ZnO薄膜制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种宽带隙(室温下3.3eV)Ⅱ-Ⅵ族化合物半导体, 激子结合能为60meV,具有六方纤锌矿结构,其空间群为P63mc。晶格常数,。ZnO薄膜具有良好的透明导电性、压电性、光电性、气敏性、压敏性、且易于与多种半导体材料实现集成化。由于这些优异的性质,使其具有广泛的用途和许多潜在用途,如表面声波器件、平面光波导,?透明电极,紫外光探测器、压电器件、压敏器件、紫外发光器件、气敏传感器等。近年来,对其研究和开发在国内外科学界及工业部门引起了极大的关注和兴趣。
    ZnO薄膜的制备的主要方法有:磁控溅射、金属有机化学气相沉积、脉冲激光沉积、分子束外延、电子束蒸发沉积、喷雾热分解、溶胶-凝胶法、薄膜氧化法等。各种方法各有优缺点。根据需要制备相应的高质量的薄膜是ZnO薄膜应用的关键,同时制备成本也是必须考虑的重要因素。通常认为理想的ZnO薄膜具有高的c轴择优取向。真空蒸发制膜的方法设备简单普及、易操作、适合工业化生产并能得到大面积均匀的薄膜材料。我们采用真空蒸发沉积Zn膜,然后热氧化Zn膜制备出c轴择优定向好的ZnO薄膜。热氧化蒸发Zn膜制备ZnO的条件被优化。讨论了薄膜的择优定向生长过程、特点及影响因素。磁控溅射在最佳条件下可以得到均匀、致密、有良好的c轴取向性和可见光波段透明性好等优点的薄膜,使得它成为在ZnO制备中研究最多并且最广泛使用的方法。我们采用DC反应磁控溅射制备了ZnO和ZAO薄膜。讨论了磁控溅射ZnO薄膜的原理、影响ZnO薄膜质量的因素。
    用SEM表征ZnO薄膜的形貌和微结构,用TEM表征ZnO纳米微粒的形态,用XDR分析ZnO微粒和薄膜的晶体结构,用紫外-可见光双光束分光光度计测量ZnO薄膜的透射谱,用四探针仪和Hall效应测试仪测量薄膜的电阻率、载流子浓度和Hall迁移率,用自制的气敏效应测试装置测试ZnO气敏元件的气敏性质。
    研究ZnO和ZAO薄膜的光学性质是它们的应用和及制备条件优化的重要课题。讨论了光学常数之间的关系,仅采用透射谱确定了所制备ZnO和ZAO薄膜的厚度、折射率、消光系数、吸收系数和能带隙宽度。ZAO薄膜由于具有丰富的地球储量致使其成本低廉,而且无毒,并具有可同ITO比拟的光学、电学性质,已经成为ITO薄膜最佳替代候选者。拓宽氧分压工艺窗口,精确控制氧流量以及薄膜的均匀分布是实现ZAO薄膜商业化生产的值得探讨的课题。从实验上得到了c轴择优定向生长与氧流量之间的关系,得到了很好的柱状生长的纳米ZAO薄膜。给出了所制备的ZAO薄膜电阻率、载流子浓度和Hall迁移率、透射率、晶粒尺寸
    
    
    和晶格常数随氧分压变化的关系曲线。分析了所有这些量随氧分压变化的原因,研究了ZAO薄膜的方块电阻空间分布,微结构和表面形貌,为优化制备条件分析提供依据。从理论上分析了薄膜的厚度和表面平整度对薄膜电导的影响,说明薄膜越薄,电阻越大;表面平整可以在一定程度上改善薄膜的电导,分析了影响薄膜电导的因素。为了有助于开发和研究ZAO薄膜,研究了ITO薄膜的光学性质和电学性质及其应用,它的分析方法和结论对ZAO 薄膜是类似的。
    ZnO作为一种重要的气敏材料,其ZnO物理化学性质稳定,对可燃性气体具有敏感性,但工作温度偏高(400-500℃)、灵敏度较差。为了改善ZnO气敏元件的性能而采用纳米ZnO材料为原料制作纳米ZnO气敏元件是当前烧结体气敏元件改进的重要方向。我们制作了纳米ZnO气敏元件,测量了其气体灵敏度,研究了灵敏度与退火温度之间的关系,结果表明,不退火的元件灵敏度很高,但不稳定,退火后的元件稳定,但灵敏度下降,这反应了晶粒尺寸效应。纳米ZnO气敏元件的工作温度大大下降。从理论上研究了纳米ZnO气敏元件的气敏效应机理,提出了减少小纳米晶气体传感器的晶界数量也许是改进小纳米晶气体传感器的一种新方法,同时指出,尽管晶界电阻也许比颈部电阻小得多,但不能被忽略。
    为了理解吸附和催化过程,对空间电荷层的一个详细的描述是必要的。ZnO的空间电荷层经常被测试,这些实验基于耗尽层模型。采用耗尽层模型得到的空间电荷区的势垒电压分布和著名的Schottky关系表示的表面势垒高度简单,但电荷分布对电荷空间分布因子中温度的依赖没有体现。我们分析了ZnO表面势垒模型,讨论了温度对势垒高度的影响,给出了低势垒情况下势垒高度的计算公式,指出这时温度对势垒高度和空间电荷区宽度的影响是重要的。而这些影响在耗尽层模型中不存在。
ZnO is a II-VI compound semiconductor with a wide direct bandgap of 3.3 eV at room temperature, exciton binding energy of 60meV, and a hexagonal wurtzite structure of space group P63mc. Its lattice parameters are and . Due to their excellent physical and chemical properties, ZnO films have many realized and potential applications such as surface acoustic wave devices , planar optical waveguides, transparent electrodes, ultraviolet photodetectors, piezoelectric devices, varistors, gas sensors, UV/violet/blue-LEDs (light emitting diodes) and –LDs (laser diodes), etc. And they can be integrated with some materials readily. In recent years, the researches and developments of ZnO films have attracted great attention and interest from researchers and the industry.
    To achieve the requirements of different applications, many techniques, such as molecular beam epitaxy, magnetron sputtering, metalorganic chemical vapor deposition , and pulsed laser deposition, spray pyrolysis, sol-gel process, reactive deposition and thermal oxidation of Zn films have been used to deposit ZnO films. Each of these techniques has its merits and demerits. The key to the application of ZnO films is high quality for the purpose, and the cost must be considered. In this work, the films were prepared using both thermal evaporation and DC reactive magnetron sputtering techniques. For various applications, highly preferred c-axis orientation of ZnO films is usually important. Thermal evaporation is the easiest deposition technique and applicable to industrial production. Films with a small or large-area coating can be obtained by the method. Zn films were deposited by thermal evaporation technique and then ZnO films with highly preferred c-axis orientation were prepared through thermal oxidation of the metallic Zn films. The thermal evaporation and oxidation were optimized. The process, characteristic and influence elements for preferred orientational growth of the films were discussed. Uniform and compact ZnO films with the highly preferred c-axis orientation and the high transmittance in visible region can be prepared by magnetron sputtering under optimized condition. It is the most investigated and widely used method. The magnetron sputtering principle and influence of deposition conditions on film quality and surface are discussed.
    The surface morphology and microstructure of the films were characterized by SEM and the morphology of the nano-ZnO particle by TEM. The crystallographic
    
