半导体异质结中的电子迁移率及其压力效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用记忆函数法,分别以Ⅲ-Ⅴ族异质结半导体和Ⅱ-Ⅵ族应变型异质结半导体为研究对象,从理论上讨论半导体单异质结中平行界面方向的电子迁移率及其压力效应.
     首先以Ⅲ-Ⅴ族Al_xGa_(1-x)As/GaAs异质结为研究对象,考虑有限深势垒与导带弯曲的实际异质结势的影响,同时计入电子向异质结势垒层的隧穿效应,利用变分法和记忆函数法,讨论在体纵光学声子(LO)和界面光学声子(IO)的散射下,界面附近电子迁移率随温度、Al组分和电子面密度的变化关系及其压力效应.结果显示:电子迁移率随温度、压力的增加而减小;随Al组分和电子面密度的增加而非线性增加.且两种光学声子的散射作用均随压力增强,IO声子的变化幅度更为显著.同时发现,在光学声子散射下,电子迁移率随Al组分的缓慢增加,主要是由IO声子决定的;而电子迁移率随电子面密度增加的变化则由LO声子决定.
     为进一步深入讨论异质结中电子的带间散射提供依据,采用三角势近似异质结的导带弯曲效应,通过数值计算方法求解薛定谔方程,研究流体静压力影响下有限深势垒ZnSe/Zn_(1-x)Cd_xSe应变异质结的本征态问题,同时与无应变的情形进行了比较分析.发现平面双轴应变使电子的能级降低,能级间距减小,且静压效应加剧了该下降趋势.同时,应变导致波函数的隧穿几率增加.
     在上述工作的基础上,进一步改进理论模型:同时考虑沟道区及垒区存在自由应变时对半导体物理参数的调制作用,以及运用简化相干势近似(SCPA)计算Ⅱ-Ⅵ族三元混晶效应,讨论Cd组分、电子面密度的改变对电子本征态的影响.结果显示,随着Cd组分的增大,能级和能级间距增大,波函数隧穿进入垒区的几率逐渐减小。而且发现,随着电子面密度的增大,波函数隧穿几率增加,同时本征能量也随之增大,而能级间距逐渐减小.
     基于已有应变异质结中电子本征态的研究结果,以Ⅱ-Ⅵ族ZnSe/Zn_(1-x)Cd_xSe异质结为研究对象,采用三角势近似并计入有限深势垒的限制效应,运用记忆函数方法,研究光学声子作用下应变异质结体系中电子的迁移率及其压力效应,分别讨论了带内散射及带间散射对迁移率的贡献.结果表明:内部平面双轴应变效应降低电子的迁移率,且外部流体静压力加剧了这种下降趋势.因此,讨论电子在应变型异质结构中的散射问题时,需要计入材料间由于晶格不匹配而产生的应变效应的影响.同时发现,电子迁移率的变化主要来自于沟道区LO声子的贡献.另外,带间散射和带内散射对于压力条件下的电子迁移率同样重要,而不容忽略.
In this thesis,a memory function approach(MFA) is adopted to discuss theoretically the electron mobility parallel to the interfaces in heterojunctions consisting ofⅢ-Ⅴgroup semiconductors and in strained heterojunctions consisting ofⅡ-Ⅵgroup semiconductors,and the pressure effect on the mobility is also been investigated.
     Firstly,a variational method and the MFA are adopted to investigate the electron mobility in an Al_xGa_(1-x)As/GaAs heterojunction composed ofⅢ-Ⅴgroup materials under pressure effect by considering the scattering from LO and IO phonons.The influence of a realistic interface potential in a heterojunction with a finite barrier and conduction band bending are taken into account.Meanwhile,the tunneling of electrons into the barrier is also considered.The properties of electron mobility versus temperature,Al concentration and electronic density are given and discussed, respectively.The results show that the electron mobility decreases obviously as the increase of temperature and pressure,whereas increases nonlinearly with A1 concentration and electronic density.The scatterings from the IO and LO phonons increase with pressure and the former becomes more obvious than the latter. Furthermore,the variation of electron mobility with A1 concentration and electronic density are dominant by the IO and LO phonons,respectively.
