内蒙古兴安盟地区巴根黑格其尔铅锌多金属成矿区成矿机理及控矿因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴根黑格其尔铅锌多金属矿床位于内蒙古兴安盟地区,是一个以铅锌为主,兼含铁、铜等金属的多金属矿床。通过野外工作,可见二长斑岩同大理岩所接触,二者之间产生矽卡岩化并且可见矿体,可见闪锌矿、黄铜矿、方铅矿,脉石矿物主要有方解石、石榴石、萤石、石英、绿泥石等,因此可判断该矿床成矿类型之一为矽卡岩型。
     通过镜下岩石特征的鉴定,可以判断出在成矿区总共有四个组的岩石存在,包括满克头鄂博组(J3mk)、玛尼吐组(J3mn)、白音高老组(J3b)以及大石寨组(P1d),另外可见花岗斑岩和二长斑岩两种侵入岩可见,这两种酸性岩同矿体形成关系密切。
     通过对矿区内石英和碳酸盐包裹体的温度测试,石英中气液相流体包裹流体均一温度范围为190°~270°,大部分集中在210°~250°,平均温度为243.66°。碳酸盐中气液相流体包裹体均一温度为170°~230°,大部分集中在190°~230°,平均温度为206°。经野外观察可以判断,石英形成应早于矿体形成,碳酸盐应与成矿时间相当,该温度在一定程度上表明该矿床为中温条件下形成的矿床。而由δ18O-δD图解可得,石英和碳酸盐来源是由大气降水和岩浆水混合形成。从石英和碳酸盐中氢氧同位素δD-δ18O投图可得,形成顺序为石英→细粒碳酸盐→粗粒碳酸盐。
     同时,从硫铅同位素结果可知,①硫元素为幔源物质,侏罗纪末期区域,处于挤压阶段,大量火山岩形成,岩浆热液携带大量地幔以及中下地壳物质上升,后在大石寨组(P1d)蚀变安山岩内沉淀;岩浆岩携带Pb2+、Zn2+等阳离子沿北东向断裂上升,同大石寨组变质安山岩中大量S2-相结合,形成金属硫化物;②铅同位素数据,表明矿区硫化矿物中主要是来源于造山带,这同区域上大兴安岭地区所处的构造环境是相吻合的。另外,含有Pb2+的成矿流体应为矿区内所产出的花岗斑岩和二长斑岩等所带来,其来自于中下地壳,且受地幔影响。
     该矿床由于长期火山喷发时的火山热液携带了大量的成矿物质富集在火山碎屑岩及凝灰岩中,后期的热液淬取火山碎屑岩、凝灰岩中的成矿物质,沉淀而形成金属硫化物矿。根据矿床的产出、充填方式,矿石结构、构造特点,矿物及元素共生组合、典型蚀变,矿床类型为矽卡岩型以及中温热液蚀变型。
     燕山晚期花岗斑岩、二长斑岩等侵入岩侵入含矿岩性内部,矿体的形成与岩体有着密切的关系,分析认为矿床的形成时代为燕山晚期。其控矿因素主要为断层控矿和岩体控矿。
Bagenheigeqier lead-zinc polymetallic deposit lays in the Xing’an District, in the province of inner Mongolia, which is polymetallic deposit with lead and zinc mostly, iron and copper and so on. During the field work, ivernite keeps touch with the marble, and between both skarn happens with the ore. In the deposit, sphalerite, pyrite, galena can be seen, at the same time, gangue minerals conclude calcite, garnet, fluorite, quartz, chlorite and so on. So the conclusion that one forming type of the deposit is skarn deposit.
     With the help of the optical rock features, there are totally four groups of rocks in the deposit, including J3mk,J3mn, J3b and P1d. Granite porphyry and ivernite also outcrops in the district, which have the relationship with the deposit ore.
     During the temperature of fluid inclusion in the quartz and carbonate, the limit of the homogenization temperatures of quartz and carbonate are 190°~270°and 170°~230°, mostly 210°~250°and 190°~230°, and the average is 243.66°and 206°. During the field job, quartz forms latter than the ore, and carbonate is close to it, so, to some extent, the temperature indicates that this deposit formed in the moderate temperature condition. At the same time, according to theδ18O-δD diagram, quartz and carbonate are the results of the atmospheric precipitation and magmatic water, and from another diagram, the forming sequence can be judged that is quartz, fine-grain carbonate and coarse carbonate by the time.