    
    structure of the films and the particles was analyzed with XRD. The optical transmittance of the films was recorded using ultra-violet-visible double beam spectrophotometer. The electrical resistivity, carrier concentration and Hall mobility of the films were measured using four probe instrument and Hall effect instrument. The gas sensing effects were measured using self-made gas sensing effect apparatus.
    The studies on optical property of ZnO and ZAO films are an important topic for their application and for preparation conditions to be optimized. The relation between optical constants was discussed. The refractive index, the extinction coefficient, the absorption coefficient, the optical energy gap and the thickness of the films were calculated from transmittance spectrum. ZAO film, which has comparable electrical and optical properties to the ITO, are emerging as a potential substitute for ITO films due to its cheap and abundant raw material, nontoxic feature, cost-effective, easy fabrication and good stability. Widening oxygen partial pressure region and controlling film uniformity are important for commercial production. The influence of oxygen flow rate on preferred c-axis orientation of ZAO films was given. The ZAO film with columnar growth parallel to c-axis orientation was obtained. The effects of oxygen flow rate on the resistivity, the carrier concentration, the Hall mobility, the transmittance, the grain size and the lattice constants of ZAO films was determined, whose mechanisms were analyzed. The dependences of the spatial distribution of
引文
J. E. Jaffe and A. C. Hess, Hartree-Fock study of phase changes in ZnO at high pressure, Phy. Rev. B, 1993, 48:7903
    D. C. Reynolds, D. C. Look, B. Jogai, Optically pumped ultraviolet lasing from ZnO, Solid State Communications, 1996, 99:873
    V. Srikant, D. R. Clarke. On the optical band gap of zinc oxide. J. Appl. Phys.,1998, 83:5447
    C. Klingshirn. The luminescence of ZnO under high one- and two-quantum excitation. Phys stat Sol B, 1975, 71:547
    G. B.Zhang, C. S. Shi, Z. F. Han, et al., Photoluminescent properties of ZnO films deposited on Si substrates, Chin Phys Lett. 2001,18:441
    F. Oba, S. R. Nishitani, S. Isotani, Energetics of native defects in ZnO, J. Appl. Phys., 2001, 90:824
    B.J. Jin, H.S. Woo, S. Im, et al, Relationship between photoluminescence and electrical properties of ZnO thin films grown by pulsed laser deposition, Appl. Surf. Sci., 2001,169-170:521
    W. I. Lee, R. L. Young, Defects and degradation in ZnO varistor, Appl. Phys. Lett., 1996, 69:526
    K. Vanheusden, W. L. Warren, C. H. Seager, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 1996, 79:7983
    B.J. Jin, S.H. Bae, S.Y. Lee, Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition, Mater. Sci. Eng. B, 2000, 71:301
    K. Vanheusden, C. H. Seager, W. L. Warren, et al, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett., 1996, 68:403
    J. Zhong, A. H. Kitai, P. Mascher, et al. The Influence of Processing Conditions on Point Defects and Luminescence Centers in ZnO . J. Electrochem. Soc., 1993, 140:3644
    J. C. Simpson and J. F. Cordaro, Defect clusters in zinc oxide J. Appl. Phys., 1990, 67:6760
    R. A. Winston, J. F. Cordaro. Grain-boundary interface electron traps in commercial zinc oxide varistors. J. Appl. Phys. 1990, 68:6495
    R. K. Rehberg, H. S. Leipner, T. Abgarjan, et al. Review of defect investigations by means of positron annihilation in II-VI compound semiconductors. Appl. Phys. A: Mater. Sci. Process. 1998, 66:599
    S. Deubler, J. Meier, R. Schu¨tz, et al. PAC studies on impurities in ZnO. Nucl. Instrum. Methods Phys. Res. B, 1992, 63:223
    X.T. Zhang, Y.C. Liu, J.Y. Zhang, et al, Structure and photoluminescence of Mn-passivated
    