     Secondly,for the further discussion of the intersubband scattering of electrons in heterojunctions,the eigenvalues of an electron and its corresponding eigenfunctions in a ZnSe/Zn_(1-x)Cd_xSe strained heterojunction with a finite barrier under hydrostatic pressure are obtained by solving the Schrodinger equation.A triangle potential approximation is adopted and the electronic penetrating into the barrier is also taken into account.The numerical results with and without strain effect are compared and analyzed.It is shown that the strain lowers the electronic eigen-energy levels and decreases the seperations between the energy-levels,and pressure effect strengthens this tendency of the drop.Meanwhile strain enhances the penetration probability of eigenfunctions.
     On the basis of above discussion,the theoretical model is improved to consider the effect of the free strain on both the barrier and the channel side,at the same time, a simplified coherent potential approximation(SCPA) is adopted to calculate the parameters of the ternary mixed crystals composed ofⅡ-Ⅵgroup materials.The Cd concentration and the electronic density influence,,;on the eigenstates of the electrons are discussed,respectively.The results indicate that the electronic eigen-energy levels and its seperations increase while the penetration probability of eigenfunctions decreases with increase of Cd concentration.Moreover,the eigen-energy levels and the penetration probability increase while the seperations between the energy-levels decrease with the electronic density.
     Lastly,based on the results of the ZnSe/Zn_(1-x)Cd_xSe strained heterojunction composed ofⅡ-Ⅵgroup materials,the electron mobility parallel to the interface under hydrostatic pressure is investigated with the MFA by considering the intersubband and intrasubband scatterings from the optical phonons.A triangle potential approximation is adopted to simplify the potential of the conduction band bending and the electronic penetrating into the barrier is considered by a finite interface potential in our model.It is shown that the strain effect lowers the mobility of electrons while the hydrostatic pressure effect is more obvious to decrease the mobility.The contribution induced by the LO phonons in the channel side is dominant to decide the mobility.Compared with the intrasubband scattering,the effect of intersubband scattering is also important and is not negligible for the material studied.Thus,it indicates that the biaxial strain effect needs to be considered when one discusses the scattering problems of an electron in a strained heterojunction.
引文
[1]钱佑华,徐至中.半导体物理.北京:高等教育出版社,2002.
    [2]Fuchs R,Kliever K L.Optical modes of vibration in an ionic crystal slab.Phys.Rev.,1965,140(6A):A2076-A2088.
    [3]Wendler L.Electron-phonon interaction in dielectric bilayer systems.Phys.Stat.Sol.(b),1985,129(2):513-520.
    [4]Hasbun J E.Electron mobility in two-dimensional modulation-doped In_(1-x)Al_xAs/In_(1-y)Ga_yAs alloy systems.Phys.Rev.B,1995,52(16):11989-11997.
    [5]Bannov N A,Aristov V A,Mitin V.Electron momentum relaxation time and mobility in a free-standing quantum well.J.Appl.Phys.,1995,78(9):5503-5510.
    [6]Thranhardt A,Ell C,Mosor S,et al.Interplay of phonon and disorder scattering in semiconductor quantum wells.Phys.Rev.B,2003,68(3):035316-1-9.
    [7]Inoue K,Matsuno T.Electron mobilities in modulation-doped Al_xGa_(1-x)As/GaAs and pseudomorphic Al_xGa_(1-x)As/In_yGa_(1-y)As quantum-well structures.Phys.Rev.B,1993,47(7):3771-3778.
    [8]Mukhopadhyay S,Nag B R.Intrinsic electron mobility in narrow Ga_(0.47)In_(0.53)As quantum wells.Phys.Rev.B,1993,48(24):17960-17966.
