BCN薄膜的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BCN是一种人工合成的新型材料,具有键长短、键共价性强等特点。理论研究表明BCN具有与氮化硼(BN)相似的六方和立方型结构,特别是立方BCN(c-BCN)的性质应介于金刚石和立方BN(c-BN)之间,既有金刚石的高硬度、高耐磨性,又有c-BN的热稳定性及化学惰性,是一种非常理想的新型耐磨保护涂层材料,具有广阔的应用前景。科学家们采用各种方法尝试合成这种新型材料。目前,对于BCN薄膜的制备研究多数都是以单晶Si或其他一些晶体材料为衬底进行的,虽然在薄膜的沉积工艺、组织结构与性能分析等方面取得了一些进展,但与实际应用相比还有较大差距。因此,从实际应用角度出发,本文在国内首次采用YG8硬质合金作为衬底材料,进行BCN薄膜的制备与性能研究。
     采用直流与射频磁控反应溅射法,以高纯石墨和h-BN为靶材料,在YG8硬质合金衬底上成功制备出BCN薄膜。采用划痕试验与球-盘式摩擦试验系统研究了不同常规工艺参数与基片处理措施对薄膜附着性能与摩擦学性能的影响;并采用FTIR、XRD和XPS等测试手段分析研究了薄膜的成分结构及其影响因素;还采用第一性原理方法计算模拟了B、C和N原子在WC表面与WC-Co表面的吸附特性,为研究BCN薄膜的沉积与生长,提供理论依据与参考。
     研究表明,氮气分压比、工作气压、射频功率、基底偏压等常规工艺参数对BCN薄膜的附着性能与摩擦学性能有影响,而沉积时间的影响不大。最佳沉积工艺参数是:氮气分压比25%,工作气压1.0Pa,射频功率200W和基底偏压-50V。总体来说,常规工艺制备的BCN薄膜的减摩与抗磨作用不明显,其中薄膜最高附着力仅为31.7N,与氮化硅对摩球间的最低摩擦系数为0.32,最低磨损率为2.94x10-6mm3/Nm.
     研究表明,基片表面预处理和沉积中间层等基片处理措施对BCN薄膜的附着性能与摩擦学性能影响较大。最佳基片处理措施分别为金刚石研磨膏研磨+酸浸蚀两步法基片表面预处理和沉积单层TiN中间层,对应BCN薄膜的附着力较高分别为37.1与48.7N,与氮化硅对摩球间的摩擦系数分别为0.07与0.14,磨损率分别为0.88×10-6与1.81x10-6mm3/Nm,具有明显的减摩与抗磨作用。
     FTIR分析表明,BCN薄膜中各元素均实现了原子间成键,薄膜主要为B、C、N元素的三元化合物,而不是石墨和六方氮化硼的简单混合物。对硬质合金基底表面采用金刚石研磨膏研磨+酸浸蚀预处理以及渗硼预处理均有利于B、C、N原子间的相互作用成键,有助于B、C、N元素之间成键几率的提高。
     XRD分析表明,BCN薄膜均以非晶态结构为主。少数薄膜中开始形成一定的晶体结构,但因其数量太少无法确定。各种基片处理措施均有利于BCN薄膜的晶化。其中,渗硼预处理还使B元素与硬质合金衬底表层的Co、W元素反应形成化合物,并形成相关的晶相。
     XPS分析表明,BCN薄膜中B、C和N原子不是以自由原子态存在于薄膜中,而是彼此相互作用形成了C-N、B-N与B-C等化学键,但薄膜中N、B元素的含量偏少,特别是B元素的含量明显偏少,N/C比偏低,远小于合成BC2N的要求。薄膜应该是多晶或非晶结构材料。基底表面进行金刚石研磨膏研磨+酸浸蚀两步预处理有助于提高BCN薄膜中C==N键的数量。
     计算表明,B、C、N原子在WC(001)与WC(100)两种表面的高对称吸附位上都能形成化学吸附:在WC(001)表面吸附时,B、N原子倾向于转移到心位HC上形成稳定化学吸附,C原子则倾向于转移到空位HO上形成稳定化学吸附;在WC(100)表面吸附时,B、C、N原子均倾向于转移到心位HC上形成稳定化学吸附。两种表面上吸附的B、C、N原子主要都是与表层W原子相互作用,形成具有部分离子性的共价键。在相同吸附位上,两种表面都是对N原子的吸附最强,而对B原子的吸附最弱。总体上看,WC(100)表面比WC(001)表面更适合吸附B、C、N原子。
     计算表明,WC(100)表面掺杂Co元素形成的WC-Co表面对称性有所下降,可能的吸附位增加。B、C、N原子在WC-Co表面各吸附位上仍能形成化学吸附,B、C、N原子仍倾向于转移到心位HC上形成稳定化学吸附;吸附在WC-Co表面的B、C、N原子主要都是与表层W、Co原子相互作用,形成具有部分离子性的共价键。在相同吸附位上,WC-Co表面总是对N原子的吸附最强,对B原子的吸附最弱。这从微观角度部分解释了,为什么WC-Co硬质合金表面沉积的BCN薄膜中B元素含量偏少。计算还表明Co元素的掺杂对C、N原子在硬质合金表面的吸附有不利影响。同样从微观角度部分解释了,为什么Co元素不利于硬质合金表面相关薄膜的沉积,从而为实验提供一定的参考与指导。
BCN is a new type of synthetic material with characteristic shorter bond length and higher proportion of covalent bonding. Theoretical research has demonstrated that BCN has a hexagonal and cubic structure similar to BN structure. It is noteworthy that the property of cubic BCN (c-BCN) should be in between diamond and cubic BN (c-BN):it has the high degree of hardness and wear of diamond and the thermal stability and chemical inertness of c-BN. As such, c-BCN is a new, ideal type of material for wear-resistant protective coating that potentially has wide applications. Researchers have attempted to use various methods to synthesize this new material. Most studies used single crystal Si or other crystals as substrate to make BCN film. Although progress has been made in the technique of film deposition and the analyses of its structure and performance, there is still a considerable gap between research and application. To diminish this gap, this work pioneered in China to use YG8hardmetal as substrate material to make BCN film and examine its properties.
