在电子学、光学、磁学、生物医学、催化、传感器、储能等诸多领域显示出了巨大的应用潜能。由于石墨烯片层之间存在范德华作用力,难以分散的特点,限制了石墨烯的实际应用。本论文旨在对石墨烯进行功能化以提高其在水和其他溶剂中的溶解度和分散性,使其在电化学分析领域获得更广泛的应用。本论文的主要内容和创新点概括如下:
     (1)采用Hummers法制备氧化石墨,水合肼作为还原剂,用阳离子交换剂Nafion来分散石墨烯,得到了均匀稳定的Nafion/石墨烯溶液。通过电沉积的方法将纳米镍粒子沉积到Nafion/石墨烯修饰的玻碳电极表面,制备了NiNPs/Nafion/graphene/GC电极,该电极对乙醇的电化学氧化有很强的催化能力,据此建立了无酶测定乙醇的新方法。该法灵敏度高、选择性和稳定性好,用于实际样品的检测,结果满意。
     (2)制备了聚二烯丙基二甲基氯化铵功能化的石墨烯(PDDA-G)。结果表明,由于在PDDA和石墨烯之间存在电子转移,PDDA-G复合物对H_2O_2还原的催化能力明显增强,由此建立了无酶测定H_2O_2的方法。PDDA的使用不仅提高了石墨烯在水中的分散能力,而且赋予了石墨烯表面正电性,为石墨烯基复合材料的自组装提供了一个很好的载体。将带正电荷的PDDA-G和表面带负电荷的CdTe/CdS量子点进行自组装,得到了QDs/PDDA-G复合物,该复合物对尿酸、多巴胺和抗坏血酸的氧化反应具有很强的催化作用,且三者在该复合物修饰的玻碳电极上电化学信号能够完全分开,实现了三者的单独测定和同时测定。另外通过静电吸附作用,将葡萄糖氧化酶吸附到PDDA-G修饰的电极表面,制备了第三代葡萄糖传感器。葡萄糖氧化酶在该复合膜内能保持其生物活性并实现了电子的直接转移。该传感器灵敏度高、稳定性和重现性好,用于对葡萄糖的测定,结果满意。
     (3)制备了单链DNA功能化的石墨烯(ssDNA-G)。研究了DNA的氧化损伤标志物—8-羟基-2′-脱氧鸟嘌呤核苷在该复合物修饰电极上的电化学行为。实验结果表明,由于结合了DNA和石墨烯两者的优点,8-羟基-2′-脱氧鸟嘌呤核苷在该修饰电极上的电化学行为有明显改善,由此建立了电化学测定8-羟基-2′-脱氧鸟嘌呤核苷的方法。该法对8-羟基-2′-脱氧鸟嘌呤核苷的检测限比常用的高效液相色谱法和毛细管电泳法的检测限低,有望用于实际尿样中8-羟基-2′-脱氧鸟嘌呤核苷的测定。另外,将ssDNA-G和纳米银结合,建立了测定H_2O_2的方法。该法对H_2O_2的测定灵敏度高,选择性好。然后将葡萄糖氧化酶固定在AgNPs/ssDNA-G修饰的电极上,制备了葡萄糖氧化酶传感器,通过葡萄糖反应过程中产生的H_2O_2实现了对葡萄糖的间接测定。
     (4)尝试了用电化学还原的方法制备石墨烯。结果表明,电化学还原法是一种操作简单,无污染的“绿色”合成方法,非常适合电化学传感器的制备。本文先用电化学还原的方法将固定在电极表面的氧化石墨烯还原,然后再将纳米金沉积到石墨烯修饰电极的表面,得到AuNPs/ER-G/GCE。结果表明,该修饰电极对H_2O_2的氧化和还原反应均有很强的催化作用,由此建立了测定H_2O_2的方法。另外,我们将氧化石墨烯和Nafion的混合溶液滴涂到电极上,然后用电化学的方法还原氧化石墨烯得到了Nafion/ER-G/GCE,Nafion/ER-G复合膜促进了8-羟基-2′-脱氧鸟嘌呤核苷在电极表面的电子传输,有利于8-羟基-2′-脱氧鸟嘌呤核苷在电极上的电化学氧化。该修饰电极具有很好的稳定性和重现性,有望用于实际样品中8-羟基-2′-脱氧鸟嘌呤核苷的测定。本研究工作可以为制备高效液相色谱和毛细管电泳电化学检测器检测8-羟基-2′-脱氧鸟嘌呤核苷打下很好的基础。因此,在评估人类尿样中8-羟基-2′-脱氧鸟嘌呤核苷的含量方面具有潜在的应用价值。
Graphene, a monolayer of carbon atoms packed into a dense honeycomb crystalstructure, has attracted tremendous attention in recent years due to its unique propetiessuch as optical, electronic, magnetic, mechanical and quantum-mechanical properties,which is acknowledged as a rising star of carbon nanomaterials since it was discovered in2004. Due to its unique nanostructure and extraordinary properties, graphene basedmaterials have shown promising applications in electronics, optics, magnetics, biomedicine,catalysis, sensors, energy storage etc. However, just as other newly discovered allotropesof carbon, material availability and processability will be the rate-limiting steps in theevaluation of extensive applications of graphene. For graphene, its availability isencumbered by having to surmount the high cohesive vander Waals energy adheringgraphitic sheets to one another. So the surface modification of graphene is an essential stepfor obtaining a molecular level dispersion of individual graphene. In this dissertation, wefocused on the functionalization of graphene and exploration of functionalized-graphene inelectrochemistry analysis and biosensing, which are described as follows:
     1. Nickel nanoparticles were electrochemically deposited on the Nafion/graphenefilm modified glassy carbon electrode and a nonenzymatic ethanol sensor was fabricated.The properties of the Ni/Nafion/graphene film were investigated by using cyclicvoltammetry and electrochemical impedance spectroscopy. The results showed that the Ninanoparticles could be formed uniformly on the Nafion/graphene film and thenonenzymatic sensor had high electrocatalytic activity to the oxidation of ethanol inalkaline media. The oxidative currents were linear with the concentration of ethanol in therange of0.43-88.15mM, and the detection limit was0.12mM (S/N=3), which wassuperior to those obtained with other transition metal based nonenzymatic sensors. Thenonenzymatic sensor was applied for the detection of ethanol in real liquor samples withsatisfactory results.
     2. Graphene was prepared and poly(diallyldimethylammonium chloride)(PDDA) was selected as an electron acceptor for functionalizing graphene. The results indicatedthat the functionalized graphene was positively charged via intermolecular charge-transferwith PDDA. The functionalized graphene modified electrode displayed remarkableelectrocatalytic activity towards H_2O_2reduction and can be used as a nonenzymaticbiosensor for H_2O_2detection. Then negatively charged glucose oxidase can be immobilizedonto the positively charged PDDA-G matrix by electrostatic interaction. The biosensors areeasy to prepare, have good stability, and will have potential applications in H_2O_2andglucose sensing. Furthermore, PDDA-G/QDs nanocomposite was fabricated byself-assembly method driven by electrostatic interaction between positively chargedPDDA-G and negatively QDs. The electrochemical sensor based on PDDA-GNs/QDsnanocomposite was constructed and displayed high electrocatalytic activities toward theoxidation of ascorbic acid (AA), dopamine (DA) and uric acid (UA).