    
    nanocrystalline ZnO thin films, J. Cryst. Growth, 2003,254:80–85
    H. J. Egelhaaf, D. Oelkrug, Luinescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO, J. Cryst. Growth, 1996, 161:190-194
    S. N. Bai, T. Y. Tseng, Influence of sintering temperature on electrical properties of ZnO varistors , J. Appl. Phys., 1993, 74:695
    M. Joseph, H. Tabata, H. Saeki, K. Ueda, Fabrication of the low-resistive p-type ZnO by codoping method, Physica B, 2001, 302–303:140
    Y. M. Sun, P. S. Xu, C. S Shi, et al, A FP–LMTO study on the native shallow donor in ZnO, J. Electron Spectroscopy and Related Phenomena, 2001, 114–116:1123
    J. P. Han, A. M. R. Senos, P. Q. Mantas, Deep donors in polycrystalline Mn-doped ZnO, Mater. Chem. . Phys. 2002, 75:117–120
    D. C. Look, Recent advances in ZnO materials and devices, Mater. Sci. Engineer. B, 2001, 80:383
    Y. G. Wang, S. P. Lau, H. W. Lee, et al. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature . J. Appl. Phys., 2003, 94:1597
    K. I. Hagemark, L. C. Chacka. Electrical transport properties of Zn doped ZnO. J. Solid State Chem. 1975, 15:261
    K. I. Hagemark. Defect structure of Zn-doped ZnO. J. Solid State Chem, 1976,16:293
    G. D. Mahan. Intrinsic defects in ZnO varistors. J. Appl. Phys, 1983, 54:3825
    C. G. Van de Walle, Hydrogen as a cause of doping in Zinc oxide, Phys. Rev. Lett. 2000, 85:1012
    D. M. Hofmann, A. Hofstaetter, F. Leiter, et al, Hydrogen: A relevant shallow donor in zinc oxide, Phys. Rev. Lett., 2002, 88:045504
    S. F. Cox, E. A. Davis, S. P. Cottrell, et al., Experimental Confirmation of the Predicted Shallow Donor Hydrogen State in Zinc Oxide, Phys. Rev. Lett., 2001, 86:2601.
    D. C. Look. Rencent advances in ZnO materials and devices. Mater Sci Eng B, 2001, 80:383
    L. Rayleigh, On waves propagated along the plane surface of an elastic body, Pro Math Soc London, 1985 17:4
    A. E. H. Love, Some problems of geodynamics, Ch 176, Cambridge Univ Press.1991
    White R M, et al. Direct piezoelectric coupling to surface elastic waves, Appl Phys Lett, 1965, 7:314
    Y. C. Lee, S. H.Kuo, A new point-source/point-receiver acoustic transducer for surface wave measurement, Sensors and Actuators A, 2001, 94:129
    M. D. Whitfield, B. Audic, C.M. Flannery, et al. Acoustic wave propagation in free standing
    
    
    CVD diamond: Influence of film quality and temperature. Diamond Relat. Mater., 1999, 8: 732.
    H. Nakahata, A. Hachigo, K. Higaki, et al, IEEE Trans. UFFC 1995, 42 :362.
    M. B. Assouar, F. Benedic, O. Elmazria, et al, MPACVD diamond films for surface acoustic wave filters, Diamond Relat. Mater. 2001, 10:681.
    Y. Igasaki, T. Naito, K. Murakami, et al. The effects of deposition conditions on the structural properties of ZnO sputtered films on sapphire substrates. Appl. Surf. Sci., 2001, 169/170:512.
    Y. Yoshino, T. Makino, Y. Katayama, et al, Optimization of zinc oxide thin film for surface acoustic wave filters by radio frequency sputtering, Vacuum, 2000,59:538
    Frans C M, The properties and applications of ZnO thin films. Am Ceram Soc Bull, 1990, 69:1959
    B. I. Anisimkin, M. Penza, A. Balentini, et al. Detection of xombustible gases by means of a ZnO-on-Si surface acoustic wave(SAW) delay line, Sensors and Actuators B, 1995, 23:197
    M. B. Assouar, O. Benedic, M. Elmazria, et al. MPACVD diamond films for surface acoustic wave filters, Diamond and Relat Mater, 2001, 10:681
    H. Nakahata, A. Hachigo, K. Itakura, S. Fujii, S. Shikata, Kansas, Missouri, USA, June 7–9, 2000, Proceedings of 2000 IEEE/EIA International Frequency Control Symposium and Exhibition 2000:315.
    K. Higaki, H. Nakahata, H. Kitabayashi, et al, High frequency SAW filter on diamond, IEEE MTT-S International Symposium Digest, 1997, 2:829.
    H. Nakahata, H. Kitabayashi, S. Fujii, et al., Fabrication of 2.5 GHz SAW retiming filter with SiO2/ZnO/diamond structure, IEEE Ultrasonics Sysposium, 1996, 1:285
    S. H. Seo, W. C. Shin, J. S. Park. A novel method of fabricating ZnO/diamond/Si multilayers for surface acoustic wave(SAW) device applications, Thin Solid Films, 2002, 416: 190
    B. Bi, W. S. Huang, J. Asmussen, et al. Surface acoustic waves on nanocrystalline diamond, Diamond Relat Mater, 2002, 11:677
    P. B. Kirby, M. D. G. Potter, W. M. Y. Lim. Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators, J Eur Ceram Soc, 2003, 23:2689
    Y. Tajahashi, Kanamori M, Kondoh A, et al. Photoconductivity of ultrathin zinc oxide films. Jpn J Appl Phys, 1994, 33:6611
    D. H. Zhang, D. E. Brodie, Photoresponse of polycrystalline ZnO films deposited by RF bias sputtering, Thin Solid Films, 1995, 261:334
    D. H. Zhang, Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering. J Phys D, 1995, 28:1273
    