     Using high purity graphite and h-BN as target material, this study succeeded in making BCN film on YG8hardmetal substrate by using DC and RF magnetron sputtering. Scratch test and ball-on-disc tribological test were used to systematically examine the effects of various conventional process parameters and treatment of the substrate on the adhesion performance and tribological properties of the film. FTIR, XRD and XPS methods were used to analyze the composition and structure of the film as well as factors that affect them. In addition, first-principles method was used to computationally simulate the adsorption characteristics of B、C and N atoms on WC and WC-Co surfaces. These studies provided the theoretical basis for studying the deposition and growth of BCN film.
     This research showed that the adhesion and tribological properties of BCN film are influenced by conventional process parameters including nitrogen gas partial pressure ratio, working atmospheric pressure, RF power and substrate bias, but not by the time of deposition. The optimal deposition parameters are:nitrogen gas partial pressure ratio25%, working atmospheric pressure1.OPa, RF power200W, and substrate bias-50V. In general, BCN film made with the conventional process does not have obvious antifriction effect and wear resistance, with the maximum adhesive force being only 31.7N, and the lowest friction coefficient against silicon nitride being0.32, and the lowest wear rate being2.94×10-6mm3/Nm.
     This study also demonstrated that the pretreatment of the substrate surface and the deposition of interlayer have relatively large effects on the adhesion performance and tribological properties of BCN film. The optimal treatment of the substrate is a two-step pretreatment of the substrate surface (grinding by diamond paste followed by acid etching) and deposition of a single-layer interlayer of TiN. The corresponding BCN films' adhesive forces are37.1and48.7N, respectively, and the friction coefficients against silicon nitride are0.07and0.14, respectively; and the wear rate are0.88×10-6and1.81×10-6mm3/Nm, respectively. Therefore, the BCN film has a clear antifriction effect and wear-resistance, and serves as a good foundation for further studies on the application of BCN film.
     FTIR analysis revealed that the various elements in BCN film all form bonds with each other, resulting in the film being mainly a B, C, and N three-component compound, not the simple mixture of graphite and h-BN. The grinding by diamond paste followed by acid etching pretreatment and boronizing pretreatment of the hardmetal substrate is helpful for the formation of bonds between B, C and N atoms.
     XRD analysis found that BCN films are mainly in a non-crystal state. A minority of films form certain crystal structures, but the quantity is too low to measure. All the methods of treatment of the substrate help the crystallization of BCN film. Moreover, boronizing pretreatment also induces B element to form a compound and corresponding crystal phase with the Co and W elements in hardmetal surface layer.
     XPS analysis indicated that the B, C and N atoms do not exist as free atoms in BCN film, but instead form C-N, B-N and B-C chemical bonds. However, the relative content of N and B elements, especially B element is clearly low, resulting in low N/C, which does not meet the requirement for the formation of BC2N. The film should be a multi-crystal or non-crystal material. Pretreatment of substrate surface with grinding by diamond paste followed by acid etching helps to increase the amount of C=N bonds in BCN film.