     3. A novel electrochemical biosensor to8-hydroxy-2′-deoxyguanosine (8-OH-dG)was fabricated by combining the biocompatibility of single-stranded DNA (ssDNA) andthe excellent conductivity of graphene. The electrochemical behaviors of8-OH-dG onssDNA-G modified glassy carbon electrode were investigated with cyclic voltammetry.The results indicated that the ssDNA-G/GCE showed high electrocatalytic activity to theoxidation of8-OH-dG. This electrochemical sensor displayed an excellent performance fordetecting8-OH-dG with a low detection limit of0.875nM and a good reproducibility.Furthemore, the Ag/ssDNA-G/GCE was fabriactid by immobilizing the nano Ag on thessDNA-G modified electrode. The detection of H_2O_2on the electrode modified byAg/ssDNA-G nanocomposite was demonstrated. Furthermore, a glucose biosensor hadalso been constructed via immobilizing GOD into the Ag/ssDNA-G nanocompositemodified electrode by detecting the response of H_2O_2produced in the process of oxidationof glucose. Such Ag/ssDNA-G/GCE may hold promise for applications in areas includingbiosensor, analytical and electroanalytical chemistry.
     4. Nanocomposite film of Au nanoparticle-deposited expandable graphene sheetswas fabricated via a “green” electrochemical reduction synthetic route of graphene oxideimmobilized on glassy carbon electrode. The catalytic activity and stability of theAu/ER-G film for the electrochemical reaction of H_2O_2were evaluated through cyclicvoltammetry and chronoamperometry tests. The Au nanoparticles in the ER-Gnanocomposite film were found to be uniformly distributed on the ER-G film. The as-synthesized Au/ER-G nanocomposite exhibits high catalytic activity and good stabilityfor the reaction of H_2O_2, which may be attributed to the excellent electrical conductivityand high specific surface area of the graphene sheet support. Furthermore, theNafion/ER-G film fabricated by electrochemical reduction method showed highelectrocatalytic activity to the oxidation of8-OH-dG. This electrochemical sensordisplayed an excellent performance for detecting8-OH-dG with a low detection limit of1.12nM.
引文
[1] Kroto H.W, Heath J.R, Brien S.C.O, et al, Nature,1985,318:162-163.
    [2] Iijima S, Nature,1991,354:56-58.
    [3] Novoselov K.S, Geim A.K, Morozov S.V, et al, Science,2004,306:666-669.
    [4] Peierls R.E, Ann. I. H. Poincare,1935,5:177-222.
    [5]王春,吉林大学博士学位论文,2009.
    [6] Meimin N.D, Phys. Rev,1968,176:250-254.
    [7] Gunlycke D, Lawler H.M, White C.T, Phys. Rev. B,2007,75:085418-085422.
    [8]张盈利,刘开辉,王文龙,白雪冬,王恩哥,物理,2009,38(6):401-408.
    [9]黄桂荣,碳素技术,2009,29(1):35-38.
    [10]李旭,赵卫峰,陈国华,材料导报,2008,22(8):48-51.
    [11] Novoselov K.S, Geim A.K, Morozov S.V, et al, Nature,2005,438:197-200.
    [12] Berg C, Song Z.M, Li X.B, Science,2006,312:1191-1196.
    [13] Katsnelson M.I, Novoselov K.S, Geim A.K, Nat. Pys,2006,2(9):620-625.
    [14] Tombros, Nikolaos et al, Nature,2007,448(7153):571-575.
    [15] Balandin A.A, Ghosh S, Bao W.j, et a1, Nano Lett,2008,8:902-907.
    [16] Nair R.R, Blake P, Grigorenko A.N, Novoselov K.S, Booth T.J, Stauber T, PeresN.M.R, Geim A.K, Science,2008,320:1308-1308.
    [17] Bonaccorso F, Sun Z, Hasan T, Ferrari A.C, Nat Photon,2010,4:611-622.
    [18] Gokus T, Nair R.R, Bonetti A, Bohmler M, Lombardo A, Novoselov K.S, et al, ACSNano,2009,3:3963-3968.
    [19] Luo Z, Vora P.M, Mele E.J, Johnson A.T.C, Kikkawa J.M, Appl Phys Lett,2009,94:111909-111911.
    [20] Lee C, Wei X, Kysar J.W, et a1, Science,2008,321:385-388.
    [21] Elias D.C, Nair R.R, Mohiuddin T.M.G, Morozov S.V, B1ake P, Halsall M.P, FerrariA, C, Boukhvalov D.W, Katsnelson M.I, Geim A.K, Novoselov K.S, Science,2009,323(5914):610-613.
    [22] Dikin D.A, Stankovich S, Zimney E.J, Piner R.D, Dommett G.H.B, Evmenenko G,Nguyen S.T, Ruoff R.S, Nature,2007,448(7152):457-460.
    [23]陈金龙,南开大学博士学位论文,2011,8.
    [24] Fernandezmoran H, J Appl Phys,1960,31(10):1840-1843.
    [25] Lu X, Yu M, Huang H, Ruoff R.S, Anglais,1999,10:269-272.
    [26] Zhang Y.B, Small J.P, Pontius W.V, Kim P, Appl Phys Lett,2005,86(7):073104-073106.
    [27] Hernandez Y, Nicolosi V, Lotya M, et al, Nat Nanotechnol,2008,3(9):563-568.
    [28] Khan U, O'Neill A, Lotya M, et al, Small,2010,6(7):864-871.
    [29] Qian W, Hao R, Hou Y, et al, Nano Res,2009,2:706-712.
    [30] Janowska I, Chizari K, Ersen O, et al, Nano Res,2010,3(2):126-137.
    [31]姜丽丽,鲁雄,功能材料,2012,43(23):3185-3193.
    [32] Somani P.R, Somani S.P, Umeno M, Chem Phys Lett,2006,430:56-59
    [33] Sutter P.W, Flege J.I, Sutter E.A, Nat Mater,2008,7:406-411.
    [34] Loginova E, Bartelt N.C, Feibelman P.J, McCarty K.F, New J. Phys,2009,11:063046-063065.
    [35] Starodub E, Maier S, Stass I, Bartelt N.C, Feibelman P.J, Salmeron M, McCarty K.F,Phys Rev B,2009,80:235422-235429.
    [36] Wofford J.W, Nie S, McCarty K.F, Bartelt N.C, Dubon O.D, Nano Lett,2010,10:4890-4896.
    [37] Kim K.S, Zhao Y, Jang H, et al, Nature,2009,457(7230):706-710.
