透明导电ITO及其复合薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为应用最为广泛的n型透明导电氧化物(TCOs)——锡掺杂氧化铟(ITO)一直是材料和电子领域研究的热点之一。由于金属铟属于稀缺资源,因此节约铟用量是一项重要的课题。为此,本论文从事了三个方面的研究:(1)用化学共沉淀法制备了四种特殊形貌的纳米ITO粉末,并制作了防红外辐射的纳米ITO/高分子复合涂层;(2)通过降低ITO(9:1)陶瓷靶中In含量,利用rf磁控溅射沉积透光率高、方阻低和表面质量高的ITO(1:1)薄膜;(3)优化设计并制备纳米Ag基ITO(1:1)复合三层膜系IAI薄膜,进一步降低方阻,且透光率高、表面平整。详细分析了合成工艺参数对纳米ITO粉末形貌和晶体结构的影响,深入研究了rf磁控溅射工艺条件对ITO(9:1)、ITO(1:1)、Ag膜和IAI复合膜系的晶体结构、微观形貌/组织和光电性能的影响,用AFM、SEM和XRD表征了ITO材料的微观结构,XPS分析了薄膜的表面化学状态,分光光度计、椭偏仪、四探针测试仪和Hall测试系统测试了薄膜的光电性能。主要结论如下:
     用化学共沉淀法制备出纳米棒状ITO(9:1)前驱体——In(OH)3-H2[Sn(OH)6],煅烧后获得立方晶型的纳米棒状ITO粉末,Sn4+完全掺杂到In2O3晶格中。水浴温度Tb对前驱体的形貌有重要影响:Tb为40℃时呈球形,Tb为100℃时呈棒状颗粒。延长老化时间,棒状颗粒轴径比增大,说明前驱体沿In(OH)3的[100]方向继续生长。在酸性、碱性、中性环境中,纳米前驱体分别为类块状的In(OH)3+ Sn3O2 (OH)2混合相、方块状的单一In(OH)3相、球形In(OH)3+InOOH混合相。研究表明:前驱体转变为ITO的过程为吸热过程,反应pH值对相转变温度Tc有显著影响。纳米ITO粉末形貌“遗传”了前驱体的形貌,In3+与NH4+络合使前驱体易形成棒状颗粒,而In3+与Cl-络合则易形成方块状颗粒。
     ITO涂层具有强的紫外吸收性、高可见光的透光率(~80%)和高红外的反射率(~60%),但其导电率较低。所制备的ITO聚合物复合涂层可以代替防红外辐射的Low-E玻璃。
     将ITO靶材与紫铜板焊接能提高靶的冷却效率,避免其热应力开裂。分析表明:ITO靶的节瘤(Nodule)和中毒起初主要与表面异物有关,后来与Nodule分解引起成分偏析有关。Nodule的形成机制有两种可能:Particle熔点较低时为核长大机制,Particle熔点较高时为遮蔽机制。
     首次用rf磁控溅射法制备出表面为蜂窝状的ITO(9:1)薄膜,其表面粗糙度低、与靶材中In/Sn一致。研究表明:随着氧流量增加,ITO薄膜表面蜂窝状形貌逐渐消失,沿(222)晶面以柱状晶生长,这是因为氧使薄膜结晶改善、晶格缺陷减少。退火后薄膜沿[111]晶面择优生长,表面为主晶-次晶(grain-subgrain)结构。薄膜(基体不加热)随着溅射负偏压的增加,结晶逐渐完善并沿着[111]方向择优生长,由垂直柱状晶逐渐变为平行于基体的致密纤维状组织。
     制备出含In量低的ITO(1:1)靶材和非晶态薄膜,研究表明:ITO(1:1)薄膜的折射率与氧流量fo2有关,这是因为薄膜中存在SnO和Sn3O4亚氧化物使其光电性能恶化;ITO薄膜载流子浓度主要受氧空位的影响,因此应严格控制氧流量。溅射氩气压强增加,薄膜电阻率增加,折射率n在1.97~2.21之间变化。溅射时红外辐射温度TIR对薄膜方阻、薄膜透射率和折射率有重要影响。SEM表征发现TIR和溅射方式改变了ITO薄膜表面的grain-subgrain组织和粗糙度Rp-v值,这主要与薄膜生长模式变化有关。退火ITO(1:1)薄膜仍为非晶态,但性能得到改善,薄膜透光率可以达到90%,方阻为Rs=13.1Ω/□。
     电性能分析和AFM表征说明:随着沉积时间(厚度)的增加,薄膜出现三个生长阶段,对应着三种不同的导电机制,这说明ITO薄膜的电阻率表现出明显的尺寸效应。通过电阻率计算得到的薄膜临界尺寸dc与AFM观察的结果十分接近。根据溅射镀膜的特点对Thornton的结构分区理论进行修正得到ITO薄膜的微观形貌生长机理:氧流量对ITO薄膜微观结构的影响主要是由化学迁移率引起的;负偏压对ITO薄膜微观结构的影响主要是由轰击迁移率引起的。
     通过理论计算和实验求解得到最优增透膜IAI三层复合膜系的设计方案:60(nm) ITO/12(nm)Ag /60(nm)ITO。IAI膜表面粗糙度Rp-v=8.6nm、Rrms=1.2nm。IAI膜的Rs与dAg值有关:当IAI中的Ag膜为连续膜层时(dAg>12nm),IAI的Rs取决于Ag膜的Rs。当dI=120nm,IAI的透光率最大可达到90%,Rs =2.5Ω/□,ε<0.045。这说明所制备的IAI和ITO(1:1)薄膜的综合光电性能指数高。
As one of n-type transparent conductive oxides widely used, tin doped indium oxide (ITO) is always the hotspot of study fields of materials and electrons. Because of being lack in metal source Indium, saving indium wastage in ITO thin films is an important topic. Thereby, there were three aspects studied by us as follow: (1) Nano- crystalline ITO powders with four micro-morphologies were prepared by a co- precipitation process and were used as additive for nano ITO composite macro- molecule coatings shielding IR irradiation. (2) ITO(1:1) thin films, with high transmittance, low sheet resistance and good surface quality, were prepared by radio frequency (rf) magnetron sputtering with ITO(1:1) target of low in content. (3) We designed and prepared the nano Ag based ITO three-layer films (IAI) with high transmittance and well smooth surfacein order to reduce the sheet resistance. In this thesis, it was studied in detail that synthetical technical parameters dependent of nano ITO powder morphology and crystalline structure. It was also investigated completely that effects of sputtering parameters on the micro-morphology, crystalline structure and photoelectric properties. Microstructure of ITO materials was characterized by AFM, SEM and XRD. The chemical composition and valency states of ITO surface were analyzed and investigated by X-ray photoelectron spectroscopy (XPS). The photoelectric properties were measured by UV-spectrophotometer, ellipsometer, four-point probe system and Hall effect measurement system. The main concerned results and conclusions are as follow:
     The ITO (9:1) precursors—In(OH)3-H2[Sn(OH)6] were prepared by a chemical co-precipitation process, we obtained the cubic structure ITO powder with Sn4+ completely doped In2O3 lattice by calcinations. A bath temperature (Tb) had an important influence on the precursors’morphologies: spherical and rods shapes were obtained at Tb of 40℃and 40℃respectively. After prolonging aging time of ITO precursor, the axial and sectional ratio of rods increased, which showed that rod precursor grew along [100] orientation of In(OH)3 phase. Under different pH values of reactive solution, we obtained mixed phases of In(OH)3+ Sn3O2 with cubic like shape, single In(OH)3 phase with good cubic shape and mixed phases of In(OH)3+InOOH with spherical shape respectively. Our investigations suggested that the transformation of co-precipitated indium tin hydroxides to ITO was endothermic reaction, which corresponding transformation temperature (Tb) was related with pH value. Nano ITO powders’shapes inherited the precursors’after calination in Ar gas. Rod shaped particles grew due to NH4+ complexing In3+ and cubic shaped particles grew due to the influence of Cl- on the orientation of crystalline.