     Computational analysis revealed that B, C and N atoms can form chemical adsorption at the high symmetry adsorption sites of both WC(001) and WC(100) surfaces. On WC(001) surface, B and N atoms tend to move to hollow site HC to for form a stable chemical adsorption, while the C atom tends to move to hollow site HO to form a stable chemical adsorption. On the other hand, on WC(100) surface, B, C and N atoms all tend to move to hollow site HC to for form stable chemical adsorptions. On both surfaces, B, C and N atoms mainly interact with the surface W atoms to form partially ionic covalent bonds. At the same adsorption site on both surfaces, the adsorption of N atom is the strongest, and that of B atom the weakest. WC(100) is generally more suitable than WC(001) for the adsorption of B, C and N atoms.
     Computational analysis also revealed that WC-Co surface formed by adding Co element to WC(100) has a reduced symmetry which increases potential adsorption sites. B, C and N atoms can still form chemical adsorption on the adsorptions sites on WC-Co surface, and they still tend to move to hollow site HC site to for stable chemical adsorption. B, C and N atoms on WC-Co surface mainly interact with the surface W and Co atoms to form partially ionic covalent bonds. At the same adsorption site on WC-Co surface, the adsorption of N atom is the strongest, and that of B atom the weakest. From a microcosmic perspective, this partially explains why the content of B element is relatively low in BCN film deposited on WC-Co surface. It was also shown that addition of Co element is harmful to the adsorption of C and N atoms on hardmetal surface, which from a microcosmic perspective, partially explains why Co element is not helpful to the deposition of related film on hardmetal surface, and provides guidance for future research.
引文
[1]Cohen M L. Calculation of bulk moduli of diamond and zinc-blende solids[J]. PHYSICAL REVIEW B,1985,32(12):7988-7991.
    [2]Knittle E, Wentzcovitch R M, Jeanloz R, et al. Experimental and theoretical equation of state of cubic boron nitride[J]. Nature,1989,337(6205):349-352.
    [3]Cartz L, Jorgensen J D. The high - pressure behavior of a - quartz, oxynitride, and nitride structures[J]. Journal of Applied Physics,1981,52(1):236-244.
    [4]Liu A Y, Cohen. M L. Prediction of New Low Compressibility Solids[J]. Science, 1989,245(4920):841-842.
    [5]Teter D M, Hemley R J. Low-compressibility carbon nitrides[J]. Science, 1996,271(5245):53-55.
    [6]熊家炯主编.材料设计[M].天津市:天津大学出版社,2000.
    [7]戴起勋,赵玉涛主编.高等学校教材 材料设计教程[M].北京市:化学工业出版社,2007.
    [8]Liu A Y, Wentzcovitch R M, Cohen M L. Atomic arrangement and electronic structure of BC2N[J]. Physical Review B,1989,39(3):1760-1765.
    [9]Saalfrank P, Riimler W, Hummel H U, et al. Energetics and gap engineering in alternating layer and intralayer substituted boron-nitrogen-carbon compounds[J]. Synthetic Metals, 1992,52(1):1-19.
    [10]Nozaki H, Itoh S. Lattice dynamics of BC2N[J]. Physical Review B, 1996,53(21):14161-14170.
    [11]Azevedo S. Energetic and electronic structure of BC2N compounds[J]. EUROPEAN PHYSICAL JOURNAL B,2005,44(2):203-207.
    [12]Tateyama Y, Ogitsu T, Kusakabe K, et al. Proposed synthesis path for heterodiamond BC2N[J]. Physical Review B,1997,55(16):R10161.
    [13]Zhang R Q, Chan K S, Cheung H F, et al. Energetics of segregation in β-C2BN[J]. Applied Physics Letters,1999,75(15):2259-2261.
    [14]Mattesini M, Matar S F. First-principles characterisation of new ternary heterodiamond BC2N phases[J]. Computational Materials Science,2001,20(1):107-119.
    [15]Mattesini M, Matar S F. Search for ultra-hard materials:theoretical characterisation of novel orthorhombic BC2N crystals[J]. INTERNATIONAL JOURNAL OF INORGANIC MATERIALS,2001,3(7):943-957.
    [16]Sun H, Jhi S H, Roundy D, et al. Structural forms of cubic BC2N[J]. Physical Review B, 2001,64(9):94108.
    [17]Sun J, Zhou X F, Qian G R, et al. Chalcopyrite polymorph for superhard BC2N[J]. APPLIED PHYSICS LETTERS,2006,89(15191115).
    [18]Guo X J, Liu Z Y, Luo X G, et al. Theoretical hardness of the cubic BC2N[J]. DIAMOND AND RELATED MATERIALS,2007,16(3):526-530.
    [19]Luo X G, Guo X J, Xu B, et al. Body-centered superhard BC2N phases from first principles[J]. PHYSICAL REVIEW B,2007,76(0941039).