    [38] Li X, Cai W, An J, et.al, Science,2009,324(5932):1312-1314.
    [39] Qu L.T, Liu Y, Baek Jong-Beom, Dai L.M, ACS Nano,2010,4(3):1321-1326.
    [40] Forbeaux I, Themlin J.M, Debever J.M, Phys Rev B,1998,58:16396-16406.
    [41] Varchon F, Feng R, Hass J, Li X, Nguyen B.N, Naud C, et al, Phys Rev Lett,2007,99:126805-126808.
    [42] Verdejo R, Barroso-Bujans F, Rodriguez-Perez M.A, de Saja J.A, Lopez-ManchadoM.A, J Mater Chem,2008,18:2221-2226.
    [43] Schniepp H.C, Li J.L, McAllister M.J, Sai H, Herrera-Alonso M, Adamson D.H, et al,J Phys Chem B,2006,110:8535-8539.
    [44] Gilje S, Han S,Wang M,Wang K.L, Kaner R.B, Nano Lett,2007,7:3394-3398.
    [45] Paredes J.I, Villar-Rodil S, Martinez-Alonso A, Tascon J.M.D, Langmuir,2008,24:10560-10564.
    [46] Stankovich S, Dikin D.A, Piner R.D, et al, Carbon,2007,45(7):1558-1565.
    [47] Yang D.X, Velamakanni A, Bozoklu G, et al, Carbon,2009,47(1):145-152.
    [48] Cote L.J, Cruz-Silva R, Huang J, J Am Chem Soc,2009,131(31):11027-11032.
    [49] Lee V, Whittaker L, Jaye C, et.al, Chemistry of materials,2009,21(6):3905-3916.
    [50] Zhu Y, Murali S, Stoller M.D, et al, Carbon,2010,48(7):2118-2122.
    [51] Gomez-Navarro C, Weitz R.T, Bittner A.M, et al, Nano Lett,2007,7(11):3499-3503.
    [52] Wu Z.S, Ren W, Gao L, et al, ACS Nano,2009,3(2):411-417.
    [53] McAllister M.J, Li J.L, Adamson D.H, Schniepp H.C, Abdala A.A, Liu J, et al, ChemMater2007,19:4396-4404.
    [54] Stankovich S, Piner R.D, Nguyen S.T, Ruoff R.S, Carbon,2006,44:3342-3347.
    [55] Giyogi S, Bekyarova E, Itkis M.E, McWilliams J.L, Hamon M.A, Haddon R.C, J AmChem Soc,2006,128:7720-7721.
    [56] Liu Z, Robinson J.T, Sun X, Dai H, J Am Chem Soc,2008,130:10876-10877.
    [57] Veca L.M, Lu F, Meziani M.J, Cao L, Zhang P, Qi G, et al, Chem Commun,2009:2565-2567.
    [58] Mohanty N, Berry V, Nano Lett,2008,8:4469-4476.
    [59] Niyogi S, Bekyarova E, Itkis M.E, McWilliams J.L, Hamon M.A, Haddon R.C, J AmChem Soc,2006,128:7720-7721.
    [60] Liu Z.B, Xu Y.F, Zhang X.Y, Zhang X.L, Chen Y.S, Tian J.G, J Phys Chem B,2009,113:9681-9686.
    [61] Yang H, Shan C, Li F, Han D, Zhang Q, Niu L, Chem Commun,2009:3880-3882.
    [62] Xu Y.F, Liu Z.B, Zhang X.L, Wang Y, Tian J.G, Huang Y, Ma Y.F, Zhang X.F, ChenY.S, Adv Mater,2009,21:1275-1279.
    [63] Yang H, Li F, Shan C, et al, J Mater Chem,2009,19(26):4632-4638.
    [64] Hao R, Qian W, Zhang L, Hou Y, Chem Commun,2008:6576-6578.
    [65] Chunder A, Pal T, Khondaker S I, Zhai L, J Phys Chem C,2010,114:15129-15135.
    [66] Geng J, Jung H.T, J Phys Chem C,2010,114:8227-8234.
    [67] Y Wojcik A, Kamat P.V, ACS Nano,2010,4:6697-6706.
    [68] Su Q, Pang S, Alijani V, Li C, Feng X, Mullen K, Adv Mater,2009,21:3191-3195.
    [69] Stankovich S, Piner R.D, Chen X.Q, Wu N.Q, Nguyen S.T, Ruoff R.S, J Mater Chem,2006,16:155-158.
    [70] Bai H, Xu Y, Zhao L, Hou Y, Chem Commun,2009:1667-1669.
    [71] Chunder A, Liu J, Zhai L, Macromol Rapid Commun,2010,31:380-384.
    [72] Yang Z.L, Shi X.J, Yuan J.J, Pu H.T, Liu Y.S, Applied Surface Science,2010,257:138-142.
    [73] Xu Y.X, Wu Q, Sun Y.Q, Bai H, Shi G.Q, ACS Nano,2010,4(12):7358-7362.
    [74] Yang X.Y, Zhang Z.Y, Liu Z.F, Ma Y.F, Huang Y, Chen Y.S, J Phys Chem C,2008,112:17554-17558.
    [75] Blake P, Hill E.W, Neto A.H.C, Novoselov K.S, Jiang D,Yang R, Booth T. J, GeimA. K, Appl Phys Lett,2007,91:063124-063126.
    [76] Paredes J.I, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon J.M.D,Langmuir,2009,25:5957-5968.
    [77] Meyer J.C, Kisielowski C, Erni R, Rossell M.D, Crommie M.F, Zettl A, Nano Lett,2008,8:3582-3586.
    [78] Ni Z.H, Wang Y.Y, Yu T, Shen Z.X, Nano Res,2008,291(1):273-291.
    [79] Wang Y.Y, Ni Z.H, Yu T, Wang H.M, Wu Y.H, Chen W, Wee A.T.S, Shen Z.X, J. Phys.Chem. C,2008,112:10637-10640.
    [80] Chae H.K, Siberio-Perez D.Y, Kim J, Go Y, Eddaoudi M, Matzger A.J, et al, Nature,2004,427:523-527.
    [81] Salavagione H.J, Gomez MnA, Martinez G, Macromolecules,2009,42:6331-6334.
    [82] Jiang L, Shen X.P, Wu J.L, Shen K.C, J Appl Polym Sci,2010,118:275-279.
    [83] Liang J.J, Huang Y, Zhang L, Wang Y, Ma Y.F, Guo T.Y, et al, Adv Funct Mater,2009,19:2297-2302.
    [84] Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S, Carbon,2011,49:198-205.
    [85] Ansari S, Giannelis E.P, J Polym Sci Part B-Polym Phys,2009,47:888-897.
    [86] Kalaitzidou K, Fukushima H, Drzal L.T, Compos Sci Technol,2007,67:2045-2051.
    [87] Kim H, Macosko C.W, Macromolecules,2008,41:3317-3327.
    [88] Kim H, Macosko C.W, Polymer,2009,50:3797-3809.