     Nano ITO composite macromolecule coatings showed strong absorption for ultraviolet light, high transmittance in visible light range(~80%) and high IR light reflectance(~60%) although its resistance was high. It showed that ITO composite coatings could substitute for Low-E glass for energy conserving application.
     Cool efficiency of ITO ceramic target had been improved by ITO target jointed with pure copper plate, which could avoid target cracked by thermal stress. Analytical results illuminated that during sputtering process, at first nodules on surface of ITO ceramic target were resulted from the particles, latter from the element segregation caused by nodules decomposing. Nodules growth mechanisms may be as follow: nodule growth-up mechanism of nucleus with low melting particles and shielding mechanism of nodule with high melting particles.
     ITO(9:1) thin films with smooth surface is consistent with commercial target with regard to chemical element. For the first time, we found the honeycomb morphology on the surface of ITO thin films. The investigation indicated that with the increase in oxygen flow rate, honeycomb boundaries of ITO film surface disappeared gradually and ITO thin films grew into columnar crystal in orientation of (222) because oxygen reduced the oxygen vacancies in lattice and improved the crystalline of ITO thin films. Annealing treatment made ITO films crystallize along preferential orientation of [111] and the surface morphology appeared grain-subgrain structure. With the increase of the sputtering bias voltage, ITO thin films sputtered without heat at glass not only crystallized gradually and showed preferential orientation of [111] but also turned into fibrous structure.
     We prepared amorphous ITO(1:1) thin films by rf magnetron sputtering with self-made ceramic target. The investigations said that the refractive index and transmittance of ITO(1:1) thin films were strong dependent of fo2 value because of sub-oxides, SnO and Sn3O4 in films deteriorating the photoelectrical properties. On the other hand, carrier concentration of ITO(1:1) thin films is mainly dependent of the oxygen vacancies. Thereby, oxygen flow rate should be accurately controlled during sputtering process. The films’resistivity increased and the refractive index varied in the range of 1.97~2.21 with Ar gas pressure increasing. Sheet resistance, transmittance and refractive index were as function of IR irradiation temperature (TIR). The SEM study showed that TIR and sputtering method made the surface“grain-subgrain”morphology and surface roughness Rp-v change, which was related with the growth model of ITO thin films. The microstructure of amorphous ITO(1:1) thin films were improved and showed maximum transmittance of 90% and sheet resistance of 13.1Ω/□.
     Electronic properties’analysis and AFM characterization indicated that ITO thin films show three growth stage corresponding to three different conductive mechanisms, it is that resistance of ITO films shows dimensional effect. We modified and corrected the structure zone model theory (Thornton theory) and obtained the tow models at oxygen flow and bias voltage respectively: oxygen flow have an important influence on the microstructure and growth of ITO thin films because of chemical mobility, however bias voltage alter bombardment surface.
     We designed and prepared the optimized antireflective IAI composite films with three layer structure: 60(nm)ITO/12(nm)Ag/60(nm)ITO. IAI multilayer film had good surface quality, Rp-v of 8.6nm and Rrms of 1.2nm. The sheet resistance Rs of IAI multilayer film is strong related with the thickness dAg of nano Ag film, Rs of IAI is determined by Rs of Ag film when dAg is in excess of 12nm. IAI multilayer film with ITO thickness of 120nm have maximum transmittance of 90% and sheet resistance of Rs =2.5Ω/□.