    [20]Langenhorst F, Solozhenko V L. ATEM-EELS study of new diamond-like phases in the B-C-N system[J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002,4(20):5183-5188.
    [21]Solozhenko V L. Synthesis of novel superhard phases in the B-C-N system[J]. HIGH PRESSURE RESEARCH,2002,22(3-4):519-524.
    [22]Zhao Y, He D W, Daemen L L, et al. Superhard B-C-N materials synthesized in nanostructured bulks[J]. JOURNAL OF MATERIALS RESEARCH, 2002,17(12):3139-3145.
    [23]Yang D P, Li Y A, Yang X X, et al. Chemical synthesis and characterization of flaky h-BCN at high pressure and high temperature[J]. CHINESE PHYSICS LETTERS, 2007,24(4):1088-1091.
    [24]Filonenko V P, Khabashesku V N, Davydov V A, et al. Synthesis of a new cubic phase in the B-C-N system[J]. INORGANIC MATERIALS,2008,44(4):395-400.
    [25]白锁柱,姚斌,苏文辉.B_(0.44)C_(0.27)N_(0.29)化合物的合成、表征和性能[J].物理学报,2005(10):4627-4632.
    [26]李雪飞,张剑,沈龙海等.六角相硼碳氮化合物的合成研究[J].高压物理学报,2007(03):237-241.
    [27]杨大鹏,李英爱,杜勇慧等.片状h-BCN化合物的高温高压化学合成与表征[J].高压物理学报,2007(03):295-298.
    [28]Solozhenko V L, Andrault D, Fiquet G, et al. Synthesis of superhard cubic BC2N[J]. APPLIED PHYSICS LETTERS,2001,78(10):1385-1387.
    [29]Nicolich J P, Hofer F, Brey G, et al. Synthesis and structure of three-dimensionally ordered graphitelike BC2N ternary crystals[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,2001,84(2):279-282.
    [30]Wu Q H, Liu Z Y, Hu Q K, et al. The thermal expansion of a highly crystalline hexagonal BC2N compound synthesized under high temperature and pressure[J]. JOURNAL OF PHYSICS-CONDENSED MATTER,2006,18(41):9519-9524.
    [31]Bai S. Z., Yao B., Huang B. K., et al. Preparation and characterization of BCN[J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE,2005,26(5):811-815.
    [32]Torres R, Caretti I, Gago R, et al. Bonding structure of BCN nanopowders prepared by ball milling[J]. DIAMOND AND RELATED MATERIALS,2007,16(4-7):1450-1454.
    [33]白锁柱,姚斌,黄保坤等.BCN化合物的合成与表征[J].高等学校化学学报,2005(05):811-815.
    [34]籍凤秋,曹传宝,薛守洪等.硼碳氮纳米管的制备及其表征[J].化工学报,2005(02):363-367.
    [35]陈万金,华中,姚斌等.非晶BCN的制备及其导电性[J].金属学报,1999(05):469-472.
    [36]陈万金,孙颖,华中等.BCN非晶电性的实验研究[J].盐城工学院学报(自然科学版),2001(01):43-44.
    [37]Bai X D, Wang E G, Yu J, et al. Blue-violet photoluminescence from large-scale highly aligned boron carbonitride nanofibers[J]. APPLIED PHYSICS LETTERS,2000,77(1):67-69.
    [38]Fitzpatrick P R, Wang T, Heitsch A T, et al. Oxidation resistance of thin boron carbo-nitride films on Ge(100) and Ge nanowircs[J]. THIN SOLID FILMS,2009,517(13):3686-3694.
    [39]Hoffmann P S, Baake O, Kosinova M L, et al. Chemical bonds and elemental compositions of BCxNy layers produced by chemical vapor deposition with trimethylamine boranc, triethylamine borane, or trimethylborazine[J]. X-RAY SPECTROMETRY, 2012,41 (4):240-246.
    [40]Kawaguchi M, Kuroda S, Muramatsu Y. Electronic structure and intercalation chemistry of graphite-like layered material with a composition of BC6N[J]. Journal of Physics and Chemistry of Solids,2008,69(5-6):1171-1178.
    [41]Dietrich D, Roll U, Stockel S, et al. Structure and composition studies of chemical vapour-deposited BCN fibre coatings[J]. ANALYTICAL AND BIO ANALYTICAL CHEMISTRY,2002,374(4):712-714.
    [42]Kawano T, Kawaguchi M, Okamoto Y, et al. Preparation of layered B/C/N thin films on nickel single crystal by LPCVD[J]. SOLID STATE SCIENCES,2002,4(11-12):1521-1527.