    [89] Jang J.Y, Kim M.S, Jeong H.M, Shin C.M, Compos Sci Technol,2009,69:186-191.
    [90] Huang Y, Qin Y, Zhou Y, Niu H, Yu Z.Z, Dong J.Y, Chem Mater,2010,22:4096-4102.
    [91] Rafiee M.A, Rafiee J, Yu Z.Z, Koratkar N, Appl Phys Lett,2009,95:223103-223105.
    [92] Liu B.N, Luo F, Wu H.X, et al, Adv Funct Mater,2008,18(10):1518-1525.
    [93] Kim H, Macosko C.W, Polymer,2010,51(6):1191-1196.
    [94] Steurer P, Wissert R, Thomann R, et al, Macromolecular Rapid Communication,2009,30(4/5):316-327.
    [95] Raghu A.V, Lee Y.R, Jeong H.M, et al, Macromolecular Chemistry and Physics,2008,209(24):2487-2493.
    [96] Liang J.J, Wang Y, Huang Y, et al, Carbon,2009,47(3):922-925.
    [97] Wang S, Tambraparni M, Qiu J, Macromoleculers,2009,42(14):5251-5255.
    [98] Wang H, Robinson J.T, Diankov G, Dai H, J. Am. Chem. Soc,2010,132:3270-3271.
    [99] Lin Y, Zhang K, ChenW, Liu Y, Geng Z, Zeng J, Pan N, Yan L.F, Wang X.P, HouJ.G, ACS Nano,2010,4:3033-3038.
    [100]Cao A, Liu Z, Chu S.S, Wu M.H, Ye Z.M, Cai Z.W, Chang Y.L, Wang S.F, GongQ.H, Liu Y.F, Adv Mater,2010,22:103-106.
    [101]Wang P, Jiang T, Zhu C, Zhai Y, Wang D, Dong S, Nano Res,2010,3:794-799.
    [102]Watcharotone S, Dikin D.A, Stankovich S, Piner R, Jung I, Dommett G.H.B, et al,Nano Lett,2007,7:1888-1892.
    [103]Manga K.K, Wang S, Jaiswal M, Bao Q, Loh K.P, Adv Mater,2010,22:5265-5270.
    [104]Williams G, Seger B, Kamat P.V, ACS Nano,2008,2:1487-1491.
    [105]Li B, Zhang X, Li X, Wang L, Han R, Liu B, et al, Chem Commun,2010,46:3499-3501.
    [106]Yang S, Feng X, Ivanovici S, Müllen K, Angew Chem Int Ed,2010,49:8408-8411.
    [107]Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y, J Mater Chem,2009,19:2710-2714.
    [108]Shen J, Hu Y, Shi M, Li N, Ma H, Ye M, J Phys Chem C,2010,114:1498-1503.
    [109]Chandra V, Park J, Chun Y, Lee J.W, Hwang I.C, Kim K.S, ACS Nano,2010,4:3979-3986.
    [110]Wang K, Liu Q, Guan Q.M, Wu J, Li H.N, Yan J.J, Biosens. Bioelectron,2011,26,2252-2257.
    [111]Kang X, Wang J, Wu H, Aksay I.A, Liu J, Lin Y, Biosens. Bioelectron,2009,25:901-905.
    [112]Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay I A, Lin Y, Talanta,2009,80:403-406.
    [113]Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L, Biosens. Bioelectron,2010,25,1070-1074
    [114]Zeng G., Xing Y, Gao J, Wang Z, Zhang X, Langmuir,2010,26:15022-15026
    [115]Jiang Y.Y, Zhang Q.X, Li F.H, Niu L, Sensors and Actuators B,2012,161:728-733.
    [116]Wu J.F, Xu M.Q, Zhao G.C, Electrochem Commun,2010,12:175-177.
    [117]L.Gorton, Electrochemistry of NAD(P)+/NAD(P)H, in: A. J. Bard, M. Stratmann(Eds.), Encyclopedia of Electrochemistry, Wiley-VCH, Weinheim,2002:67-143.
    [118]Antonio Radoi, Dario Compagnone, Bioelectrochemistry,2009,76:126-134.
    [119]Tang L, Wang Y, Li Y, Feng H, Lu J, Li J, Adv Funct Mater,2009,19:2782-2789.
    [120]Liu H, Gao J, Xue M, Zhu N, Zhang M, Cao T, Langmuir,2009,22:12006-12010.
    [121]Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L, Biosens. Bioelectron,2010,25:1504-1508.
    [122]Xu H.F, Dai H, Chen G.N, Talanta,2010,81:334-338.
    [123]He Y, Sheng Q, Zheng J, Wang M, Liu B, Electrochim. Acta,2011,56:2471-2476.
    [124]Liu K.P, Zhang J.J, Yang G.H, Wang C.M, Zhu J.J, Electrochem Commun,2010,3:402-405.
    [125]Zeng Q, Cheng J.S, Tang L.H, Liu X.F, Liu Y.Z, Li J.H, Jiang J.H, Adv. Func. Mater,2010,20(19):3366-3372.
    [126]Zhou K, Zhu Y, Yang X, Luo J, Li C, Luan S, Electrochim. Acta,2010,55:3055-3060.
    [127]Ramendra Sundar Dey, C. Retna Raj, J. Phys. Chem. C,2010,114(49):21427-21433.
    [128]Zhou M, Zhai Y M, Dong S J, Anal Chem,2009,81:5603-5613.
    [129]Lu W.B, Luo Y.L, Chang G.H, Sun X.P, Biosens. Bioelectron,2011,26:4791-4797.
    [130]Li L.M, Du Z.F, Liu S, Hao Q.Y, WangY.G, Li Q.H, Wang T.H, Talanta,2010,82:1637-1641.
    [131]Fang Y.X, Guo S.J, Zhu C.Z, Zhai Y.M, W ang E.K, Langmuir,2010,26(13):11277-11282.
    [132]Wang Y, Li Y.M, Tang L.H, Lu J, Li J.H, Electrochem. Commun,2009,11:889-892.
    [133]Guo H.L, Wang X.F, Qian Q.Y, Wang F.B, Xia X.H, ACS Nano,2009,3(9):2653-2659.
    [134]Sheng Z.H, Zheng X.Q, Xu J.Y, Bao W.J, Wang F.B, Xia X.H, Biosens. Bioelectron,2012,34:125-131.
    [135]Li J, Guo S J, Zhai Y.M, Wang E.K, Anal. Chim. Acta,2009,649:196-201.
    [136]Gong J.M, Zhou T, Song D.D, Zhang L.Z, Sensors and Actuators B,2010,150:491-497.
    [137]Lu G.H, Leonidas E Ocola, Chen J.H, Nanotechnology,2009,20:445502-445509.
    [138]Jung I, Dikin D, Park S, Cai W, Mielke S.L, Ruoff R.S, J. Phys. Chem. C,2008,112:20264-20268..