    H. fabricius, T. Skettrup, P. Bisgaard, Ultraviolet detectors in thin sputtered ZnO films. Appl Optics, 1986, 25:2764
    Y. Liu, C. R. Gorla, S. Liang, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD, J Elec Mater, 2000, 29:69
    S. Liang, H. Sheng, Y. Liu, et al. ZnO Schottky ultraviolet photodetectors, J Cryst Growth, 2001, 225:110
    R. Puyane. Applications and product development in varistor technology, J Mater Proc Tech, 1995, 55:268
    N. Horio, M. Hiramatsu, M. Nawata, et al. Preparation of zinc oxide/metal oxide multilayered thin films for low-voltage varistors, Vacuum, 1998, 51:719
    Y. Suzoki, K. Inoue, M. Takeuchi, et al. Electrical properties of ZnO-Bi2O3 thin-film varistors. J Phys D: Appl Phys, 1987, 20:511
    贾锐, 曲风钦, 武光明, 等. ZnO系低压压敏薄膜的喷雾热分解法制备及膜厚对其压敏特性影响的研究功能材料, 1999, 30:636
    黄炎球, 刘梅冬, 李楚荣, 等. ZnO陶瓷薄膜的制备及其低压压敏特性. 压电与声光, 2001, 23:384
    L. M. Levinson, H. R. Philipp. Zinc oxide varistors-A review. Bull Am CeCeram Soc. 1986, 65:639
    Y. Yano, Y. Takai, H. Morooka. Interface states in ZnO varistor with Mn, Co, and Cu impurities . J. Mater. Res., 1994, 9:112.
    J. Bwrnasconi, S. Str?ssler, B. Knecht, et al. Zinc oxide based varistors: A possible mechanismSolid State Commun, 1977, 21:867
    G. D. Mahan, L. M. Levinson, H. R. Philipp. Theory of conduction in ZnO varistors. J Appl Phys,1979, 50:2799
    G, Blatter, F. Greuter, Electrical breakdown at semiconductor grain boundaries, Phys. Rev. B, 1986, 34:8555
    M. Singhal, V. Chhabra, P. Kang, et al. Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol ot microemulsion. Materials Research Bull, 1997, 32:239
    R. N. Viswanath, S. Ramasamy, R. Ramamoorthy, et al. Preparation and characterization of nanocrystalline ZnO based materials for varistor applications. Nanstructured Mater, 1995, 6:993
    J. D. Mackenzie, C. R. Abernathy, J. D. Stewart, et al. Growth of group Ⅲ nitrides by chemical beam epitaxy. J Crystal Growth, 1996, 164:143
    Yamada Y, Mishina, et al. Dyanmics of dense excitonic systems in ZnSe-based single quantum
    
    
    wells. Phys Rev B. 1995, 52:2289
    S. Fung, X. L. Xu, Y. W. Zhao. Gallium/aluminum interdiffusion between n-GaN and sapphire. J Appl Phys, 1998, 84:2355
    W. I. Park, G. C. Yi, H. M. Jang. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-xMgxO (0<=x<=0.49) thin filmsAppl Phys lett. 2001, 79:24
    T. Minemoto, T. Negami, S. Nishiwaki, et al. Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering. Thin Solid Films 372 2000 173-176 Thin Solid Films, 2000, 372: 173
    邹璐, 汪雷, 黄靖云, 等. 硅衬底上Zn1-xMgxO薄膜的结构与光学性质. 物理学报, 2003, 52:935
    A. K. Sharma, J. Narayan, J. F. Muth, et al. Optical and structural properties of epitaxial MgxZn1-xO alloys. Appl Phys Lett, 1999, 75:3327
    G. Santana, A. M. A cevedo, O. Vigil, et al. Structural and optical properties of (ZnO)x(CdO)1-x thin films obtained by spray pyrolysis, Thin Solid Films, 2000, 373:235
    T. Aoki, Y. Hatanaka, D. C. Look. ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett., 2000, 76:3257
    Y. R. Ryu, S. Zhu, D.C. Look, Synthesis of p-type ZnO films. J. Crystal Growth, 2000, 216:330
    Y. R. Ryu, W. J. Kim, H. W. White. Fabrication of homostructural ZnO p–n junctions. J. Crystal Growth 2000, 219:419
    J. G. Lu, Z. Z. Ye, L. Wang, et al. Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD. Mater. Sci. Semiconductor Processing, 2003, 5:491
    H. Kim. C. M. Gilmore, J. S. Horwitz. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett., 2000, 76:259
    X. L. Guo, H.Tabata, T. Kawai. Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source. J.Crystal Growth, 2001, 223:135
    X. L. Guo, H. Tabata, T. Kawai. p-Type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma. Optical Materials, 2002, 19:229
    M. Joseph, H. Tabata, H. Saeki, et al. Fabrication of the low-resistive p-type ZnO by codoping method. Physica B, 2001,302–303:140
    H. Tabata, M. Saeki, S. L. Guo, et al. Control of the electric and magnetic properties of ZnO films. Physica B, 2001, 308–310:993
    T. Detchprohm, K. Hitamatsu, Hydride vapor phases epitaxial growth of a high quality GaN
    