    [43]Mannan M A, Noguchi H, Kida T, et al. Chemical bonding states and local structures of the oriented hexagonal BCN films synthesized by microwave plasma CVD[J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING,2008,11(3):100-105.
    [44]Sun C Q. Size dependence of nanostructures:Impact of bond order deficiency[J]. Progress in Solid State Chemistry,2007,35(1):1-159.
    [45]Shimada Y, Chikamatsu K, Kimura C, et al. Effect of plasma treatment on interface property of BCN/GaN structure[J]. APPLIED SURFACE SCIENCE,2006,253(3):1459-1463.
    [46]Hidemitsu Aoki T M D W. Influence of oxygen plasma treatment on boron carbon nitride film composition[J]. Applied Surface Science,2009,255(6):3635-3638.
    [47]Kimura C, Okada K, Funakawa S, et al. Electron affinity and field emission characteristics of boron carbon nitride film[J]. DIAMOND AND RELATED MATERIALS, 2005,14(3-7):719-723.
    [48]Watanabe D, Aoki H, Moriyama R, et al. Characterization of BCN film after wet process for interconnection integration[J]. Diamond and Related Materials,2008,17(4-5):669-672.
    [49]Umeda S, Yuki T, Sugiyama T, et al. Boron carbon nitride film with low dielectric constant as passivation film for high speed electronic devices[J]. DIAMOND AND RELATED MATERIALS,2004,13(4-8):1135-1138.
    [50]Etou Y, Tai T, Sugiyama T, et al. Characterization of boron carbon nitride films with a low dielectric constant[J]. DIAMOND AND RELATED MATERIALS,2002,11(3-6):985-988.
    [51]Yuki T, Umeda S, Sugino T. Electrical and optical characteristics of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition[J]. DIAMOND AND RELATED MATERIALS,2004,13(4-8):1130-1134.
    [52]Sugiyama T, Tai T, Sugino T. Effect of annealing on dielectric constant of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition[J]. APPLIED PHYSICS LETTERS,2002,80(22):4214-4216.
    [53]Mannan M A, Noguchi H, Kida T, el al. Growth and characterization of stoichiometric BCN films on highly oriented pyrolytic graphite by radiofrequency plasma enhanced chemical vapor deposition[J]. THIN SOLID FILMS,2010,518(15):4163-4169.
    [54]Sulyaeva V S, Kosinova M L, Rumyantsev Y M, et al. PECVD synthesis and optical properties of BCXNY films obtained from N-triethylborazine as a single-source precursor[J]. Surface and Coatings Technology,2013,230(0):145-151.
    [55]王恩哥,白雪冬,王文龙.三元硼碳氮化合物单壁纳米管的直接合成[J].中国基础科学,2007(03):15-17.
    [56]马锡英,贺德衍,陈光华.沉积温度对BC_2N薄膜的生长和附着性的影响[J].兰州大学学报(自然科学版),2001(05):23-29.
    [57]Ahn H, Klimek K S, Rie K T. BCN coatings by RF PACVD at low temperature[J]. SURFACE & COATINGS TECHNOLOGY,2003,174:1225-1228.
    [58]Kim S Y, Park J, Choi H C, et al. X-ray photoelectron spectroscopy and first principles calculation of BCN nanotubes[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007,129(6):1705-1716.
    [59]Byon E, Kim J K, Lee S, et al. Mechanical properties of B-C-N films deposited by dual cesium ion beam sputtering system[J]. SURFACE & COATINGS TECHNOLOGY, 2003,169:340-343.
    [60]Zhou F, Wang Q Z, Yue B, et al. Mechanical properties and bonding structure of boron carbon nitride films synthesized by dual ion beam sputtering[J]. MATERIALS CHEMISTRY AND PHYSICS,2013,138(1):215-224.
    [61]Yang X M, Wu X M, Zhuge L J, et al. Influence of assisted ion energy on surface roughness and mechanical properties of boron carbon nitride films synthesized by DIBSD[J]. Applied Surface Science,2009,255(7):4279-4282.
    [62]Yamamoto K, Keunecke M, Bewilogua K, et al. Structural features of thick c-boron nitride coatings deposited via a graded B-C-N interlayer[J]. SURFACE & COATINGS TECHNOLOGY,2001,142:881-888.
    [63]Ray S C, Tsai H M, Bao C W, et al. Electronic and bonding structures of B-C-N thin films investigated by x-ray absorption and photoemission spectroscopy[J]. JOURNAL OF APPLIED PHYSICS,2004,96(1):208-211.
    [64]Gago R, Jimenez I, Garcia I, et al. Growth and characterisation of boron-carbon-nitrogen coatings obtained by ion beam assisted evaporation[J]. VACUUM,2002,64(3-4):199-204.