    [139]Zhang Y.H, Chen Y.B, Zhou K.G, Liu C.H, Zeng J, Zhang H.L, Peng Y,Nanotechnology,2009,20(18):185504-185511.
    [140]Niu X.L, Yang W, Ren J, Guo H, Long S.J, Chen J.J, Gao J Z, Electrochim. Acta,2012,80:346-353.
    [141]Du M, Yang T, Li X, Jiao K, Talanta,2012,88:439-444.
    [1] Weng Y, Rick J F, Chou T, Biosens. Bioelectron,2004,20:41-51.
    [2] Buttler T, Gorton L, Jarskog H, Marko-Varga G, Hahn-Hagerdal B, Meinander N,Olsson L, Biotechnol. Bioeng,1994,44:322-328.
    [3] Heberle I, Liebminger A, Weimar U, Goepel W, Sens. Actuators B,2000,68:53-57.
    [4] Rosendal I, Schmidt F, J. Inet. Brew,1987,9:373-377.
    [5] Kucherenko U.V, Moiseev V.A, Biol. Memb,1999,16:516-525.
    [6] Rangel A.O.S.S, Toth I.V, Am. J. Enol. Vitic,1999,50:259-263.
    [7] Yemini M, Reches M, Gazit E, Rishpon J, Anal. Chem,2005,77:5155-5159.
    [8] Ricci F, Amine A, Moscone D, Palleschi G, Biosens. Bioelectron,2007,22:854-862.
    [9] Liu D, Zhang L.H, Shang L, Guo S.J, Wen D, Wang F, Dong S.J, Biosens. Bioelectron,2009,24:2273-2276.
    [10]Tong S.F, Jin H.Y, Zheng D.F, Wang W, Li X, Xu Y.H, Song W.B, Biosens.Bioelectron,2009,24:2404-2409.
    [11]Wang W, Zhang L. L, Tong S. F, Li X, Song W. B, Biosens. Bioelectron,2009,25:708-714
    [12]Liu Y, Zhang L, Guo Q.H, Hou H.Q, You T.Y, Anal. Chim. Acta,2010,663:153-157.
    [13]Jia W.Z, Guo M, Zheng Z, Yu T, Rodriguez E.G, Wang Y, Lei Y, J. Electroanal.Chem,2009,625:27-32.
    [14]Mo G.Q, Ye J.S, Zhang W.D, Electrochim. Acta,2009,55:511-515.
    [15]Li L.M, Du Z.F, Liu S, Hao Q.Y, Wang Y.G, Li Q.H, Wang T.H, Talanta,2010,82:1637-1641.
    [16]Wang Y, Li Y.M, Tang L.H, Lu J, Li J.H, Electrochem. Commun,2009,11:889-893.
    [17]Hummers W.S, Offeman R.E, J. Am. Chem. Soc,1958,80:1339-1339.
    [18]Tuinstra F, Koenig J L, Bull. Am. Phys. Soc,1970,15(3):1126-1130.
    [19]Jorio A, Pimenta M.A, Souza A G, Saito R, Dresselhaus G, Dresselhaus M.S, New J.Phys,2003,5:139-146.
    [20]Kudin K.N, Ozbas B, Schniepp H.C, Prud'homme R.K, Aksay I.A, Car R, Nano Lett,2008,8(1):36-41.
    [21]Stankovich S, Dikin D.A, Piner R.D, Kohlhaas K.A, Kleinhammes A, Jia Y et a1,Carbon,2007,45(7):1558-1565.
    [22]Geim A.K, Novoselov K.S, Nat. Mater,2007,6:183-191.
    [23]Zhou K.F, Zhu Y.H, Yang X.L, Luo J, Li C.Z, Luan S.R, Electrochim. Acta,2010,55:3055-3060.
    [24]Liu Y, Zhang L, Guo Q.H, Hou H.Q, You T.Y, Anal. Chim. Acta,2010,663:153-157.
    [25]Kim M.S, Hwang T.S, Kim K.B, J. Electrochem. Soc,1997,144:1537-1543.
    [26]Kong J.L, Xue K.H, He C.J, Shao Y, Chen Q.L, Yao J.L, Xie Y, Tian Z.Q, ChineseJournal of Applied Chemistry,2001,18:462-465.
    [27]Zhang C, Sark P, J. Electrochem. Soc,1987,134:2966-2968.
    [28]Kong J.L, Xue K.H, He C.J, Shao Y, Chen Q.L, Yao J.L, Xie Y, Tian Z.Q, ChineseJournal of Applied Chemistry,2001,18:462-465.
    [29]El-Shafei A.A, J. Electroanal. Chem,1999,471:89-95.
    [30]Kim J. M, Chang S.M, Muramatsu H, J. Electrochem. Soc,1999,146:1075-1078.
    [31]Kong J.L, Xue K.H, Shao Y, He C.J, Chen Q.L, Acta Phys. Chim. Sin,2002,18:268-271.
    [32]Zheng Y.X, Yao S.B, Zhou S.M, Acta Phys. Chim. Sin,2008,24:1643-1649.
    [33]Pariente F, Lorenzo E, Tobalina F, Abruna H.D, Anal. Chem,1995,67:3936-3944.
    [34]Liu S.N, Cai C.X, J. Electroanal. Chem,2007,602:103-114.
    [35]Tsai Y.C, Huang J.D, Chiu C.C, Biosens. Bioelectron,2007,22:3051-3056.
    [36]Paix o T.R.L.C, Corbo D, Bertotti M, Anal. Chim. Acta,2002,472:123-131.
    [37]Shi J, Ci P.L, Wang F, Peng H, Yang P.X, Wang L.W, Wang Q.J, Chu P.K,Electrochim. Acta,2011,56:4197-4202.
    [1] Lee J.H, Yoon S.M, Kim K.K, Cha I.S, Park Y.J, Choi J.Y, Lee Y.H, Paik U, J. Phys.Chem. C,2008,112(39):15267-15273.
    [2] Kotov N.A, Nature,2006,442:254-255.
    [3] Geim A.K, Mac Donald A.H, Phys Today,2007,60(8):35-41.
    [4] Si Y, Samulski T, Nano Lett,2008,8:1679-1682.
    [5] Dreyer R.D, Park S, Bielawski C.W, Ruoff R.S, Chem. Soc. Rev,2010,39:228-240.
    [6] Wang G.X, Yang J, Park J, Gou X.L, Wang B, Liu H, Yao Jane, J. Phys. Chem. C,2008,112:8192-8195.
    [7] Wang G.X, Shen X, Wang B, Yao J, Park J, Carbon,2009,47:1359-1364.
    [8] Li X, Wang X, Zhang L, Lee S, Dai H, Science,2008,319:1229-1231.
    [9] Blake P, Brimicombe P.D, Nair R.R, Booth T.J, Jiang D, Schedin F, PonomarenkoL.A, Morozov S.V, Gleeson H.F, Hill E.W, Geim A.K, Novoselov K.S, Nano Lett,2008,8:1704-1708.