    
    film using a ZnO bguffer layer. Appl Phys Lett, 1992, 61:2688
    Y. Hagiwara, T. Nakada, A. Kunioka. Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO:B window layer. Solar Energy Materials Solar Cells, 2001, 67:267
    B. S. Sanga, Y. Nagoyab, K. Kushiyab. MOCVD-ZnO windows for 30cm×30cm CIGS-based modules. Solar Energy Materials Solar Cells, 2003, 75:179
    W. J. Jeong, G. C. Park. Electrical and optical properties of ZnO thin film as a fuction of deposition parameters. Solar Energy mater Solar Cell, 2001, 65: 37
    Y. Liu, C. R. Gorla, S. Liang, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J Elec Mater, 2000, 29 (1): 60
    S. Hayyamizu, H. Tabata, H. Tanaka, et al. Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition. J Appl Phys, 1996, 80: 787
    H. Kim, C. M. Gilmore, J. S. Horwitz, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl Phys Lett, 2000, 76 (3): 259
    P. Verardi, M. Dinescu, A. Andrei. Characterization of ZnO thin films deposited by laser ablation in reactive atmosphere. Appl Surf Sci, 1996, 96-98: 827
    M. Joseph, H. Tabata, H. Saeki, et al. Fabrication of the low-resistive p-type ZnO by codoping method. Physica B, 2001, 302-303: 140
    Z. K. Tang, G. K. L. Wong, Yu P, et al. Room temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films. Appl Phys Lett , 1998, 73(25): 3270
    D. M, Bagnall, Y. F. Chen, Z. Zhu, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl Phys Lett, 1998, 73 (8): 1038
    T. Makino, G. Isoya, Y. Segawa, et al. Optical spectra in ZnO thin films on lattice-matched substrates grown with laser-MBE method. J Cryst Growth, 2000, 214/215: 289
    H. Z. Wu, D. J. He, D. J. Qiu, et al. Low-temperature epitaxy of ZnO films on Si(001) and silica by reactive e-beam evaporation. J Cryst Growth, 2000, 217: 131
    向东, 张怀武, 黄祥成. 透明导电半导体ZnO膜的研究. 应用光学, 2002, 23 (2): 35
    F. Paraguay D., M. M. Yoshida, J. Morales, et al. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films, 2000, 373:137
    T. Nagase, T. Ooie, J. Sakakibara. A novel approach to prepare zinc oxide films excimer laser irradiation of sol-gel derived precursor film. Thin Solid Films. 1999, 357:151
    S. J. Chen, Y. C. Liu, J. G. Ma. High-quality ZnO thin films prepared by two-step thermal oxidation of the metallic Zn. J. Cryst. Growth, 2002, 240:467
    G. Z. Zhong, X. W. Fan, X. G. Kong. High intense UV-luminescence of nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. J. Cryst. Growth, 2002, 240:463
    
    M. Ohring. The materials science of thin films, Academic Press, Inc. 1992
    王敬义. 薄膜生长理论. 华中理工大学出版社. 1993年
    W. Walter, S. Y. Chu. Physical and structural properties of ZnO sputtered films. Mater Lett, 2002, 55: 67
    J. G. Lu, Z. Z. Ye, J. Y. Huang, et al. Synthesis and properties of ZnO films with (100) orientation by SS-CVD. Appl. Surf. Sci., 2003, 207: 295
    J.F. Chang, H.L. Wang, M.H. Hon. Studying of transparent conductive ZnOAl thin films by RF reactive magnetron sputtering. J. Cryst. Growth, 2000, 211:93
    M. Chen, Z.L. Pei, C. Sun, et al. Surface characterization of transparent conductive oxide Al-doped ZnO films. J. Cryst. Growth, 2000, 220:254
    Z. Z. Ye, J. G. Lu, H. H. Chen, Preparation and characteristics of p-type ZnO films by DC Szyszka reactive magnetron sputtering. J.Cryst. Growth, 2003, 253:258
    S. Suzuki, T. Miyata, M. Ishii, et al. Transparent conducting V-co-doped AZO thin films prepared by magnetron sputtering. Thin Solid Films, 2003,434:14
    P. J. Kelly, Y. Zhou, A. Postill. A novel technique for the deposition of aluminium-doped zinc oxide films. Thin Solid Films, 2003, 426:111
    K. H. Banga, D. K. Hwanga, M. C. Parka, et al. Formation of p-type ZnO film on InP substrate by phosphor doping. Appl. Sur. Sci., 2003, 210:177
    G. J. Fang, D. J. Lia, B. L. Yao. Fabrication and characterization of transparent conductive ZnO Al thin films prepared by direct current magnetron sputtering with highly conductive ZnO(ZnAl2O4) ceramic target. J. Cryst. Growth, 2003, 247:393
    D. K. Hwang, K. H. Bang, M. C. Jeong, et al. Effects of RF power variation on properties of ZnO thin films and electrical properties of p–n homojunction. J. Cryst. Growth, 2003, 254: 449
    J. C. Lee, K. H. Kang, S. K. Kim, et al. sputter deposition of the high-quality intrinsic and n-type ZnO window layers. Solar Energy Mater. Solar Cells, 2000, 64:185
    U. Pal, E. A. Almanzaa, O. V. Cuchillo, et al. Preparation of Au ZnO nanocomposites by radio frequency co sputtering. Solar Energy Mater. Solar Cells, 2001, 70:363
    Service, R. F. Will UV Lasers Beat the Blues?, Sci, 1997, 276:895
    B. S. Li, Y. C. Liu, D. Z. Shen, Effects of RF power on properties of ZnO thin films grown on Si (001) substrate by plasma enhanced chemical vapor deposition. J. Cryst. Growth, 2003, 249 :179
    X. T. Zhang, Y. C. Liu, J.Y. Zhang. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films. J. Cryst. Growth, 2003, 254:80
    
    S. J. Chen, Y. C. Liu, J. G. Ma. Effects of thermal treatment on the properties of ZnO films deposited on MgO-buffered Si substrates. J. Cryst. Growth, 2003, 254:86
    X..T. Zhang, Y. C. Liu, Z. Z. Zhi. Temperature dependence of excitonic luminescence from nanocrystalline ZnO films. J. Luminescence, 2002, 99:149
    Y. L. Liu, Y. C. Liu, Y. X. Liu. Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates. Physica B, 2002, 322:31
    H. Demiryont, J. R. Sites, K. Geib. Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering. Appl. Optics, 1985, 24(4):490-495
    S. Srivastav, C V R Vasant Kumar, A Mansingh. Effect of oxygen on the physical parameters of RF sputtered ZnO thin film. J. Phys. D. 1989, 22:1768
    V. Srikant, D. R. Clarke. Optical absorption edge of ZnO thin films The effect of substrate. J. Applied Phys., 1997, 81:6357
    X. T. Zhang, Y, C, Liu, Z, Z, Zhi, et al. High intense UV-luminescence of nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. J Crystal Growth, 2002, 240: 463
    Y. Chen, D. Bagnll, T. Yao. ZnO as a novel photonic material for the UV region. Mater Sci Eng, 2000, B75: 190
    叶志镇, 陈汉鸿, 刘榕, 等. 直流磁控溅射ZnO薄膜的结构和室温PL谱. 半导体学报, 2001, 22:1015
    Q. P. Wang, D. H. Zhang, Z. Y. Xue, et al. Violet luminescence emitted from ZnO films deposited on Si substrate by rf magnetron sputtering. Appl Surf Sci, 2002, 201: 123
    B. S. Li, Y. C. Liu, D. Z. Shen, et al. Effects of RFpower on properties of ZnO thin films grown on Si (0 0 1) substrate by plasma enhanced chemical vapor deposition. J Crystal Growth, 2003, 249: 179
    P. Zu, Z. K. Tang, G. K. L. Wong, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid. State. Commun., 1997, 103(8): 459
    B. Gao, Z. Z. Ye, K. S. Wong. Time-resolved photoluminescence study of a ZnO thin film grown on a (1 0 0) silicon substrate. J Crystal Growth, 2003, 253:252
    D. H. Zhang, D. H. Wang, Z. Y. Xue, et al. Photoluminescence of ZnO films excited with light of different wavelength. Appl Surf Sci, 2003, 207: 20
    B. J. Jin, S. Im, S. Y. Lee. Violet and UV luminescence emitted from ZnO thin ?lms grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000, 366: 107
    Z. X. Fu, B. X. Lin, J. Zu. Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition. Thin Solid Films, 2002, 402: 302
    