    [65]Zhou F, Adachi K, Kato K. Influence of deposition parameters on surface roughness and mechanical properties of boron carbon nitride coatings synthesized by ion beam assisted deposition[J]. THIN SOLID FILMS,2006,497(1-2):210-217.
    [66]Caretti I, Jimenez I, Gago R, et al. Tribological properties of ternary BCN films with controlled composition and bonding structure[J]. DIAMOND AND RELATED MATERIALS,2004,13(4-8):1532-1537.
    [67]Gago R, Jimenez I, Albella J M, et al. Identification of ternary boron-carbon-nitrogen hexagonal phases by x-ray absorption spectroscopy[J]. APPLIED PHYSICS LETTERS, 2001,78(22):3430-3432.
    [68]Yang Q, Wang C B, Zhang S, et al. Effect of nitrogen pressure on structure and optical properties of pulsed laser deposited BCN thin films[J]. SURFACE & COATINGS TECHNOLOGY,2010,204(11):1863-1867.
    [69]Ling H, Wu J D, Sun J, et al. Electron cyclotron resonance plasma-assisted pulsed laser deposition of boron carbon nitride films[J]. DIAMOND AND RELATED MATERIALS, 2002,11(9):1623-1628.
    [70]Laidani N, Anderle M, Canteri R, et al. Structural and compositional study of B-C-N films produced by laser ablation of B4C targets in N-2 atmosphere[J]. APPLIED SURFACE SCIENCE,2000,157(3):135-144.
    [71]Pan W J, Sun J, Ling H, et al. Preparation of thin films of carbon-based compounds[J]. Applied Surface Science,2003,218(1-4):297-304.
    [72]Wada Y, Yap Y K, Yoshimura M, et al. The control of B-N and B-C bonds in BCN films synthesized using pulsed laser deposition[J]. Diamond and Related Materials, 2000,9(3-6):620-624.
    [73]Guan C Y, Zhao J J, Jia F C, et al. Relationship between chemical compositions of magnetron sputtered B-C-N films and various experimental parameters[J]. VACUUM, 2012,86(10):1499-1504.
    [74]He D Y, Cheng W J, Qin J, et al. Relief of the internal stress in ternary boron carbonitride thin films[J]. APPLIED SURFACE SCIENCE,2002,191(1-4):338-343.
    [75]Yue J, Cheng W, Zhang X, et al. Ternary BCN thin films deposited by reactive sputtering[J]. Thin Solid Films,2000,375(1-2):247-250.
    [76]Zhou Z F, Bello I, Lei M K, et al. Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering[J]. Surface and Coatings Technology, 2000,128-129:334-340.
    [77]Zhuang C, Zhao J, Jia F, et al. Tuning bond contents in B-C-N films via temperature and bias voltage within RF magnetron sputtering[J]. Surface and Coatings Technology, 2009,204(5):713-717.
    [78]Liu L H, Wang Y X, Feng K C, et al. Preparation of boron carbon nitride thin films by radio frequency magnetron sputtering[J]. APPLIED SURFACE SCIENCE, 2006,252(12):4185-4189.
    [79]Kim D H, Byon E, Lee S, et al. Characterization of ternary boron carbon nitride films synthesized by RF magnetron sputtering[J]. THIN SOLID FILMS,2004,447:192-196.
    [80]Lei M K, Li Q, Zhou Z F, et al. Characterization and optical investigation of BCN film deposited by FR magnetron sputtering[J]. Thin Solid Films,2001,389(1-2):194-199.
    [81]Morant C, P. Prieto J B, Sanz J M, et al. Hard BCxNy thin films grown by dual ion beam sputtering[J]. Thin Solid Films,2006,515:207-211.
    [82]Chattopadhyay S, Chen L C, Chien S C, et al. Bonding characterization, density measurement, and thermal diffusivity studies of amorphous silicon carbon nitride and boron carbon nitride thin films[J]. JOURNAL OF APPLIED PHYSICS,2002,92(9):5150-5158.
    [83]Linss V, Rodil S E, Reinke P, et al. Bonding characteristics of DC magnetron sputtered B-C N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy[J]. Thin Solid Films,2004,467(1-2):76-87.
    [84]Linss V, Hermann I, Schwarzer N, et al. Mechanical properties of thin films in the ternary triangle B-C-N[J]. Surface and Coatings Technology,2003,163-164:220-226.
    [85]俞丹,卢意飞,戴祝萍等.离子束辅助脉冲激光沉积硼碳氮薄膜[J].功能材料与器件学报,2007(02):101-106.