引文
[1] Bakdeker K. Ann Phys, Leipzig, 1907, 22(2): 749-751
    [2] ディスプレイデバイス(LCD?PDP?CRT?有機 EL 他)と応用製品の世界市場、デバイス別競合状況を徹底調査[J]. 調査レポート一覧(刊行月別)に戻る, 2002, 6(5):1-6
    [3] 李世涛,乔学亮,陈建国. 透明导电薄膜的研究现状及应用[J]. 激光与光电子学进展, 2003, 40 (7): 53-59
    [4] K.H. Choi, J.Y. Kim, Y.S. Lee, H.J. Kim. ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode [J]. Thin Solid Films, 1999 , 341(1-2): 152-155
    [5] Xuanjie Liu, Xun Cai, Jifang Mao, eatl. ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application [J]. Applied Surface Science, 2001, 183(1): 103-110
    [6] Hidetoshi Miyazaki, Toshitaka Ota, Itaru Yasui. Design of ITO/transparent resin optically selective transparent composite [J]. Solar Energy Materials & Solar Cells, 2003, 79(1):51-55
    [7] Hiromichi Ohta, Masahiro Orita, Masahiro Hirano. Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition [J]. Applied Physics Letters, 2000, 76(198): 2740-2742
    [8] I. Hamberg, C.G. Granqist. Evaporated Sn-doped In2O3 films--Basic optical properties and applications to energy-efficient windows [J]. Journal of Applied physics, 1986, 60(11): R123
    [9] Ebisawa, Junichi; Ando, Eiichi. Solar control coating on glass [J]. Solar Energy Materials & Solar Cells Solar, 1998, 3(4): 386-390
    [10] Hans Joachim Glaser. Large aera glass coating [D]. Germany, Von Ardenne Anlagentechnik GMBH, January in 2000
    [11] 李世涛,乔学亮,陈建国.磁控溅射制备 In2O3-SnO2 薄膜与分析[J]. 中国有色金属学报, 2005, 15(8): 1214-1217
    [12] 李世涛,乔学亮,陈建国.氧流量对透明导电薄膜性能的影响[J].稀有金属材料与工程, 2006,35(1): 138-141
    [13] Hiroshi Kawazoe, Masahiro Yasukawa, Hiroyuki Hyodo, Masaaki Kurita, Hiroshi Yanagi & Hideo Hosono. P-type electrical conduction in transparent thin films of CuAlO2 [J]. Nature (Londuon) 1997, 389(4): 939
    [14] 黄锡珉. 有源矩阵 OLED[J]. 液晶与显示, 2003, 3(6): 157-160
    [15] 小山俊树, 谷口彬雄. DOL ED の动作メヵニズム[J ] .月刊デイスプレイ, 2002, 8(9): 29-32
    [16] 刑丽英. 隐身材料[M]. 北京:化学工业出版社, 2004 年 5 月第一版, p130
    [17] Jih-Jen Wu, Hui-I Wen, Chan-Hao Tseng,et al. Well-aligned ZnO nanorods via hydrogen treatment of ZnO films [J].Advanced Functional Materials, 2004, 8(14):806-810
    [18] Kim Hyoun Woo, Kim Nam Ho. Study of Ga2O3 nanobelts synthesized by the thermal annealing of GaN powders [J].Acta Physica Polonica A, 2005,107(2): 346-350
    [19] X.F. Duan, C.M. Lieber. General Synthesis of Compound Semiconductor Nanowires [J]. Adv. Mater. 2000, 12(4): 298-302.
    [20] S. Gablenz, D. Voltzke, H.-P. Abicht, et al. Preparation of fine TiO2 powders via spray hydrolysis of titanium tetraisoprop oxide [J]. J. of Materials Science,1998,17 (7): 537–539
    [21] Youn-Gon Park, Kyung-Han Seo, Joon-Hyung Lee, et al. Phase transformation behavior of nanocrystalline ITO powders during heat-treatment: oxygen partial pressure effect [J].J. of Electroceramics, 2004,13(5): 851–855
    [22] Bagas Pujilaksono, Uta Klement, Lars Nyborg, et al. X-ray photoeletron spectroscopy studies of indium tin oxide nanocrystalline powder [J].Materials Characterization, 2005, 54(1-2):1-4
    [23] Shu-Guang Chen, Chen-Hui Li, Wei-Hao Xiong, et al. Preparation of indium-tin oxide (ITO) nano-aciculae by a simple precipitation near boiling point and post-calcination method [J]. Mater. Lett., 2005, 59(1-2):1342– 1346
    [24] Bong-Chull Kim, Joon-Hyung Lee, Jeong-Joo Kim, et al. Rapid rate sintering of nano- crystalline indium tin oxide ceramics: particle size effect [J]. Mater. Lett. 2002, 52 (1-2) :114–119
    [25] J.G. Nam, H. Choi, S.H. Kim, et al. Synthesis and sintering properties of nanosized In2O3- 10wt% SnO2 powders [J]. Scripta Mater., 2001, 44(10): 2047–2050
    [26] Gnanasekar, KI, Jiang, X, Jiang, JC, et al. Nanocrystalline sensor-grade Sn1-xInxO2 [J]. J.of nanosci. and nanotech., 2002, 2(2):189-96 .
    [27] Shengfeng Liu. Study on preparation of In2O3 superfine powder via polymer-network process [J]. J. of Southeast University (English Edition), 2004, 20(6): 212-215.
    [28] Cha G-Y, Baek W-W, Lee S-T,et al. Effects of crystal structure and particle size on ethanol gas sensing characteristics of nanocrystalline ITO thick film[J]. J. of the Ceramic Society of Japan, 2004, 112 (1305): 252-258.
    [29] Dabin Yu, Debao Wang, Jun Lu, et al. Preparation of corundum structure Sn-doped In2O3 nanoparticles via controlled co-precipitating and postannealing route [J]. Inorg. Chem. Comm., 2002, 5(2): 475–477
    [30] Dabin Yu, Debao Wang, Weichao Yu, et al. Synthesis of ITO nanowires and nanorods with corundum structure by a co-precipitation-anneal method [J]. Mater. Lett., 2003,58(1-2): 84
    [31] Ki Young Kim, Seung Bin Park. Preparation and property control of nano-sized indium tin oxide particle [J]. Mater. Chem. and Phys., 2004, 86(1-2): 210–221
    [32] L. DAI, X.L. CHEN, J.K. JIAN, et al. Fabrication and characterization of In2O3 nanowires [J]. Appl. Phys. A: Mater. Sci. & Proc., 2002, 75(6), 687–689
    [33] B. Balamurugana, F. E. Kruis, Size-induced stability and structural transition in mono- dispersed indium nanoparticles [J]. Appl. Phys. Lett., 2005, 86(2): 083102-3
    [34] X.S. Peng., Y.W.Wang, J. Zhang, et al. Large-scale synthesis of In2O3 nanowires [J]. Applied Physics A: Materials Science & Processing, 2002, 74(3): 437–439.
    [35] N. Boulares, K. Guergouri, R. Zouaghi, et al. Photoluminescence and photodissociation properties of pure and In2O3 doped ZnO nanophases [J].Phys. Stat. Sol. (a), 2004, 201(10): 2319–2328.