    [10] Zacharia R, Ulbricht H, Hertel T, Phys. Rev. B,2004,69:155406-155407.
    [11] Bourlinos A.B, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I, Chem. Mater,2003,19:6050-6055.
    [12] Li J, Sham M.L, Kim J.K, Marom G, Langmuir,2009,25:12030-12033.
    [13] Xu Y.X, Wu Q, Sun Y.Q, Bai H, Shi G.Q, ACS Nano,2010,4(12):7358-7362.
    [14] Tan L, Zhou K.G, Zhang Y.H, Wang H.X, Wang X.D, Guo Y.F, Zhang H.L,Electrochem. Commun,2010,12(4):557-560.
    [15] Bai H, Xu Y, Zhao L, Li C, Shi G, Chem Commun,2009,13:1667-1669.
    [16] Salavagione H.J, Gomez M.A, Martinez G, Macromolecules,2009,42:6331-6334.
    [17] Stankovich S, Piner R.D, Chen X, Wu N, Nguyen S.T, Ruoff R.S, J. Mater. Chem,2006,16:155-158.
    [18] Xu Z.A, Gao N, Dong S.J, Talanta,2006,68(3):753-758.
    [19] Zhang S.P, Liu Z.C, Tang H.L, Pan M, Electrochim. Acta,2006,51:5721-5730.
    [20] Alexeyeva N, Tammeveski K, Anal. Chim. Acta,2008,618:140-146.
    [21] Li D, Muller M.B, Gilje S, Kaner R.B, Wallace G.G, Nature Nanotechnology,2008,3:101-105.
    [22] Wang S.Y, Yu D.S, Dai L.M, J. Am. Chem. Soc,2011,133:5182-5185.
    [23] Wang S.Y, Yu D.S, Dai L.M, Chang D.W, Baek J.B, ACS Nano,2011,5:6202-6209.
    [24] Gong K.P, Du F, Xia Z.H, Durstock M, Dai L.M, Science,2009,323:760-764.
    [25] Rao A.M, Eklund P.C, Bandow S, Thess A, Smalley R.E, Nature,1997,388:257-259.
    [26] Qi X, Pu K.Y, Zhou X, Li H, Liu B, Boey F, Huang W, Zhang H, Small,2010,6:663-669.
    [27] Hsiao M.C, Liao S.H, Yen M.Y, Liu P.I, Pu N.W, Wang C.A, Ma C.C, ACS Appl. Mat.Interfaces,2010,2:3092-3099.
    [28] Zhang L, Zhang Q, Li J.H, Biosens. Bioelectron,2010,26:846-849.
    [29] Zhang Q, Zhang L, Li J.H, J. Phys. Chem. C,2007,111:8655-8660.
    [30] Zhang L.L, Cheng H.H, Zhang H.M, Qu L.T, Electrochim. Acta,2012,65:122-126.
    [31] Xu F.G, Sun Y.J, Zhang Y, Shi Y, Wen Z.W, Li Z, Electrochem. Commun,2011,131131-131134.
    [32] Annamalai S.K, Palani B, Pillai K.C, Colloids and Surfaces A: Physicochem. Eng.Aspects,2012,395:207-216.
    [33] Jia W.Z, Guo M, Zheng Z, Yu T, Rodriguez E.G, Wang Y, Lei Y, J. Electroanal.Chem,2009,625:27-32.
    [34] Karam P, Halaoui I.I, Anal. Chem,2008,80:5441-5448.
    [35] Lu W.B, Luo Y.L, Chang G.H, Sun X.P, Biosens. Bioelectron,2011,26:4791-4797.
    [36] Jin E, Lu X.F, Cui L.L, Chao D.M, Wang C, Electrochim. Acta,2010,55:7230-7234.
    [37] Qian Y, Wang C.Y, Le Z.G, App. Sci,2011,257:10758-10762.
    [38] Chandra S, Bag S, Bhar R, Pramanik P, J Nanopart Res,2011,13:2769-2777.
    [39] Yao J, Shen X.P, Wang B, Liu H.K, Wang G.X, Electrochem. Commun,2009,11:1849-1852.
    [40] Singh V.K, PatraM.K, Manoth M, Gowd G.S, Vadera S.R, Kumar N, New CarbonMaterials,2009,2:147-152.
    [41] Chen S, Zhu J.W, Huang H.J, Zeng G.Y, Nie F.D, Wang X, J. Solid. State. Chem,2010,183,2552-2557.
    [42] Wang H.L, Casalongue H.S, Liang Y.Y, Dai H.J, J. Am. Chem. Soc,2010,132:7472-7477.
    [43] Nethravathi C, Nisha T, Ravishankar N, Shivakumara C, Rajamathi M, Carbon,2009,47:2054-2059.
    [44] Wu J.L, Bai S, Shen X.P, Jiang L, App. Surf. Sci.,2010,257:747-751
    [45] Muszynski R, Seger B, Kamat P.V, J. Phys. Chem. C,2008,112:5263-5266.
    [46] Wang D.H, Choi D.W, Li J, Yang Z.G, Nie Z.M, Kou R, Hu D.H, Wang C.M, SarafL.V, Zhang J.G, Aksay I.A, Liu J, ACS Nano,2009,3:907-914.
    [47] Zhu C.Z, Guo S.J, Zhai Y.M, Dong S.J, Langmuir,2010,10:7614-7618.
    [48] Hong W, Bai H, Xu Y, Yao Z, Gu Z, Shi G. J, J. Phys. Chem.C,2010,114:1822-1826.
    [49] Fang Y.X, Guo S.J, Zhu C.Z, Zhai Y.M, Wang E.K, Langmiur,2010,13:11277-11282.
    [50] Wang Y, Yao H.B, Wang X.H, Yu S.H, J. Mater. Chem,2011,21(2):562-566.
    [51] Zare H.R, Rajabzadeh N, Nasirizadeh N, Ardakani M.M, J. Electroanal. Chem,2006,589:60-69.
    [52] Xu Y, Liang J, Hu C, Wang F, Hu S, He Z, J. Biol. Inorg. Chem,2007,12(3):421-427.
    [53] Wang Z, Xu Q, Wang H.Q, Yin Z.H, Yu J.A, Zhao Y.D, Anal Sci,2009,25(6):773-777.
    [54] Cheng W, Yan F, Ding L, Ju H.X, Yin Y.B, Anal Chem,2010,82(8):3337-3342.
    [55] Lin Z.B, Su X.G, Zhang H, Mu Y, Sun Y, Hu H, Yang B, Yan G.L, Luo G.M, Jin Q.H,Chemical Journal of Chinese University,2003,2:216-220.
    [56] Huang J.S, Liu Y, Hou H.Q, You T.Y, Biosens. Bioelectron,2008,24:632-637.
    [57] Habibi B, Pournaghi-Azar M.H, Electrochim. Acta,2010,55:5492-5498.
    [58] Shahrokhian S, Zare-Mehrjardi H.R, Khajehshari H, J. Solid. State. Electrochem,2009,13:1567-1575.