    [86]杨琼,王传彬,章嵩等.沉积温度和退火处理对BCN薄膜结构的影响[J].表面技术,2010(01):63-66.
    [87]王健,白亦真,张东等.用不同靶材制备B-C-N薄膜及其红外表征[J].吉林大学学报(理学版),2010(06):1027-1030.
    [88]徐淑艳,王立海,马欣新等.成份对BCN薄膜结构和纳米力学性能的影响[J].人工晶体学报,2009(S1):275-278.
    [89]陈友明,彭成章,张俊彦.不同离子液体润滑条件下BCN薄膜摩擦学性能研究[J].润滑与密封,2011(05):24-27.
    [90]袁振海,华敏奇.划痕试验法对特殊薄膜系结合力的检测与评价[J].分析测试技术与仪器,2002(04):218-225.
    [91]冯爱新,张永康,谢华琨等.划痕试验法表征薄膜涂层界面结合强度[J].江苏大学学报(自然科学版),2003,24(2):15-19.
    [92]刘立华.硼碳氮薄膜的制备及性质研究[D1.吉林大学,2006.
    [93]王玉新,郑亚茹,宋哲等.沉积参量对硼碳氮薄膜光透过性质的影响[J].功能材料,2008,39(06):935-937.
    [94]龚恩乐.硼碳氮薄膜的磁控溅射法制备及其结构研究[D].哈尔滨工业大学材料科学与工程,2008.
    [95]王玉新,郑亚茹,冯克成.硼碳氮薄膜的制备及其光透过性质研究[J].辽宁师范大学学报(自然科学版),2007(03):304-306.
    [96]王玉新,郑亚茹,宋哲等.FTIR法研究BCN薄膜的内应力[J].光谱学与光谱分析,2008,28(7):1526-1529.
    [97]Xu S, Wang L, Ma X, et al. Effect of Target Power on Nano-Scratch Behavior of BCN Films by d.c. Reactive Magnetron Sputtering[J]. NANOSCIENCE AND NANOTECHNOLOGY LETTERS,2011,3(2):276-279.
    [98]Skrinskii P L, Kuzmichev A I, Ivashchenko V I, et al. Structural and mechanical properties of TIN/BCN coatings[J]. POWDER METALLURGY AND METAL CERAMICS, 2013,52(1-2):73-82.
    [99]贾福超,白亦真,庄春强等.B-C-N薄膜的制备及其红外光谱表征[J].材料研究与应用,2009,3(1):19-22.
    [100]Chattopadhyay S, Chien S C, Chen L C, et al. Thermal diffusivity in diamond, SiCxNy and BCxNy[J]. DIAMOND AND RELATED MATERIALS,2002,11(3-6):708-713.
    [101]Xu S, Ma X, Su M. Investigation of BCN films deposited at various N-2/Ar flow ratios by DC reactive magnetron sputtering[J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006,34(4Part 1):1199-1203.
    [102]Hsieh W J, Lai S H, Chan L H, et al. Cathodoluminescence and electron field emission of boron-doped a-C:N films[J]. CARBON,2005,43(4):820-826.
    [103]王玉新,郑亚茹,王晓玉等.氮气分压比对硼碳氮薄膜的组分及光学带隙的影响[J].辽 宁师范大学学报(自然科学版),2011(01):43-46.
    [104]Liu L H, Zhao Y N, Tao Y C, et al. Effects of experimental parameters on composition of boron carbon nitride thin films deposited by magnetron sputtering[J]. APPLIED SURFACE SCIENCE,2006,253(2):439-443.
    [105]Essafti A, Ech-chamikh E, Fierro J L. Structural and chemical analysis of amorphous B-N-C thin films deposited by RF sputtering[J]. DIAMOND AND RELATED MATERIALS, 2005,14(10):1663-1668.
    [106]龚恩乐,刘镒,方之颢等.工作气压对磁控溅射法制备硼碳氮薄膜结晶度的影响(英文)[J].世界科技研究与发展,2008,30(6).
    [107]王玉新,郑亚茹,宋哲等.射频功率对硼碳氮薄膜的组分和厚度的影响[J].辽宁师范大学学报(自然科学版),2008(02):155-157.
    [108]徐淑艳,马欣新,唐光泽等.靶功率和基体偏压对BCN薄膜成分及结构的影响[J].中国表面工程,2009,22(4):26-30.
    [109]Zhang R Q, Chu T S, Bello I, et al. The different characteristics of boron and nitrogen atoms/ions on silicon (001) substrate and their effect on boron nitride growth[J]. DIAMOND AND RELATED MATERIALS,2000,9(9-10):1774-1778.
    [110]Headrick R L, Weir B E, Levi A F, et al. Buried, ordered structures: Boron in Si(111) and Si(100)[J]. Journal of Crystal Growth,1991,111(1-4):838-842.