    傅竹西, 林碧霞, 祝杰, 等. MOCVD方法生长的氧化锌薄膜及其发光特性发光学报, 2001, 22: 119
    S. A. Srudenikin, N. Golego, M. Cocivera. Fabrucatuib of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J Appl Phys, 1998, 84(4): 2287
    Y Chen, N. T. Tuan, Y. Segawa, et al. Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers. Appl Phys Lett, 2001, 78: 1469
    张国斌, 施朝淑, 韩正甫,等. Si基沉积ZnO薄膜的光谱特性发光学报, 2001, 22:157
    M, Kawasaki, A. Ohtomo, I. Ohkubo, et al. Excitonic ultraviolet laser emission at room temperature from naturally made cavity in ZnO nanocrytal thin films. Mater Sci Eng, 1998, B56: 239
    H. D. Sun, T. Makino, Y. Segawa, et al. Biexciton emission from ZnO/Zn0.74Mg0.26O multiquantum wells. Appl Phys Lett, 2001, 78: 3385
    Y. Segawa, A. Ohtomo, M. Kawasaki, et al. Growth of ZnO thin film by laser MBE: Lasing of exciton at room temperature. Physica Status Solidi (b), 1997, 202: 669
    D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperature. Appl Phys Lett. 1997, 70: 2230
    H. Cao, Y. G. Zhao, H. C. Ong, et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Appl Phys Lett, 1998, 73:3656
    S. Cho, J. Ma, Y. Kim, et al. Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn. Appl Phys Lett, 1999, 75:2761
    H. Ohta, K. Kawamura, M. Orita, et al. Current injection emission from a ransparent p– n junction composed of p-SrCu2O2 / n-ZnO. Appl Phys Lett, 2000, 77: 475
    R.J. Hong, X. Jiang, G. Heide. Growth behaviours and properties of the ZnO:Al films prepared by reactive mid-frequency magnetron sputtering. J. Cryst. Growth, 2003, 249:461
    T. K. Subramanyam, B. S. Naidu, S. Uthanna. Effect of substrate temperature on the physical properties of DC reactive magnetron sputtered ZnO films. Optical Mater. 1999, 13:239
    G. J. Fang, D. J. Li, B. L. Yao. Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target. Thin Solid Films, 2002, 418:156
    G. J. Fang, D. J. Lia, B, L. Yao. Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering. Vacuum, 2003, 68:363
    M. Chen, Z. L. Pei, X. Wang. Properties of ZnO:Al films on polyester produced by dc magnetron reactive sputtering. Mater. Lett. 2001, 48:137
    
    S. Jager, B. Szyszka, J. Szczyrbowski. Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering. Surf. Coatings Tech., 1998,98:1304
    O. Kluth, B. Recha, L. Houben. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films, 1999, 351:247
    C. Park, D. Y. Ma, K. H. Kim, The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering. Thin Solid Films, 1997, 305:201
    R. J. hong, X. Jiang, B. Szyszka, et al. Studies on Zn: Al thin films deposited by in-line reactive mid-frequency magnetron sputtering. Appl. Sur. Sci. 2003, 207:341
    T. Tsuji, M. Hirohashi, Influence of oxygen partial pressure on transparency and conductivity of RF sputtered Al-doped ZnO thin films. Appl. Sur. Sci., 2000, 157:47
    裴志亮, 潭明辉, 杜昊等. ZnO:Al薄膜的组织结构与性能. 材料研究学报, 2000, 14: 538
    Y. lgasaki, H. Saito. Substrate temperature dependence of electrical properties of ZnO:Al epitaxial films on sapphire (110). J. Appl. Phys., 1991, 69:2190
    T. Karasawa, Y. Miyata. Preparation and properties of electrodeposited ternary CdSxSe1-x and ZnxCd1-xS films. Thin Solid Films, 1993,223:135
    J. F. Chang, M. H. Hon. The effect of deposition temperature on the properties of Al-doped zinc oxide thin films. Thin Solid Films, 2000,386:79
    T. Minami, H. Sato, K. Ohashi, et al. Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering. J Cryst Growth, 1992, 117:370
    K. Tominaga, M. Kataoka, H. Manabe, et al. Transparent ZnO:Al films prepared by co-sputtering of ZnO:Al with either a Zn or an Al target. Thin Solid Films, 1996, 290-291:84
    B. Szyszka. Transparent and conductive aluminum doped zinc oxide films prepared by
    M. Chen, Z. L. Pei, C. Sun, ZAO: an attractive potential substitute for ITO in flat display panels. Mater. Sci. Eng. B, 2001, 85:212
    W. L. Wang, K. J. Liao. Influence of heat-treatment in different atmospheres on the photoluminescence of SnO2 films. Thin Solid Films,1991,195:193-
    W. L. Wang, K. J. Liao. Infrared reflection spectra of CdIn2O4 films. Appl phy lett, 1995,66:321
    吴彬, 王万录, 廖克俊, 等. 退火处理对透明导电膜CdIn2O4 电学、光学和能带结构的影响.半导体学报, 1997, 18:151
    S. John, N. Ak?zbek, Nonlinear optical solitaty waves in a photonic band gap. Phys Rev Lett, 1993, 71:1168
    I. Hamberg, C. G. Granqvist. Evaporated Sn-doped In2O3 films: Basic optical properties and
    