    [59] Liu Y, Huang J.S, Hou H.Q, You T.Y, Electrochem. Commun,2008,10:1431-1434.
    [60] Zhu S.Y, Li H.J, Niu W.X, Xu G.B, Biosens. Bioelectron,2009,4:940-943.
    [61] Liu X.G, Peng Y.H, Qu X.Q, Ai S.Y, Han R.X, Zhu X.B, J. Electroanal Chem,2011,1-2:72-78.
    [62] Safavi A, Maleki N, Moradlou O, Tajabadi F, Anal. Biochem,2006,359:224-229.
    [63] Zhang W, Chai Y.Q, Yuan R, Chen S.H, Han J, Yuan D.H, Anal. Chim. Acta,2012,756:7-12.
    [64] Clark L.C, Lyons C, Ann. N. Y. Acad. Sci,1962,102:29-45.
    [65] Liu G.D, Lin Y.H, Electrochem. Commun,2006,8:251-256.
    [66] Zhang Y, Shen Y, Han D, Wang Z, Song J, Li F, Niu L, Biosens. Bioelectron,2007,23:438-443.
    [67] Kang X.H, Wang J, Wu H, IlhanA. Aksay, Liu J, Lin Y.H, Biosens. Bioelectron,2009,25:901-905
    [68] Shan C.S, Yang H.F, Han D.X, Zhang Q.X, Ivaska A, Niu L, Biosens. Bioelectron,2010,25:1070-1074.
    [69] Zhang W.J, Huang Y.X, Dai H, Wang X.Y, Fan C.H, Li G.X, Anal. Biochem,2004,329:85-90.
    [70] Laviron E, J. Electroanal. Chem,1979,100:263-27.
    [71] Godet C, Boujtita M, Murr N.E, New J. Chem,1999,23:795-797.
    [72] Luo X, Killard A.J, Smyth M.R, Electroanalysis,2006,18:1131-1134.
    [73] Deng C, Chen J.H, Chen X.L, Xiao C.H, Nie L.H, Yao S.Z, Biosens. Bioelectro,2008,23:1272-1277.
    [74] Cai C.X, Chen J, Anal Biochem,2004,332:75-83.
    [75] Liu S, Ju H.X, Biosens. Bioelectron,2003,19:177-183.
    [76] Wen D, Liu Y, Yang G.C, Dong S.J, Electrochim. Acta,2007,52:5312-5317.
    [77] Zhang J.D, Feng M.L, Tachikawa H, Biosens. Bioelectron,2007,22:3036-3041.
    [78] Liu Q, Lu X, Li J, Yao X, Li J.H, Biosens. Bioelectron,2007,22:3203-3209.
    [79] Huang Y.X, Zhang W.J, Xiao H, Li G.X, Biosens. Bioelectron,2005,21:817-821.
    [80] Wu P, Shao Q, Hu Y.H, Jin J, Yin Y.J, Zhang H, Cai C.X, Electrochim. Acta,2010,55:8606-8614.
    [81] Liu Y, Wang M.K, Zhao F, Xu Z.A, Dong S.J, Biosens. Bioelectron,2005,21:984-988.
    [82] Liu Q, Lu X, Li J, Yao X, Li J.H, Biosens. Bioelectron,2007,22:3203-3205.
    [83] Lin Y.H, Lu F, Tu Y, Ren Z.F, Nano Lett,2004,4:191-195.
    [84] Shan C.S, Yang H.F, Han D.X, Zhang Q.X, Ivaska A, Niu L, Biosens. Bioelectron,2010,25:1070-1074.
    [1] van den Beucken J.J.J.P, Vos M.R.J, Thune P.C, Hayakawa T, Fukushima T, Okahata Y,Walbooers X.F, Sommerdijk N.A.J.M, Nolte R.J.M, Jansen J.A, Biomaterials,2006,27:691-701.
    [2] Bhambhani A, Kumar C.V, Adv. Mater,2006,18:939-942.
    [3] Song Y, Wang L, Rena C, Zhua G, Li Z, Sens. Actuators. B,2006,114:1001-1006.
    [4] Yamauchi F, Koyamatsu Y, Kato K, Iwata H, Biomaterials,2006,27:3497-3504.
    [5] Zhang Q, Zhang L, Li J.H, J.Phys.Chem.C,2007,111:8655-8660.
    [6] Fraga C.G., Shigenaga M.K, Park J.W, et al, Proc. Natl. Acad. Sci. USA,1990,87:4533-4537.
    [7] Shigenaga M.K, Gimeno C.J, Ames B.N, Proc. Natl. Acad. Sci. USA,1989,86:9697-9701.
    [8] Holmberg I, Stal P, Hamberg M, Free. Radical. Bio. Med,1999,26:129-135.
    [9] Bogdanov M.B, Beal M.F, McCabe D.R, Griffin R.M., Matson W.R, Free. Radical.Bio. Med,1999,27:647-666.
    [10]Guyton K.Z, Kensler T.W, Br. Med. Bull,1993,49(3):523-544.
    [11]H. Kasai, J. Radiat. Res,2003,44:185-189.
    [12]Lengger C, Sch ch G, Topp H, Anal. Biochem,2000,287:65-72.
    [13]Mei S.R, Wang P, Wu C.Y, Zhou Y.K, Journal of Huazhong University of Science andTechnology(Natural Science Edition),2006,34(5):118-120.
    [14]Weiss D.J, Lunte C.E, Electrophoresis,2000,21:2080-2085.
    [15]Yin B.Y, Whyatt R.M, Perera F.P, Randall M.C, Cooper T.B, Santella R.M, FreeRadical Bio. Med,1995,18(6):1023-1032.
    [16]Maatouk I, Boua cha N, Plessis M.J, Périn F, Mutation Research/Genetic Toxicologyand Environmental Mutagenesis,2004,564(1):9-20.
    [17]Gutiérrez A, Gutiérrez S, García G, Galicia L, Rivasc G.A, Electroanalysis,2011,23(5):1221-1228.
    [18]Gutiérrez A, Osegueda S, Gutieérrez-Granados S, Alatorre A, García M.G,Godínez.L.A, Electroanalysis20,2008(21):2294-2300.
    [19]Li T.H, Jia W.L, Wang H.S, Biosense. Bioelectron.2007,22:1245-1250.
    [20]王彦怀,李静,刘艳,马荣娜,贾文丽,崔慧,王怀生,中国科学B辑:化学,2009,39(11):1536-1543.
    [21]潘吉超,姚飞,人腾飞,贾丽萍,贾文丽,崔慧,王怀生,南京师范大学学报,2012,35(2):66-71.
    [22]Zhang J.J, Wang B, Li Y.F, Jia W.L, Cui H, Wang H.S, Eelectroanalysis,2008,20(15):1684-1689.
    [23]赵燕,郝卫东,癌变·畸变·突变,2007,19(5):18-20.