    [36] Murali Amith Kumar, Risbud Subhash. Studies on the defect structure of indium-tin oxide using x-ray and neutron diffraction [D]. UIM Doctor paper: University of California, AAI3026681, 39
    [37] Alexander Gurlo, Nicolae Barsan, Udo Weimar, et al. Polycrystalline Well-Shaped Blocks of Indium Oxide Obtained by the Sol-Gel Method and Their Gas-Sensing Properties [J]. Chem. Mater., 2003, 15(1-2), 4377-4383
    [38] S.J. LIMMER, S.V. CRUZ, G.Z. CAO. Films and nanorods of transparent conducting oxide ITO by a citric acid sol route [J]. Appl. Phys. A: Mater. Sci. & Proc., 2004, 79(421-424): 2738-3
    [39] Takuma Ishida, Katsumi Kuwabara, Kunihito Koumoto. Formation and characterization of indium hydroxide films [J]. J. of the Ceramic Society of Japan, 1998,106(1-2): 400-403
    [40] Mauro Epifani, Pietro Sicilian, Alexander Gurlo, et al. Ambient Pressure Synthesis of Corundum-Type In2O3 [J]. J. AM. CHEM. SOC., 2004, 126(13): 4078-4079
    [41] By C. T. Prewitt, R. D. Shaxnon, D. B. Rogers, et al. The C Rare Earth Oxide-Corundum Transition and Crystal Chemistry of Oxides Having the Corundum Structure [J]. Inorg. Chem., 1969, 8(9):1985
    [42] Alexander Gurlo, Maria Ivanovskaya, Nicolae Barsan. Corundum-type indium (III) oxide: formation under ambient conditions in Fe2O3-In2O3 system [J].Inorg. Chem. Comm., 2003, 6(6): 569–572
    [43] Z. Cui, G.W. Meng, W.D. Huang, et al. Preparation and characterization of MgO nanorods [J]. Mater. Res. Bull., 2000,35(10):1653-1659
    [44] G.W. Zhou, Z. Zhang, Z.G. Bai, et al.Transmission electron microscopy study of Si nanowires [J]. Appl. Phys. Lett., 1998, 73(5): 677-679
    [45] Hongliang Zhu, Yong Wang, Naiyan Wang, et al. hydrothermal synthesis of indium hydroxide nanocubes [J]. Mater. Lett. , 2004, 58(21): 2631– 2634.
    [46] ZHU Guisheng, XU Huarui, LIAO Chuntu. Monodispersed tin doped indium oxide nanometer powders prepared by hydrothermal method [J]. J. Inorg. Mater., 2005, 20(6):479-483.
    [47] Yunxia Zhang, Guanghai Li, Lide Zhang. Synthesis of indium hollow spheres and nanotubes bya simple template-free solvothermal process [J]. Inorg. Chem. Comm., 2004,7: 344–346
    [48] P. Sujatha Devi, M. Chatterjee, D. Ganguli. Indium tin oxide nano-particles through an emulsion technique [J]. Materials Letters, 2002, 55(4): 205– 210
    [49] Zili Zhan, Wenhui Song, Denggao Jiang. Preparation of nanometer-sized In2O3 particles by a reverse microemulsion method [J]. J. of Colloid and Interface Science, 2004, 271(2):366–371
    [50] Nathalie Audebrand, Stéphanie Raite, Daniel Lou?r, The layer crystal structure of [In2(C2O4)3(H2O)3]·7H2O and microstructure of nanocrystalline In2O3 obtained from thermal decomposition [J].Solid State Sciences, 2003, 5(5): 783–794
    [51] W. Erbs, J. Kiwi and M. Graetzel. Light induced generation of O2 in aqueous disperions of In2O3 particles [J].Chem. Phys. Lett., 1984, 110(5): 648
    [52] G. A. Pan, T. P. Ma. High-quality transparent conductive indium oxide films prepared by thermal evaporation [J]. Appl. Phys. Lett., 1980, 37(1-2): 163.
    [53] SHINRI SATO. Photocatalytic Activities of Indium Oxide Powder Prepared From Indium Hydroxide [J]. J. of Photochemistry and Photobiology A: Chemistry, 1988, 45(1-2): 361-367
    [54] S.K. Poznyak, A.N. Golubev, A.I. Kulak. Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders [J]. Surf. Sci., 2000, 454–456(1-2): 396–401
    [55] C.H. Liang, G. Meng, Y. Lei, et al. Catalytic Growth of Semiconducting In2O3 Nanofibers [J].Adv. Mater. 2001, 13 (17):1330-1333
    [56] M.-I. Baraton, L. Merhari, H. Ferkel, et al. Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: carbon monoxide and oxygen detection [J]. Mater. Sci. and Eng. C, 2002, 19(1-2): 315–321
    [57] G. H. Takaoka, D.Yamazaki, J.Matsauo. High quality ITO film formation by the simultaneous use of cluster in beam and laser irradiation [J].Mater. Chem. and phys., 2002, 74(1): 104-108
    [58] Toshihiro Miyata,Shingo Suzuki,Makoto Ishii,etal.New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering [J]. Thin Solid Films, 2002, 411(1): 79-81
    [59] Steven J. Limmer, Katsunori Takahashi, Guozhong Cao. Electrochromic and transparent conducting oxide nanorods [J]. Proceedings of SPIE, 2003, 5224(15): 25-32
    [60] H.P.Lobl, M.Huppertz, D.Mergel. ITO films for antireflective and antistatic tube coating prepared by d.c. magnetron sputtering [J]. Surface Coating Technology, 1996, 82(1-2): 90-98
    [61] Chen Meng,Bei Dong xue,Pei Zhi liang,etal. Optical propertities of In2O3:Sn (ITO) films [J]. ACTA Metallurgical, 1999, 9(8): 936-938
    [62] Shitao Li, Xueliang Qiao, Jianguo Chen, et al. Effects of temperature on indium tin oxide particles synthesized by co-precipitation [J]. J. of Crystal Growth, 2006, 289(1): 151-156
    [63] H. Kim, s. Horwitz, A. Piqué, et al. Effect of Film thickness on the Properties of Indium Tin Oxide Thin Film Grown by Pulsed laser Deposition for Organic Light-emitting Diodes [J]. Proceedings of SPIE, 2000, 3933(1-2): 140-149
    [64] H. L. Hartnagel, A. L. Dawar, A. K. Jam et al. Semiconducting Transparent Thin Films [D]. Institute of Physics Publishing, Bristol and Philadelphia, 1995.
    [65] H. Kim, A. Piqué, J. S. Horwitz, et al. Indiumtin oxide thin films for organic light-emitting devices [J]. Appl. Phys. Lett., 1999, 74(23): 3444-3446.
    [66] C. W. Tang, S. A. Van Slyke. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-9l5.