    
    applications to energy-efficient windows . J Appl Phys, 1986, 60: R123
    史月艳,潘文辉,殷志强. 氧化铟锡(ITO)膜的光学及电学性能. 真空科学与技术, 1994, 14:35
    陈猛, 裴志亮, 白雪冬, 等. ITO薄膜的XPS和AES研究. 材料研究学报, 2000, 14:173
    陈猛, 裴志亮, 白雪冬, 等. ITO薄膜的光电子能谱分析. 无机材料学报, 2000, 15:188
    R. B. H. Tahar, T. Ban, Y. Ohya, et al. Tin doped indium oxide thin films: Electrical properties. J Appl Phys, 1998, 83:2631
    N. Taga, H. Odaka. Electrical properties of heteroepitaxial grown tin-doped indium oxide films. J Appl Phys, 1996, 80: 978
    杨志伟, 韩圣浩, 杨田林, 等. 柔性衬底ITO膜的性质与制备参数关系的研究. 太阳能学报, 2001, 22: 256
    陈猛, 白雪冬, 黄荣芳,等. In2O3:Sn和ZnO:Al透明导电薄膜的结构及其导电机制. 半导体学报, 2000, 21: 394
    马瑾, 赵俊卿, 李淑英, 等. 有机材料衬底ITO透明导电膜的结构和导电特性研究. 半导体学报, 1998, 19: 841
    A. Hjortsberg, I. Hamberg, C. G. Granqvist. Transparent and heat-reflecting Indium Tin Oxide films prepared by reactive electron beam. Thin Solid Films, 1982, 90: 323
    G. Frank, E. Kauer, H. Kostlin. Transparent heat-reflecting coatings based on highly doped semiconductors. Thin Solid Films, 1981, 77:107
    陈猛, 白雪冬,裴志量, 等. In2O3:Sn(ITO)薄膜的光学特性研究. 金属学报, 1999, 35:934
    段学臣, 杨向萍. 新材料ITO薄膜的应用与发展. 稀有金属与硬质合金, 1999, 138:58
    姜 昌, 胡勇. ITO膜透明导电玻璃的应用前景及工业化生产. 真空, 1995, 6:1
    G. Sberveglieri, P. Benussi, G. Coccoli, et al, Reactively sputtered indium tin oxide polycrystalline thin films as NO and NO2 gas sensors, Thin Solid Films, 1990,186:349
    C. Cantalini, H. T. Sun, M. Faccio, et al, NO2 snsitivity of WO3 thin film obtained by high vacuum thermal evaporation, Sensors and Actuators B, 1996, 31:81
    M. Fleischer and H. Meixner. Sensing reducing gases at high temperatures using long-term stable Ga2O3 thin films. Sensors and Actuators B, 1992, 6:257
    Z. H. Jin, Z. L. Jin, Savinell R.F. et al. Application of nano-crystalline tin oxide thin film for CO sensing, Sensors and Actuators, 1998, 52:188
    G. Williams, G. S. V. Coles. Gas sensing produced by a laser evaporation technique, J. Mater. Chem. 1998, 8:1657
    R. Larciprete, P. Depadova, P. Perfetti, et al. Organization films deposited by laser-induced CVD as active layers in chemical gas sensors, Tin Solid Films, 1998, 323:291
    
    K. Fukui, A. Katsuki. Improvement of humidity dependence in gas sensor based on SnO2 , Sensors and Actuators, 2000, 65:316
    J. J. Ho, K. T. Wu, W. T. Hsieh, et al. High sensitivity ethanol gas sensor integrated with a solidstate heater & thermal isolation improvement structure for legal drink-drive limit detecting. Sensors and Actuators, 1998, 50:227
    C. H. Kwon, H. K. Hong, D. H. Yun, et al. Thick-film zinc-oxide gas sensor for the control of lean air-to-fuel ratio in domestic combustion systems. Sensors and Actuators B, 1995, 24/25: 610
    P. Mitra, A. P. Chatterjee, H. S. Maiti ZnO thin film sensor . Mater Lett, 1998, 35: 33
    J. Q. Xu, Q. Y. Pan, Y. A. Shun, et al. Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B, 2000, 66:277
    G. S. Trivikrama, D. Rao, T. Rao. Gas sensitivity of ZnO based thick sensor to NH3 at room temperature. Sen.. Actuators B, 1999, 55:166
    J. F. Chang, H. H. Kuo, I. C. Leu. The effects of thickness and operation temperature on ZnOAl thin film CO gas sensor. Sensors and Actuators B, 2002, 84:258
    S. Y. Wang, W. Wang, W. Z. Wang, et al. Characterization and gas-sensing properties of nanocrystalline iron (Ⅲ) oxide films prepared by ultrasonic spray pyrolysis on silicon, Sensors and Actuators B, 2000, 69:22
    C. C. Chai, J. Peng, B. P. Yan, et al. Preparation and gas-sensing properties of -Fe2O3 thin films. J. Electronic Mater., 1995, 24:799
    J. S. Han, A. B. Yu, He F J, et al, A study of the gas-sensitivity of -Fe2O3 sensors to CO and CH4, J Mater. Sci. Lett. 1996, 15:434
    L. H. Huo, W. Li, L. H. Lu et al, Preparation, structure, and properties of three-dimensional ordered -Fe2O3 nanoparticulate film, Chem. Mater., 2000, 12:790
    Y. Yasushi, S. Yoshiki, M. Yumi, et al, Nitrogen oxides sensing characteristics of Zn2SnO4 thin film, Sensors and Actuators B, 1998, 49:88
    G. Rog, A. Rog, K. Zakula. Calciumalunina and Nasicon electrolytes in-galvanic cells with sokid refenerce electrodes for detection of sulfur oxides in gases, J Appl Electrochem, 1991, 21:308
    J. Pichlmaier. Compensation of the influence of humidity on the measurement of an SO2 sensor by signal processing. Sensor and Actuators B, 1995, 26-27:286
    C. Humann, A. Mrwa, W. Gopel, et al, Lead phthalocyanine thin films for NO2 sensors, Sensors and Actuators B, 1991,4:73
    J. C. Hsieh, C. J. Liu, Y. H. Ju. Response characteristics of lead phthalocyanine gas sensor:
    