    [9]Gaska R,Shur M S,Bykhovski A D,et al.Electron mobility in modulation-doped AlGaN-GaN heterostructures.Appl.Phys.Lett.,1999,74(2):287-289.
    [10]Babinski Adam,Siwiec-Matuszyk J,Baranowski J M,et al.Transport and quantum electron mobility in a modulation Si δ-doped pseudomorphic GaAs/In_(0.2)Ga_(0.8)As/Al_(0.2)Ga_(0.8)As quantum well grown by metalorganic vapor phase epitaxy.Appl.Phys.Lett.,2000,77(7):999-1001.
    [11]Xue Y Q,Ratner M A.Microscopic study of electrical transport through individual molecules with metallic contacts.I.Band lineup,voltage drop,and high-field transport.Phys.Rev.B,2003,68(11):115406-1-18.
    [12]Mazon K T,Hai G Q,Lee M T,et al.Low-temperature electron mobilities due to ionized-impurity scattering in multisubband two-dimensional semiconductor systems.Phys.Rev.B,2004,70(19):193312-1-4.
    [13]Bierwagen O,Pomraenke R,Eilers S,et al.Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements.Phys.Rev.B,2004,70(16):165307-1-6.
    [14]Lei X L,Ting C S.Theory of nonlinear electron transport for solids in a strong electric field.Phys.Rev.B,1984,30(8):4809-4812.
    [15]Lei X L,Birman J L,Ting C S.Two-dimensional balance equations in nonlinear electronic transport and application to GaAs-GaAlAs heterojunctions.J.Appl.Phys.,1985,58(6):2270-2279.
    [16]Lei X L,Ting C S.Green's-function approach to nonlinear electronic transport for an electron-impurity-phonon system in a strong electric field.Phys.Rev.B,1985,32(2):1112-1132.
    [17]Ting C S,Nee T W.Quantum theory of transient transport in an interacting system of electrons,impurities,and phonons.Phys.Rev.B,1986,33(10):7056-7068.
    [18]雷啸霖.平衡方程输运理论与电子关联.物理,1995,24(5):273-279.
    [19]Anderson D R,Zakhleniuk N A,Babikcr M,et al.Polar-optical phonon-limited transport in degenerate GaN-based quantum wells.Phys.Rev.B,2001,63(24):245313-1-7.
    [20]Zakhleniuk N A,Bennett C R,Babiker M,et al.The bloch-Gruneisen mobility of two-dimensional electron gas in AIGaN/GaN heterostructures.J.Appl.Phys.,1999,75(11):1565-1567.
    [21]雷啸霖.半导体输运的平衡方程方法.上海:上海科学出版社,2000.
    [22]郁伟中,杨鹏远,杨劲辉,等.用蒙特卡罗方法计算砷化镓中的正电子迁移率.核技术,1998,21(2):65-67.
    [23]王同权,张树发,王尚武,等.电子在材料中输运的蒙特卡罗模拟.国防科技大学学报,2000,22(1):81-84.
    [24]Hasbun J E.Resonant structure in the conductivity of two-dimensional heterojunction systems: A memory function approach.J.Appl.Phys.,1994,75(1):270-279.
    [25]董正超,胜利,邢定钰,等.金属薄膜的量子输运理论.物理学报,1997,46(3):568-578.
    [26]Anderson R L.Germanium-gallium arsenide heterojunctions.IBMJ.Res.Develop.,1960,4(3):283-287.
    [27]Hayashi I,Panish M,Foy P.A low-threshold room-temperature injection laser.IEEE Journal of Quantum Electronics,1969,5(4):211-212.
    [28]Dingle R,Stormer H L,Gossard A C,et al.Electron mobilities in modulation-doped semiconductor heterojunction superlattices.Appl.Phys.Lett.,1978,33(7):665-667.