    [67] M. Buchanan, J. B. Webb, and D. F. Williams. Preparation ofconducting and transparent thinfilms oftin-doped indium oxide by magnetron sputtering [J]. Appl. Phys. Lett., 1980, 37(2): 213-215.
    [68] R. P. Howson, H. A. Jafar. Reactive sputtering with an unbalanced magnetron [J]. J. Vac. Sci. Technol., 1992, 10(4): 1784-1790.
    [69] T. Karasawa, Y. Miyata. Electrical and optical properties of indium tin oxide thin films deposited on unheated substrates by d.c. reactive sputtering [J]. Thin Solid Films, 1993, 223(3): 135-139.
    [70] T. Maruyama, K. Fukui. Indium tin oxide thin films prepared by chemical vapor deposition [J]. Thin Solid Films, 1991, 203(2): 297-302.
    [71] Frank G, Kostlin H. Transparent and heat-reflecting coatings based on highly doped semiconductors [J]. Appl. Phys., 1982, A 27(1-2): 197
    [72] A.P.Roth, J.B.Webb, D.F.Williams. Synthesis and Raman Spectroscopy of Nanoparticles of Crystalline and X-ray Amorphous Germanium within Mesoporous SiO2 [J]. Solid State Comm. 1981, 39(10): 1269-1273
    [73] J. L. Vossen. Transparent conducting films [J]. Phys. Thin films, 1977, 9(1-2): 1-71
    [74] Tetsuo Yano, Masafumi Yoneda, Toshihiko Ooie etal. Electrical and optical properties of ITO films deposited by excimer laser assisted EB method [J]. Part of the SPIE Conference on Laser Applications in Microelectronic and Optoelectronic, SPIE, 1999, 3618(2): 418-424.
    [75] Toshihiro Miyata,Shingo Suzuki,Makoto Ishii, etal. New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering [J].Thin Solid Films,2002, 411(1): 76-81
    [76] Tadatsugu Minami,Yoshihiro Takeda,Shinzo Takata, etal.Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering [J].Thin solid films, 1997, 308-309(1): 13-18
    [77] Tadatsugu Minami, Toshikazu, Yoshihiro Takeda, etal. Highly transparent and conductive ZnO- In2O3 thin films prepared by d.c. magnetron sputtering [J]. Thin solid films, 1996, 290-291(1): 1-5
    [78] Tadatsugu. Minami, Shingo Suzuki Toshihiro Miyata. Transparent conducting impurity-co- doped ZnO:Al films prepared by magnetron sputtering [J].Thin solid films, 2001, 398-399(1): 53-58
    [79] Woon-Jo Jeong,Gye-Choon Park.Electrial and optical propeties of ZnO thin film as a function of deposition parameters [J]. Solar Energy Materials & Solar Cell, 2001, 65(1-4): 37-45
    [80] Tadatsugu. Minami, Takashi, Yamamoto, Toshihiro Miyata.Highly transparent and conductive Rae Earth-doped ZnO thin films prepared by magnetron sputtering [J].Thin Solid Films, 2000, 366(1-2): 63-69
    [81] Jyh-Ming Ting,B.S.Tsai. Dcreative sputter deposition of ZnO:Al thin film on glass [J]. Materials Chemistry and physics, 2000, 72(2): 273-277
    [82] K.Tominaga,T.murayama,I.Mori,etal.Conductive transparent films deposited by simultaneous sputtering of Zinc-Oxide and Indium-Oxide targets [J]. Vacuum, 2000, 59(2-3): 546-552
    [83] K.Tominaga, N.Umezu, T.Ushiro, etal. Transparent conductive ZnO:Al and Zn or Al targets [J]. Thin solid films, 1998, 334(1): 35-39
    [84] T.Minami, T.Kakumu, Y.Takeda, etal. Preparation of transparent conducting Zn2In2O5 films by d.c.magnetron sputtering [J]. Thin solid Films,1998, 317(1-2): 326-3329
    [85] 周之斌,崔容强,黄燕等.超声雾化喷涂工艺及优质二氧化锡透明导电薄膜的研究 [J]. 固体电子学研究与进展, 2000, 20(2): 229- 233
    [86] M.J. Alam D.C. Cameron. Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol-gel process [J]. Surf. and Coat. Technol., 2001, 142-44(4-5): 776-780.
    [87] By Joerg Puetz, Naji Al-Dahoudi, Michel A. Aegerter. Processing of Transparent Conducting Coatings Made With Redispersible Crystalline Nanoparticles [J]. Advanced Engineering Materials, 2004, 6(9): 733-737
    [88] Andrew W. Metz, Melissa A Lane, Carl R. Kannewurf. MOCVD Growth of Transparent Conducting Cd2SnO4 Thin Films [J]. Chemical Vapor Deposition, 2004, 10(6): 297-301
    [89] 李世涛, 乔学亮, 陈建国, 等. 磁控溅射制备增透 ITO 薄膜及其性能研究[J]. 光电工程, 2005, 32(11): 20-24
    [90] D. Vaufrey, M. Ben Khalifa, J. Tardy. Low temperature sputter deposition of Indium Tin Oxide anode for inverted organic diodes [J]. Proceedings of SPIE, 2003, 5036(4): 443-448
    [91] J. Kleperis and A. Lusis. Properties of Ito transparent electrode thin films onto different substrates [J]. Proceedings of SPIE, 2003, 5123(1-2): 215-220
    [92] Zhong Zhi You, Jiang Ya Dong. Surface properties of treated ITO anodes for organic light-emitting devices [J]. Applied Surface Science, 2005, 249(2): 271–276
    [93] C. Guillén, J. Herrero. Comparison study of ITO thin films deposited by sputtering at roomtemperature onto polymer and glass substrates [J]. Thin Solid Films, 2005,480–481(1):129– 132
    [94] D. Mergel and Z. Qiao. Correlation of lattice distortion with optical and electrical properties of In2O3 :Sn films [J]. J. of Appl. Phys., 2004, 95(10): 5608-8614
    [95] Seung-Ik Jun, Timothy E. McKnight, Michael L. Simpsona, et al. A statistical parameter study of indium tin oxide thin films deposited by radio-frequency sputtering [J]. Thin Solid Films, 2005, 476(1): 59– 64
    [96] H. Han, Daniel Adams, J. W. Mayer. Characterization of the physical and electrical properties of Indium tin oxide on polyethylene napthalate [J]. J. of Appl. Phys., 2005, 98(1-2): 083705-8
    [97] C. Nunes de Carvalho, A. Luis, G. Lavareda, et al. Effect of thickness on the properties of ITO thin films deposited by RFPERTE on unheated, flexible, transparent substrates[J]. Surface and Coatings Technology, 2002, 151 –152(1-2): 252–256.