     According to the sulfur-lead isotopic elements data, such conclusions can be drawn:①Sulfur element comes from mantle, when regional structural surrounding is compressing at Jurassic Period. Plenty of volcanic rocks form, while magmatic thermal which contains mantle and low-and-up crust matter upwell, and the matters precipitate in the altered andesite; magmatic rocks which contain Pb2+、Zn2+and other ions upwell along the N-E fracture, and then mix with the S2- in the altered andesite, so the metallic sulfide precipitate.②From the lead isotopic elements data, it’s the conclusion that the sulfides in the deposit district are coming from the orogenic belt, which is accorded with the fact that this regional structural background. The mineralizing fluid hosting the lead ion are supposed to get from the granite porphyry and ivernite in the deposit district, which comes from lower-middle crust and are influenced by the mantle.
     Long-time magmatic hydrothermal fluid containing so much mineralizing matter concentrating in the magmatic clastic rock and tuff, and latter hydrothermal fluid got the mineralizing matter, and then the metallic sulfide formed. According to the output, the style of the filling up, composition of the ore, and so on, the style of the deposit is skarn deposit and moderate hydrothermal alteration deposit,.
     Yanshan late period granite porphyry, ivernite and other intrusive rock intrude the ore-hosting rock, and the formation of the ore has close connection with the magmatic rocks. Analysis gets it that ord-forming period is Yanshan late period. The factor that controls the deposit is fault and rock mass.
引文
陈伟,李应栩,王硕,李政,薛怀民,童英,花敖包特银多金属矿矿床地质及成矿流体特征[J], 有色金属(矿山部分),2008(9),P32~37;
    程顺波,庞迎春,曹亮西,藏蒙亚啊矽卡岩铅锌矿床的成因探讨,华南地质与矿产,2008, P50~56;
    陈岳龙,杨忠芳,赵志丹,同位素地质年代学与地球化学,地质出版社,2005;
    陈岳龙,杨忠芳,赵志丹,同位素地质年代学与地球化学,2005,北京:地质出版社;
    冯佳睿,周振华,程彦博,云南南秧田钨矿床流体包裹体特征及其意义[J],岩石矿物学杂志,2010(1),P50~58;
    高景刚,梁婷,彭明兴,李玉林,王磊,高晓理,新疆彩霞山铅锌矿床硫碳氢氧同位素地球化学,地质与勘探,2007(9),P57~60;
    胡玲,显微构造地质学概论,1998,北京:地质出版社;
    韩润生,陈进,高德荣,黄智龙,马德云,李元,赵德顺,构造地球化学在隐伏矿定位预测中的应用,地质与勘探,2003,39(6),P25~28;
    何鸿,韦龙明,张寿庭,高阳,徐毅,陕西八卦庙金矿床成矿流体He、Ar、H、O同位素特征[J],黄金,2009(8),P9~11;
    冷成彪,张兴春,吴孔文,王守旭等,滇西北雪鸡坪斑岩铜矿S, Pb同位素组成及对成矿物质来源的示踪,矿物岩石,2008(12),P80~88;
    卢焕章,范宏瑞,倪培等,流体包裹体,2005,北京:科学出版社;
    梁婷,王登红,蔡明海,陈振宇,郭春丽,黄惠民,广西大厂锡多金属矿床S,Pb同位素组成
    对成矿物质来源的示踪,地质学报,2008(7),P967~977;
    李述靖,张维杰,耿明山,等.蒙古弧地质构造特征及形成演化概论[M] .北京:地质出版社,1998. 145.
    刘建明,张锐,张庆洲,大兴安岭地区的区域成矿特征,地学前缘,2004,11(1),P269~277;
    林培英,晶体光学与造岩矿物,2005,北京:地质出版社;
    李晶,陈衍景,李强之,毛世东,秦艳,郭俊华,南争路,杨荣生,甘肃阳山金矿碳氢氧同位素与成矿流体来源,岩石学报,24(4),P817~824;
    牟保磊,邵济安,王关玉,阎国翰,艾永富,与低18O岩浆有关的矽卡岩型铅锌矿床,科学通报,1997(8),P1658~1660;
    任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3) :85~93.