    [29]夏建白,朱邦芬.半导体超晶格物理.上海:上海科学技术出版社,1995.
    [30]夏建白.半导体的输运过程.物理,1996,25(7):403-408.
    [31]彭英才.低维半导体结构中的电子输运.固体电子学研究与进展,1996,16(2):126-132.
    [32]Wendler L,Pechstedt R.Dynamical screening collective excitations,and electron-phonon interaction in heterostructures and semiconductor quantum wells.Phys.Stat.Sol.(b),1987,141:129-150.
    [33]Mori N,Ando T.Electron-optical-phonon interaction in single and double heterostructures.Phys.Rev.B,1989,40(9):6175-6188.
    [34]Lei X L,Horing N J M,Zhang J Q.Balance-equation analysis of linear and nonlinear electronic transport in quasi-two-dimensional quantum-well superlattices.Phys.Rev.B,1986,34(2):1139-1147.
    [35]Lei X L,Zhang J Q,Birman J L,et al.Hot-electron transport in GaAs-AlGaAs heterojunctions.Phys.Rev.B,1986,33(6):4382-4385.
    [36]Hai G Q,Peeters F M,Devreese J T.Electron optical-phonon coupling in GaAs/Al_xGa_(1-x)As quantum wells due to interface,slab,and half-space modes.Phys.Rev.B,1993,48(7):4666-4674.
    [37]Ban S L,Liang X X,Zheng R S.Influence of interface phonons on a polaron near a polar semiconductive heterointerface.Phys.Lett.A,1994,192(1):110-116.
    [38]Ban S L,Hasbun J E.Bound polaron in a polar semiconductor heterojunction.Phys.Rev.B,1999,59(3):2276-2283.
    [39]Mendez E E,Price P J,Heiblum M.Temperature dependence of the electron mobility in GaAs-GaAlAs heterostructures.Appl.Phys.Lett.,1984,45(3):294-296.
    [40]Basu P K,Partha R.Calculation of the mobility two-dimensional excitons in a GaAs/Al_xGa_(1-x)As quantum well.Phys.Rev.B,1991,44(4):1844-1849.
    [41]Hillmer H,Forchel A,Tu C W.Enhancement of electron-hole pair mobilities in thin GaAs/Al_xGa_(1-x)As quantum wells.Phys.Rev.B,1992,45(3):1240-1245.
    [42]Tutor J,Bermudez J A,Comas F.Electron drift mobility in a Si-Ge_(1-x)Si_x quantum well at low temperatures.Phys.Rev.B,1993,47(7):3690-3694.
    [43]黄骁虎,阮刚.适用于宽温带范围和不同沟槽掺杂浓度的MOSFET反型层载流子迁移率模型.半导体学报,1994,15(3):180-187.
    [44]Bannov N,Aristov V,Mitin V.Temperature dependence of electron mobility in a free-standing quantum well.Sol.Stat.Commun.,1995,93(6):483-486.
    [45]Fletcher R,Feng Y,Foxon C T,et al.Electron-phonon interaction in a very low mobility GaAs/Ga_(1-x)Al_xAs δ-doped gated quantum well.Phys.Rev.B,2000,61(3):2028-2033.
    [46]Hasbun J E,Ban S L.Optical-phonon scattering in quasi-two-dimensional heterojunction systems.Phys.Rev.B,1998,58(4):2102-2106.
    [47]Pozela J,Namajunas A,Pozela K,et al.Polar optical phonon confinement and electron mobility in quantum wells.Physica E,1999,5(1-2):108-116.
    [48]孔月婵,郑有炓.Ⅲ族氮化物异质结构二维电子气研究进展.物理学进展,2006,26(2):127-145.
    [49]陶春旻,陶亚奇,陈诚,等.AlGaN/GaN异质结构二维电子气的高温输运性质.半导体学报,2006,27(7):1251-1254.