    [98] C. Nunes de Carvalho, G. Lavareda, E. Fortunato, et al. ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates [J]. Materials Science and Engineering B, 2005,118(1-3): 66–69
    [99] K. Daoudi, B. Canut, M.G. Blanchin, et al. Densification of In2O3 :SnO2 multilayered films elaborated by the dip-coating sol–gel route[J]. Thin Solid Films, 2003, 445-446(1): 20–25
    [100] In-Bo Shim, Chul Sung Kim. Doping effect of indium oxide-based diluted magnetic semiconductor thin films [J]. J. of Magnetism and Magnetic Materials, 2004, 272–276(2): 1571–1572.
    [101] P.K. Biswas, A. Dea, N.C. Pramanik, et al. Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol–gel indium tin oxide films on glass [J]. Materials Letters, 2003, 57(15): 2326–2332
    [102] K. Utsumi, H. Iigusa, R. Tokumaru, et al. .Study on In2O3–SnO2 transparent and conductive films prepared by d.c. sputtering using high density ceramic targets [J]. Thin Solid Films, 2003, 445-446(2): 229–234
    [103] M. Weigert, U. Konietzka, B. Gehman. Target for cathode sputtering and method of its production [P]. US Patent, 5480531, 1996.
    [104] Kida, A.Mitsui, A. Hayashi. Ceramic rotatable magnetron sputtering cathode target and process for its production [P]. US Patent, 5354446, 1994.
    [105] Yoichi Hoshi, Hiro-omi Kato, Kentaro Funatsu. Structure and electrical properties of ITO thin films deposited at high rate by facing target sputtering [J].Thin Solid Films, 2003, 445-446(2): 245–250
    [106] C. Liu, T. Matsutani, T. Asanuma, et al. Structural, electrical and optical properties of indium tin oxide films prepared by low-energy oxygen-ion-beam assisted deposition [J]. Nuclear Instruments and Methods in Physics Research B, 2003, 206(1-2):348–352
    [107] E. Bertran, C. Corbella, M. Vives,et al. RF sputtering deposition of Ag/ITO coatings at room temperature [J]. Solid State Ionics, 2003, 165(1-4):139– 148
    [108] 顾培夫, 编著. 薄膜技术[M]. 浙江:浙江大学出版社, 1990 年 11 月第一版, p 20
    [109] John L., Vossen. Thin film processes [M]. Academic Press, Inc., New York, 1978: p205
    [110] 金原粲, 藤原英夫著,王力衡, 郑海涛译. 薄膜[M]. 北京:电子工业出版社,1988 年第一版,p120
    [111] Burroughs J H ,Bradley D C , Brown A R , et al . Light emitting diodes based on conjugated polymers [J]. Nature, 1990, 347(1-2): 539~541
    [112] 郭运德. 硅片清洗方法探讨[J]. 上海有色金属, 1999, 20 (4): 162-165
    [113] 干福熹. 光学玻璃[M]. 北京:科学出版社, 1964 年 10 月第一版:p240
    [114] Kentaro Utsumi, Osamu Matsunaga, Tsutomu Takahata. Low resistivity ITO film prepared using the ultrahigh density ITO target [J]. Thin Solid Films, 1998, 334(1-2): 30-34.
    [115] N.G. Patel, P.D. Patel, V.S. Vaishnav. Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature [J]. Sensors and Actuators B, 2003, 96(1-2): 180–189
    [116] Jianqiao Hu, Furong Zhu, Jian Zhang, Hao Gong. A room temperature indium tin oxide/ quartz crystal microbalance gas sensor for nitric oxide [J]. Sensors and Actuators B, 2003, 93(1-3): 175–180
    [117] Zheng Jiao, Minghong Wu, Zheng Qin, Minghua Lu, Jianzhong Gu.The NO2 sensing ITO thin films prepared by ultrasonic spray pyrolysis [J]. Sensors, 2003, 3(2-3): 285-289
    [118] Shu-guang Chen, Chen-hui Li, Wei-hao Xiong, Lang-ming Liu, Hui wang. Preparation of indium-tin oxide (ITO) aciculae by a novel concentration-precipitation and post-calcination method [J]. Mater. Lett., 2004, 58(4-5): 294-298
    [119] Z.W. Pan, Z.R. Dai, Z.L. Wang. Nanobelts of Semiconducting Oxides [J]. Science, 2002, 291(15): 1947
    [120] Nimai Chand Pramanik, Sukhen Das, Prasanta Kumar Biswas. The effects of Sn (Ⅳ) on transformation of co-precipitation hydrated In (Ⅲ) and Sn hydroxides to indium tin oxide (ITO) powder[J]. Mater. Lett., 2002, 56(5): 671– 679
    [121] Jiont Committee on Powder Diffraction Standards (JCPDS), Card No.16-0161.
    [122] Jiont Committee on Powder Diffraction Standards (JCPDS), Card No.17-0549.
    [123] Jiont Committee on Powder Diffraction Standards (JCPDS), Card No.25-1303.
    [124] Norlund Christensen A and Broch N C. Acta Chemica, Scandinavica, 1967, 21: 1046
    [125] G.J.D.A.A. Soler-Illia, C.Sanchez, B. Lebeau, et al. Chemical strategies to desigen textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structure [J]. Chem. Rev., 2002, 102(11): 4093
    [126] Zhuo Wang, Xue-feng Qian, Jie Yin, et al. Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency [J]. J. of Solid State Chem., 2004, 177(15): 2144-2149
    [127] W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin. Growth mechanism and growth habit of oxide crystal [J]. J. of Cryst. Growth, 1999, 203(1-2):186-188
    [128] K.H. Lii, Y.F. Huang, V. Zima, C.Y. Huang, H.M. Lin, Y.C. Jiang, F.L. Liao, S.L. Wang, Syntheses and Structures of Organically Templated Iron Phosphates [J]. Chem. Mater., 1998, 10(10): 2599-2609
    [129] G. J. de .A.A.Soler-llia, C. Sanchez, B. Lebeau, J. Patarin. Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures [J]. Chem. Rev., 2002, 102(11): 4093-4138
    [130] Zhang Weijia, Wang Tianmin, Wu Xiaowen, et al.Optimized Design for Preparing Nanocrystalline ITO Powder [J]. Rare Metal Materials and Engineering, 2005, 34 (5):1352- 1356
    [131] Ja Eun Song, Don Keun Lee, Hyun Woo Kim, et al. Preparation and characterization of monodispersed indium–tin oxide nanoparticles [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 257–258: 539–542
    [132] 高濂, 孙静, 刘阳桥. 纳米粉体的分散及表面改性[M]. 第 1 版. 北京: 化学工业出版社, 2003, 7-17
    [133] Xian-Hua Zhang, Su-Yuan Xie, Zi-Mian, et al. Controllable growth of nanorods with rod-in rod structure in a surfactant solution [J]. Inorganic Chemistry Communications, 2003, 6(12): 1445-1447.