    邵济安,刘福田,陈辉,韩庆军,大兴安岭一燕山晚中生代岩浆活动与俯冲作用关系,地质学报,2001(2),P56~62;
    邵济安,张履桥,大兴安岭中生代仲展造山过程中的岩浆作用,地学前缘(中国地质大学,北京),1999(10),P339~346;
    邵积东,陶继雄,李四娃等,大兴安岭成矿带找矿工作新进展,地质通报,2009(7);
    邵军,王世称,马晓龙等,大兴安岭北段金、多金属矿床区域成矿特征,吉林大学学报(地球科学版),2003,33(1),P32~36;
    王莉娟,王京彬,王玉社,李铁军,岛崎英彦,内蒙古东部与夕卡岩型矿床有关的花岗岩氧同位素
    特征—以浩布高矿床为例,地质论评,2004,P513~514;
    王守旭,张兴春,冷成彪等,中甸红山矽卡岩铜矿稳定同位素特征及其对成矿过程的指示,岩石学报,2008,24(3),P480~488;
    万天丰,中国大地构造学纲要,地质出版社,2004,;
    薛春纪,祁思敬等,基础矿床学, 2007,北京:地质出版社;
    俞中辉,祝新友,童随友,宋建冶,汪东波,卫治国,西成地区铅锌矿、金矿硫铅同位素特征及成矿关系的研究,矿产与地质,2008(6),P196~203;
    曾庆栋,刘铁兵,沈远超,李光明,申萍,阿尔泰东南缘布尔根地区造山带型金矿床硫铅同位素特征及地质意义,岩石学报,23(8),P2017~2025;
    赵珊茸等,结晶学及矿物学,高等教育出版社,2005;
    张乾,潘家永,论接触交代矽卡岩型多金属矿床的矿质来源以铅同位素组成为依据,矿物学报,1994(4),P144~158;
    郑翻身,蔡红军,张振法,内蒙古拜仁达坝维拉斯托超大型银铅锌矿的发现及找矿意义,物探化探,2006(2),P13~20;
    赵一鸣,矽卡岩矿床研究的某些重要新进展,矿床地质,2002,21(2),P113~120;
    周维屏,陈克强,简人初等,1992,北京中国地质大学出版社;
    Bodo Weber. Margarita Lo′pez Mart?′nez, Pb, Sr, and Nd isotopic and chemical evidence for a primitive island arc emplacement of the El Arco porphyry copper deposita (Baja California, Mexico), Mineralium Deposit (2006) 40: 707–725;
    Doe BR, Zartman RE (1979) Plumbotectonics. In: Barnes HL (eds) Geochemistry of hydrothermalore deposits, 3rd edn. Wiley, New York, pp 22–70;
    Eduardo González-Partida, Antoni Camprubí,Evolution of mineralizing fluids in the Zn–Pb–Cu(–Ag±Au) skarn and epithermal deposits of the world-class San Martín district,Zacatecas, Mexico, Journal of Geochemical Exploration,2006,138~142;
    Hedenquist, JW,Arribas A, Reynolds TJ.1998b.Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4):373一404;
    Martina Bertelli, Timothy Baker, James S. Cleverley, Thomas Ulrich, Geochemical modelling of a Zn-Pb skarn: Constraints from LA–ICP–MS analysis of fluid inclusions, Journal of Geochemical Exploration,2009,13~26;
    Rubin, J.N., Kyle, J.R., 1988. Mineralogy and geochemistry of the San Martín skarn deposit, Zacatecas, Mexico. Economic Geology 83,1782–1792;
    Shimazaki, H and Kusakabe, M., 1990. Oxygen isotope study of the Kamioka Zn-Pb skam deposits, central Japan. Mineral. Deposita.25: 221-229;
    Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet Sci Lett26:207–221;
    Yasumasa Fukahori, He Peiming, Wakaba Sakurai ,Hidehiko Shimazaki, Yukihiro Matsuhisa, Oxygen and carbon isotope zonations of Kamioka Pb-Zn skarn deposits, central Prospecting wall rocks around the Japan: application to Koh Naito, Journal of Geochemical Exploration, 1995:199~211;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700