    [24]Patil A.J, Vickery J.L, Scott T.B, Mann S, Adv.Mater,2009,21:3159-3164.
    [25]Li D, Muller M.B, Gilje S, Kaner R.B, Wallace G.G, Nat. Nanotechnol,2008,3:101-105.
    [26]Wang Q, Jia G, Yan L etc, Chin J Prev Med,2005,39(4):280-282.
    [27]Lin H.S, Jenner A.M, Ong C.N, Huang S.H, Whiteman M, Halliwell B, J. Biochem,2004,380:541-548.
    [28]Yang B, Scheidtmann J, Joachim M, et al, Surface Science,2002,497(1-3):100-112.
    [29]Panigrahi S, Praharaj S, Basu S, et al, J. Phys. Chem. B,2006,110(27):13436-1344.
    [30]Ledo A, Martinez F, Lopez-Quintela M.A, et al, Physica B: Condensed Matter,2007,398(2):273-277.
    [31]Lu W.B, Liao F, Luo Y.L, Chang G.H, Sun X.P, Electrochim. Acta,2011,56:2295-2298.
    [32]Song Y.H, Cui K, Wang L, Chen S.H, Nanotechnology,2009,20,105501-105508.
    [33]Yang X.J, Bai J, Wang Y.H, Jiang X.Y, He X.Y, Analyst,2012,137:4362-4367.
    [34]Lu W.B, Luo Y.L, Chang G.H, Sun X.P, Biosens. Bioelectron,2011,26(12):4791-4797.
    [35]Shan C.S, Yang H.F, Han D.X, Zhang Q.X, Ivaska A, Niu L, Biosens. Bioelectron,2010,25(5):1070-1074.
    [36]Crespilhoa F.N, Iostb R.M, Travainc S.A, Oliveira O.N.Jr, Zucolotto V, BiosensBioelectron,2009,24:3073-3077.
    [37]Cui K, Song Y, Yao Y, Huang Z, Wang L, Electrochem. Commun,2008,10:663-667.
    [1] Hernandez Y, Nicolosi V, Lotya M, et al, Nat. Nanotechnol,2008,3(9):563-568.
    [2] Qian W, Hao R, Hou Y, et al, Nano. Res,2009,2:706-712.
    [3] Janowska I, Chizari K, Ersen O, et al, Nano. Res,2010,3(2):126-137.
    [4] Sutter P.W, Flege J.I, Sutter E.A, Nat. Mater,2008,7:406-411.
    [5] Loginova E, Bartelt N.C, Feibelman P.J, McCarty K.F, New J. Phys,2009,11:063046-063065.
    [6] Starodub E, Maier S, Stass I, Bartelt N.C, Feibelman P.J, Salmeron M, McCarty K.F,Phys. Rev. B,2009,80:235422-235429.
    [7] Forbeaux I, Themlin J.M, Debever J.M, Phys. Rev. B,1998,58:16396-16406.
    [8] Varchon F, Feng R, Hass J, Li X, Nguyen B.N, Naud C, et al, Phys. Rev. Lett,2007,99:126805-126808.
    [9] Verdejo R, Barroso-Bujans F, Rodriguez-Perez M.A, de Saja J.A, Lopez-ManchadoM.A, J. Mater. Chem,2008,18:2221-2226.
    [10]Schniepp H.C, Li J.L, McAllister M.J, Sai H, Herrera-Alonso M, Adamson D.H, et al,J. Phys. Chem. B,2006,110:8535-8539.
    [11]Gilje S, Han S,Wang M,Wang K.L, Kaner R.B, Nano Lett,2007,7:3394-3398.
    [12]Guo H.L, Wang X.F, Qian Q.Y, Wang F.B, Xia X.H, ACS Nano,2009,3(9):2653-2659.
    [13]Wang Z.J, Zhou X.Z, Zhang J, Beoy F, Zhang H, J. Phys. Chem. C,2009,113(32):14071-14075.
    [14]Li J.X, Zhou L.H, Han X, Liu H.L, Sensor. Actuat. B,2008,135(1):3322-326.
    [15]Tong Y, Li Z.C, Lu X.F, Y L, Sun W.N, etc, Electrochim. Acta,2013,95:12-17.
    [16]Stoyanova A, Ivanov S, Tsakova V, Bund A, Electrochim. Acta,2011,56(10):3693-3699.
    [17]Kong F.Y, Li X.R, Zhao W.W, Xu J.J, Chen H.Y, Electrochem. Commun,2012,14(1):59-62.
    [18]Zhang Y.W, Chang G.H, Liu S, Lu W.B, Tian J.Q, Sun X.P, Biosens. Bioelectron,2011,28(1):344-348.
    [19]Zhou K.F, Zhu Y.H, Yang X.L, Luo J, Li C.Z, Luan S.R, Electrochim. Acta,2010,55:3055-3060.
    [20]Zhang H.F, Huang F.L, Xu S.L, Xia Y, Huang W, Li Z.L, Electrochem. Commun,2013,30:46-50.
    [21]Shan C.S, Yang H.F, Han D.X, Zhang Q.X, Ivaska A, Niu L, Biosens. Bioelectron,2010,25(5):1070-1074.
    [22]Lu W.B, Ning R, Qin X.Y, Zhang Y.W, Chang G.H, Liu S, Luo Y.L,Sun X.P, J. hazard.Mater,2011,197:320-326.
    [23]Zhang Q.X, Ren Q.Q, Miao Y.Q, Yuan J.H, Wang K.K, Li F.H, Han D.X, Niu L,Talanta,2012,89:391-395.
    [24]Cui F, Zhang X.L, J. Electroanal. Chem,2012,669:35-41.
    [25]Fang Y.X, Guo S.J, Zhu C.Z, Zhai Y.M, Wang E.K, Langmuir,2010,26(13):11277-11282.
    [26]Harold J, Helboc, Kenneth B, et al, Med Sci,1998,95(7):288-290.
    [27]梅素容,蔡凌霜,姚庆红,高等学校化学学报,2003,24(11):1987-1989.
    [28]Eva S, Peter M, Frantisek, et al, Anal Chim Acta,2004,516(2):107-110.
    [29]Magnus Z, Tim H, Jean C, Carcinogenesis,1999,20(7):1241-1245.
    [30]Chiuan C.C, Pi Y.C, Err C.C, Clin Chim Acta,2003,334(2):87-94.
    [31]米贤文,王永生,薛金花,欧阳运富,中国卫生检验杂志,2005,15(10):1161-1162.
    [32]Liu A, Watanabe T, Honma I, Wang J, Zhou H, Biosens. Bioelectron,2006,22:694-699.
    [33]Laviron E, J. Electroanal. Chem,1979,100:263-267.
    [34]Wang Q, Jia G, Yan L etc, Chin J Prev Med,2005,39(4):280-282.
    [35]Lin H.S, Jenner Andrew M, Ong Choon Nam, Huang S.H, Whiteman Matthew,Halliwell Barry, J. Biochem,2004,380:541-548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700