    [134] 张树高, 扈百直, 黄伯云. 铟锡氧化物陶瓷靶材热等静压致密化研究[J]. 功能材料,2000, 31(4): 383-385
    [135] 扈百直,张树高,付晓旭,等. 铟锡氧化物热等静压时分解氧对裂纹形成的作用[J].中南工业大学学报, 1999, 30(6):608-610
    [136] Chang S.Y., Tsao L.C., Chiang M.J., et al. Active Soldering of Indium Tin Oxide (ITO) With Cu in Air Using an Sn3.5Ag4Ti(Ce, Ga) Filler[J]. Journal of Materials Engineering and Performance, 2003, 12(4): 383-389 (7)
    [137] M. Schlott, M. Kutzner, B. L. Gehman, et al. Nodule formation on indium-oxide tin- oxide sputtering targets [J]. SID 96 DIGEST, 1996, 12(1-2): 1-5
    [138] B.L. Gehman, S. Johsson, T. Rudolph, et al. Influence of manufacturing process of indium tin oxide sputtering targets on sputtering behavior [J]. Thin solid films, 1992, 220(2): 333-336
    [139] Nakashima K. proceedings of the English Fine Process Technology Japan 98, Tokyo, Vol. C5, 1998 (Reed Exhibitions): 38
    [140] Nakashima. K, Kumahara Y. Effcet of tin oxide dispersion on nodule formation in ITO sputtering [J]. Vacuum, 2002, 66(3-4): 221-226
    [141] Zhaohui Qiao, Dieter Mergel. Comparison of radio-frequency and direct-current magnetron sputtered thin In2O3:Sn films [J]. Thin Solid Films, 2005, 484(1-2): 146–153
    [142] Young-Chul Park, Young-Soon Kim, Hyung-Kee Seo, et al. ITO thin films deposited at different oxygen flow rates on Si(100) using the PEMOCVD method [J]. Surface and Coatings Technology, 2002, 161(1-2): 62–69
    [143] P. F. Carcia, R. S. McLean, M. H. Reilly, et al. Influence of energetic bombardment on stress, resistivity and microstructure of indium tin oxide films grown by radio frequency magnetron sputtering on flexible polyester substrates [J]. J. Vac. Sci. Technol. A, 2003, 21 (3): 745-751
    [144] Bartos A., Lieb, K.P. Uhrmacher, M. Wiarda, D.[J]. Acta Crystallogr., Sec. B: Structural Science, 1993, 49(1-2): 165
    [145] Jiont Committee on Powder Diffraction Standards (JCPDS), Card No. 71-2194
    [146] Ju-O Park, Joon-Hyung Lee, Jeong-Joo Kim, et al. Crystallization of indium tin oxide thin films prepared by RF-magnetron sputtering without external heating [J]. Thin Solid Films, 2005, 474(1-2): 127– 132
    [147] Jow-Lay Huang, Yin-Tsan Jah, Bao-Shun Yau, et al. Reactive magnetron sputtering of indium tin oxide films on acrylics-morphology and bonding state[J]. Thin Solid Films, 2000, 370(1-2): 33-37
    [148] M. Chen, V. Marello, and U.G. Gerber. Trap creation in channel oxides due to ion penetration of polycrystalline silicon [J]. Appl. Phys. Lett., 1982, 41(9): 849-851
    [149] R. Messier and R. C. Ross. Evolution of microstructure in amorphous hydrogenated silicon [J]. J. of Appl. Phys., 1982, 53(9): 6220-6225
    [150] Granqvist CG, Hult?ker A . Transparents and conducting ITO films: new developments and applications [J]. Thin Solid Films, 2002, 411(1):1-3
    [151] Mergel D, Schenkel M, Ghebre M, Sulkowski M. Structral and electrical properties of In2O3:Sn films prepared by radio-frequency sputtering [J]. Thin Solid Films, 2001, 392 (2): 91-94
    [152] Ho-Chul Lee, O. Ok Park. Behaviors of carrier concentrations and mobilities in indium–tin oxide thin ?lms by DC magnetron sputtering at various oxygen ?ow rates [J]. Vacuum, 2004, 77(1): 69–77
    [153] Yeon Sik Jung, Dong Wook Lee, Duk Young Jeon. Influence of dc magnetron sputtering parameters on surface morphology of indium tin oxide thin films [J]. Applied Surface Science 2004, 221(1-2): 136–142
    [154] B.J. Chen, X.W. Sun, B.K. Tay. Fabrication of ITO thin films by filtered cathodic vacuum arc deposition [J]. Materials Science and Engineering B, 2004, 106(3): 300–304
    [155] Daeil Kim, Steven Kim. Effect of secondary ion beamener gy and oxygen partial pressure on the structural, morphological and optical properties of ITO films prepared by DMIBD technique [J]. Surface and Coatings Technology, 2002, 154(2): 204–208.