    
    effects of film thickness and crystal morphology, Thin Solid Films, 1998, 322:98
    G. G. Fedoruk, D. I. Sagaidak, A. V. Misevich, et al. Electrical and gas sensing properties of copper phthalocyanine-polyer composites, Sensors and Actuators B, 1998, 48:351
    Y. Sadaoka, T. A. Jones, W. Gopel, et al. Effects of morphology on NO2 detection in air at room temperature with phthalocyanine thin films. J. Mater. Sci. 1990, 25:5257
    李岚, 许琳, 华玉林, 等. 铜硅取代的酞青材料LB膜气敏传感器的研究. 功能材料, 1998,29:188
    T. Ishihara, K. Kometani, Y. Mizuhara et al. A new type of CO2 gas sensor based on capacitance changes, Sensors and Actuators B, 1991,5:97
    V. Muller, T. Nirmaier, A. Rugemer, er al. Sensitive NO2 detection with surface acoustic wave devices ysing a cyclic measuring technique, Sensors and Actuators B, 2000, 68:69
    M. Yamada, S. S, Seimei. Smoke sensor using mass controlled layer-by-layer self-assemblly of polyelectrilytes films, Sensors and Actuators B, 2000, 64:69
    M. Teresa, S. R. Gomes, P. Sergio, et al. Quantification of CO2、SO2、NH3、H2S with a single coated piezoelectric quartz crystal, Sensors and Actuators B, 2000, 68:218
    S. J. Qin, Z. J. Wu, Z. Y. Tang, et al. The sensitivity to SO2 of SAW gas sensor with triethanolamine modified with boric acid. Sensors and Actuators B, 2000, 66:240
    R. B. Vasiliey, M. N. Rumyantseva, Podguzova. Effect of interdiffusion on electrical & gas sensor properties of CuO/SnO2 heterostructure, Mater. Sci. Engineering, 1999, 57:241
    Q. Wu, K. M. Lee, C. C. Liu. Development of chemical sensors using microfabrication and micromachining techniques. Sensors and Actuators B, 1993, 13/14:1
    A. Pike, J. W. Gardner, Thermal modeling and characterization of micro power chemoresistive silicon sensors, Sensors and Actuators B, 1997, 45:19
    D. D. Lee, W. Y. Chung, M. S. Choi, et al. Low-power micro gas sensor. Sensors and Actuators B, 1996, 33:147
    Q. P. Zhong, E. Matijevic, Preparation of uniform zinc oxide colloids by controlled double-jet precipitation. J Mater Chem, 1996, 6:443
    G. Hohenberger, G. Tomandl.. Sol-gel processing of varistor powders, J Mater Res, 1992, 7:546
    E A. Meulenkamp, Synthesis and Growth of ZnO Nanoparticles. J Phys Chem B, 1998, 102:5566
    K. Daisuke, S. Hidedi, K. Takeshi, et al. Synthesis of ZnO Particles by Ammonia-Catalyzed Hydrolysis of Zinc Dibutoxide in Nonionic Reversed Micelles. Langmuir, 2000, 16:4086
    M. S. El-Shall, W. Slack, W. Vann, et al. Synthesis of Nanoscale Metal Oxide Particles Using
    
    
    Laser Vaporization/Condensation in a Diffusion Cloud Chamber. J Phys Chem, 1994, 98:3067
    徐甲强, 朱文会, 陈源. ZnO气敏陶瓷的制备与气敏性能研究. 功能材料,1993,24(1):30
    S. R. Morrison. Selectivity in semiconductor gas sensors. Sensors and Actuators, 1987, 12:425
    C. Xu, J. Tamaki, N. Miura, et al. Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B, 1991, 3:147.
    N.Yamazoe. New approaches for improving semiconductor gas sensors, Sensors and Actuators B, 1991, 5:7
    J. Y. W. Seto. The electrical properties of polycrystalline silicon films. J. Appl. Phys., 1975, 46:5247
    C. S. Han, J. Jun, H. Kim. The depth of depletion layer and the height of energy barrier on ZnO under hydrogen. Appl. Surf. Sci, 2001, 175-176:567
    W. Goepel, U. Lampe. Influence of defects on the electronic structure of zinc oxide surfaces, Phys. Rev. B, 1980, 22:6447
    J. Lagowski, E. S. Sproles, H. C. Gatos. Quantitative study of the charge transfer in chemisorption; oxygen chemisorption on ZnO. J Appl Phys, 1977, 48:3566
    K. Jacobi, G. Zwicker and A. Gutmann. Work function, electron affinity and band bending of zinc oxide surfaces. Surf Sci, 1984, 141:109
    X. D. Wang, S. Y. Sinclair and W. P. Carey. Transition neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors. Sensors and Actuators B. 1995,24-25:454
    S. R. Morrison. The Chemical Physics of Surfaces. New York: Plenum Press. 1977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700