    [50]Hwang J C M,Kastalsky A,Stormer H L,et al.Transport properties of selectively doped GaAs-(AlGa)As heterostructures grown by molecular beam epitaxy.Appl.Phys.Lett.,1984,44(8):802-804.
    [51]Jahn U,Ramsteiner R,Hey R,et al.Effective exciton mobility edge in narrow quantum wells.Phys.Rev.B,1997,56(8):R4387-R4390.
    [52]Sahu T,Patnaik J.Electron transport mobility in a δ-doped double quantum well structure.J.Appl.Phys.,2000,88(5):2658-2664.
    [53]Farvacque J L,Bougrioua Z.Carrier mobility versus carrier density in Al_xGa_(1-x)N/GaN quantum wells.?hys.Rev.B,2003,68(3):035335-1-7.
    [54]Gold A.Mobility of thin AlAs quantum wells:Theory of compared to experiment.Appl.Phys. Lett.,2008,92(8):082111-1-3.
    [55]Mazon K T,Hai G Q,Lee M T,et al.Low-temperature mobilities due to ionized-impurity scattering in multisubband two-dimentional semiconductor systems.Phys.Rev.B,2004,70(19):193312-1-4.
    [56]Hsu L,Jones R E,Li S X,et al.Electron mobility in InN and Ⅲ-N alloys.J.Appl.Phys.,2007,102(7):070305-1-6.
    [57]Wang X F,da Cunha Lima I C,Lei X L.Electron mobility in a GaAs/AlAs quantum well with a thin AlAs middle barrier.Phys.Rev.B,1998,58(19):12609-12612.
    [58]Xie J,Leach J H,Ni X,et al.Electron mobility in InGaN channel heterostructure field effect transistor structures with different barriers.Appl.Phys.Lett.,2007,91(26):262102-1-3.
    [59]Pokatilov E P,Nika D L,Zincenco N D,et al.Electron-polar optical phonon scattering suppression and mobility enhancement in wurtzite heterostructures.J.Phys.:Conference Series,2007,92:012050-1-4.
    [60]Ridley B K,Foutz B E,Eastman L F.Mobility of electrons in bulk GaN and Al_xGa_(1-x)N/GaN heterostructures.Phys.Rev.B,2000,61(24):16862-16869.
    [61]Hoshino K,Someya T,Arakawa Y.Structure dependence of electron mobility GaN/AlGaN multiple quantum wells.Phys.Stat.Sol.(a),2001,188(2):877-880.
    [62]Gurusinghe M N,Davidsson S K,Andersson T G.Two-dimensional electron mobility limitation mechanisms in Al_xGa_(1-x)N/GaN heterostructures.Phys.Rev.B,2005,72(4):045316-1-11.
    [63]Farvacque J L,Carosella F.Intrinsic free carrier mobility of quantum wells polar materials.Phys.Rev.B,2005,72(12):125344-1-9.
    [64]Osboum G C.Strained-layer superlattices from lattice mismatched materials.J.Appl.Phys.,1982,53(3):1586-1589.
    [65]Lozykowski H J,Shastri V K.Excitonic and Raman properties of ZnSe/Zn_(1-x)Cd_xSe strained-layer quantum wells.J.Appl.Phys.,1991,69(5):3235-3242.
    [66]Cingolani R,Prete P,Greco D,et al.Exciton spectroscopy in Zn_(1-x)Cd_xSe/ZnSe quantum wells.Phys.Rev.B,1995,51(8):5176-5183.
    [67]Hsieh C H,Huang Y S,Ho H C,et al.Temperature dependence of the band-edge transitions of ZnCdBeSe.Japanese Journal of Applied Physics,2004,43(2):459-466.
    [68] Choi S S, Bae I H. Temperature dependence of the photovoltage spectra for a ZnCdSe/ZnSe single quantum well structure. Journal of the Korean Physical Society, 2005, 46(4): 913-917.