    [111]Tsai P C. The deposition and characterization of BCN films by cathodic arc plasma evaporation[J]. SURFACE & COATINGS TECHNOLOGY,2007,201(9-11):5108-5113.
    [112]Todi V O, Shantheyanda B P, Sundaram K B. Influence of annealing on the optical properties of reactively sputtered BCN thin films[J]. Materials Chemistry and Physics,2013,141(2-3):596-601.
    [113]Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-rayPhotoelectron Spectroscopy[M]. Chanhassen, MN: Physical Electronics,1995.
    [114]Weast R C. CRC Handbook of Chemistry and Physics,67th ed.[M]. Boca Raton, FL, USA: CRC press,1986.
    [115]马志斌,汪建华,邬钦崇等.WC-Co硬质合金上高质量金刚石薄膜的制备[J].武汉化工学院学报,2001(2):44-46.
    [116]杨仕娥,鲁古灵,樊志琴等.WC-Co硬质合金基体上高附着力金刚石薄膜的制备[J].无机材料学报,2005,20(1):235-238.
    [117]刘沙.硬质合金基体表面预处理及其金刚石涂层的研究[D].中南大学,2003.
    1118]朱红梅,匡同春,向雄志等.硬质合金上沉积金刚石膜的基体预处理方法进展[J].金刚石与磨料磨具工程,2007(1):78-82.
    [119]刘沙,易丹青,余志明等.金刚石涂层用硬质合金基体表面预处理研究新进展[J].稀有金属材料与工程,2001(5):392-395.
    [120]刘军,陈志刚,陈春等.衬底材料和溅射方法对CNx薄膜膜基结合力的影响[J].机械工程材料,2006,30(12):7-10.
    [121]黎向锋,左敦稳,王珉.通过过渡层改善金刚石膜和基底间的结合性能[J].材料开发与 应用,2000(1):35-39.
    [122]唐达培,高庆.中间层对金刚石膜-硬质合金残余应力的影响[J].人工晶体学报,2008,37(2):456-460.
    [123]王勇,马玉平,孙方宏等.光滑硬质合金衬底渗硼预处理对CVD金刚石薄膜性能的影响[J].中国机械工程,2006,17(5):545-548.
    [124]Ma C, Liu T, Chen L. A computational study of H2 dissociation and CO adsorption on the PtML/WC(0001) surface[J]. Applied Surface Science,2010,256(24):7400-7405.
    [125]Esposito D V, Chen J G. Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations[J]. Energy & Environmental Science, 2011,4(10):3900-3912.
    [126]Hansgen D A, Vlachos D G, Chen J G. Ammonia decomposition activity on monolayer Ni supported on Ru, Pt and WC substrates[J]. Surface Science,2011,605(23-24):2055-2060.
    [127]Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys. Rev.,1964,136:B864-B871.
    [128]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects.[J]. Phys. Rev.,1965,140:A1133-A1138.
    [129]MD. S, PJD. L, MJ. P, et al. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J. Phys.:Condens. Matter,2002,14(11):2717-2744.
    [130]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B,1992,46(11):6671-6687.
    [131]Wang Y, Perdew J P. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas[J]. Physical Review B,1992,46(20):12947-12954.
    [132]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B,1990,41(11):7892-7895.
    [133]Fischer T H, Almlof J. General methods for geometry and wave function optimization[J]. The Journal of Physical Chemistry,1992,96(24):9768-9774.
    [134]A S Kurlov A I G. Phase equilibria in the W-C system and tungsten carbides[J]. Russian Chemical Reviews,2006,75(7):617-636.
    [135]Siegel D J, Hector L G, Adams J B. Adhesion, stability, and bonding at metal/metal-carbide interfaces:Al/WC[J]. SURFACE SCIENCE,2002,498(3):321-336.
    [136]Li Y F, Gao Y M, Xiao B, et al. Theoretical study on the electronic properties and stabilities of low-index surfaces of WC polymorphs[J]. COMPUTATIONAL MATERIALS SCIENCE, 2011,50(3):939-948.
    [137]RAPCEWICZ K, CHEN B, YAKOBSON B, et al. Consistent methodology for calculating surface and interface energies[J]. Physical Review B,1998,57(12):7281-7291.
    [138]Zhang W, Smith J R. Stoichiometry and adhesion of Nb/A12O3[J]. PHYSICAL REVIEW B, 2000,61(24):16883-16889.
    [139]Zhong Y, Zhu H, Shaw L L, et al. The equilibrium morphology of WC particles-A combined ab initio and experimental study[J]. Acta Materialia,2011,59(9):3748-3757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700