    [156] Younggun Han, Donghwan Kim, Jun-Sik Cho, et al. Ultrafat indium tin oxide films prepared by ion beam sputtering [J]. Thin solid films, 2005, 473(2): 218-223
    [157] Fan J C C, Goodenough J B. X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films [J]. J. Appl. Phys., 1977, 48(8): 3524-3531
    [158] P. Thilakan ,J . Kumar. Studies on the preferred orienation changes and its influence properties on ITO thin film [J]. Vacuum, 1997, 48 (5): 463-466
    [159] V. Teixeira, H.N. Cui, L.J. Meng , et al. Amorphous ITO thin films prepared by DC sputtering for electrochromic applications [J]. Thin Solid Films, 2002, 420 –421(1-2): 70–75
    [160] B. A. Movchan and A. V. Demshishin. Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxdes [J]. Frz. Me’tMetalloved, 1969, 28(4): 653
    [161] John A. Thornton. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings [J]. J. Vac. Sci. Technol., 1974, 11(4): 666- 670
    [162] R. Messier, A.P. Girl and R.A. Roy. Revised structure zone model for thin film physical structure [J]. J. of Vac. Sci. Technol. A2, 1984, 2: 500-503
    [163] A. E. Rakhshani, y. Mkdisi, H. A. Ramazaniyan. Electronic and optical properties of fluorine-doped tin oxide films [J]. J. Appl. Phys., 1998, 83:1056
    [164] A. Shabbir, Bashar.Study of Indium Tin Oxide (ITO) for Novel Optoelectronic Devices [D]. Doctor paper of University of London. University of London ,1998
    [165] CHen Meng(陈猛), Pei Zhiliang(裴志亮), Bai Xue dong(白雪冬),et al.X-ray photoelectron spectroscopy studies of ITO thin films [J].J. of Inorganic Materials (无机材料学报), 2000, 15(1):191
    [166] Moulder J F ,Stickle W F ,Sobol P E ,et al. Handlbook of X-ray Photoelectron Spectroscopy [M]. Minnesota: Physical Electronics Inc , 1995.
    [167] 唐伟忠. 薄膜材料制备原理、技术及应用[M]. 北京:冶金工业出版社,1998, 5: 49-61
    [168] Minami T, Kakumu T, Shimokawa K, et al. New transparent conducting ZnO-In2O3-SnO2 thin films prepared by magnetron sputtering [J]. Thin Solid Films, 1998, 317(1-2):318-321
    [169] Drude P. Ann.. Theory of Optics [J]. Phys., 1900, 1(2): 566-568
    [170] Wen-Fa Wu, Bi-Shiou Chiou. Deposition of indium tin oxide films on polycarbonate substrates by radio-frequency magnetron sputtering [J]. Thin Solid Films, 1997, 298(1-2): 221-227
    [171] J. R. Bellingham, A.P. Kackenzie and W.A. Phillips.Precise measurements of oxygen content: oxygen vacancies in transparent conducting indium oxide films [J]. Appl. Phys. Lett., 1991,58(22): 2506-2508
    [172] R. A. Andrievski. Nanocrystalline Borides and Related Compounds [J]. Journal of Solid State Chemistry, 1997, 133(2): 249–253
    [173] Ching-Ming Hsu, Jin-Win Lee, Jan-Shin Chen, et al. Temperature effect on the character- istics of DC magnetron sputtered ITO films [J]. Proceedings of SPIE, 2002, 4918(1-2): 135-143
    [174] Higuchi M, Sawada and Y. Kuronuma. Microstructure and electrical characteristics of sputtered indium tin oxide films [J]. J. Elecrochem. Soc., 1993, 140(6): 1773-1775
    [175] 王力衡, 黄运添, 郑海涛. 薄膜技术 [M]. 清华大学出版社,1991 年 10 月第一版, p: 54-56
    [176] M. Tariq Bhatti, Anwar Manzoor Rana, Abdul Faheem Khan. Characterization of rf- sputtered indium tin oxide thin films [J]. Mate. Chem. & Phys., 2004, 84(1): 126–130
    [177] J. A. J. lourens, S. Arajs., H. F. Helberg, et al. Critical behavior of the electrical resistance of very thin Cr films [J]. Phys. Rev. B, 1988, 37(10): 5423-5425
    [178] V. Korobov, M. Leibovitch and Y. Shapira. Structure and conductance evolution of very thin indium oxide films [J]. Appl. Phys. Lett., 1994, 65(18): 2290-2292
    [179] T.J.Coutts. Thin Film Devices[M].London, New York: San Francisco Acad. Press, 1978: 57
    [180] T. C. Gorjanc, D. Leong, C.Py, et al. Room temperature deposition of ITO using r.f. magnetron sputtering [J]. Solid thin films, 2002, 413(1):181-185
    [181] M. Bender, W, Seeling, C. Daube, et al. Dependence of film composition and thicknesses on optical and electrical properties of ITO-Ag-ITO multilayers [J]. Thin Solid Films, 1998, 326 (1-2): 67-71
    [182] Yeon Sik Jung, Yong Won Choi, Ho Chul Lee, et al. Effects of thermal treatment on the electrical and optical properties of silver-based indium tin oxide ymetaly indium tin oxide structures [J]. Thin Solid Films, 2003, 440(1-2): 278–284.
    [183] S. Goshi, Hyunsoo Kim, Kwangpyo, Chongmu Lee. Microstructure of indium tin oxide films deposited on porous silicon by r.f.-sputtering [J]. Materials Science and Enginnering B, 2002, 95(2): 171-179
    [184] Edwin S. Raj, K. L. Choy. Microstructure and properties of indium tin oxide films produced by electrostatic spray assistant vapour deposition process [J]. Materials Chemistry and Physics, 2003, 82(3-4): 489-492
    [185] M. A. Aegerter and N. Al- Dahoudi. Wet-chemical processing of transparent and tantiglare conducting ITO coating on plastic substrates [J]. J. of Sol-Gel Science and Technolgy, 2003, 27(1): 81-89
    [186] X. W. Sun, H. C. Huang, and H. S. Kwork. On the initial growth of indium tin oxide on glass [J]. Appl. Phys. Lett., 1996, 68(19): 2663-2665
    [187] G. Leftheriotis, S. Papaefthimiou, P. Yianoulis. Development of multilayer transparentconductive coatings [J]. Solid State ionics, 2000, 136-137(1-2): 655-661.
    [188] G. Frank, E Kauer, H. Kostlin. Transparent Heat-Reflecting Coatings Based on Highly Doped Semiconductors [J].Thin Solid Films, 1981, 77(1-2): 107-177
    [189] J. Lua, A. Hultaker, G. A. Niklassona, et al. Microstructure of sputter deposited tin doped indium oxide films with silver additive [J]. Thin Solid Films, 2005, 479(1-2): 107-112
    [190] A. Kl?ppel, W. Kriegseis, B. K. Meyer, et al. Dependence of the electrical and optical behaviour of ITO-Ag-ITO multilayers on the silver properties [J]. Thin Solid Films, 2000, 365 (1-2): 139-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700