    [69] Shahzad K, Olego D J, Walle C G Van de. Optical characteration and band offsets in ZnSe-ZnS_xSe_(1-x) strained-layer superlattices. Phys. Rev. B, 1988,38(2): 1417-1426.
    [70] Tuchman J A, Kim S, Sui Z F, et al. Exciton photoluminescsnce in strained and unstrained ZnSe under hydrostatic pressure. Phys. Rev. B, 1992, 46 (20) 13371-13378.
    [71] Pelekanos N T, Ding J, Hagerott M, et al. Quasi-two-dimensional excitons in (Zn,Cd)Se/ZnSe quantum wells: Ruduced exciton-LO-phonon coupling due to confinement effects. Phys. Rev. B, 1992, 45(11): 6037-6042.
    [72] Dinger A, Goppert M, Becker R, et al. Lattice dynamics of CdS/ZnSe strained layer superlattices studied by Raman scattering. Phys. Rev. B, 2001, 64(24): 245310-1-8.
    [73] Guo Z Z, Liang X X, Ban S L. Pressure-induced increase of exciton-LO-phonon coupling in a ZnCdSe/ZnSe quantum well. Phys. Stat. Sol. (b), 2003, 238(1): 173-179.
    [74] Reparaz J S, Goni AR, Alonso M I, et al. Size-dependent strain effects in self-assembled CdSe quantum dots with Zn_(0.38)Cd_(0.23)Mg_(0.39)Se barriers. Appl. Phys. Lett., 2006, 89(23): 231109-1-3.
    [75] Meulenberg R W, Jennings T, Strouse G. Compressive and tensile in colloidal CdSe semiconductor quantum dots. Phys. Rev. B, 2004, 70(23): 235311-1-5.
    [76] Lee J, Spector H N, Chou W C, et al. Optical absorption coefficient of quantum wires in strain and electric fields with intermixing interfaces. Phys. Rev. B, 2005, 72(12): 125329-1-11.
    [77] Skierbiszewski C, Perlin P, Wisniewski P, et al. Effect of nitrogen-induced modification of the conduction band structure on electron transport in GaAsN alloys. Phys. Stat. Sol. (b), 1999, 216(135): 135-139.
    [78] Sukumar B, Navaneethakrishnan. Effect of the dielectric function and pressure on the binding energies of excitons in GaAs and GaAs/Ga_(1-x)Al_xAs superlattices. Sol. Stat. Commun., 1990, 76(4): 561-564.
    [79] Goni A R, Syassen K, Cardon M. Effect of pressure on the refractive index of Ge and GaAs. Phys. Rev.B, 1990,41(14): 10104-10110.
    [80] Yu X L, Ban S L. Cyclotron resonance of a polaron in a real(?)stic heterojunction and its pressure effect. Eur. Phys. J. B, 2006, 52: 483-491.
    [81] Zi Jian, Zhang Kaiming, Xie Xide. Structural and vibrational properties of (Si)_4/(Ge)_4 superlattices.Phys.Rev.B,1990,41(18):12862-12868.
    [82]Lefebvre P,Gil B,Mathieu H.Effect of hydrostatic pressure on GaAs-Ga_(1-x)Al_xAs microstructures.Phys.Rev.B,1987,35(11):5630-5634.
    [83]Reimann K,Holtz M,Syassen K,at el.Pressure dependence of the indirect band gap of Al_xGa_(1-x)As alloys(x=0.70 and 0.92) at low temperature.Phys.Rev.B,1991,44(7):2985-2990.
    [84]Holtz M,Seon M,Brafman O,et al.Pressure dependence of the optic phonon energies in Al_xGa_(1-x)As.Phys.Rev.B,1996,54(12):8714-8720.
    [85]Thomas R J,Chandrasekhar H R,Chandrasekhar M,et al.Hydrostatic-pressure studies of confined transitions in cubic Zn_(1-x)Cd_xSe/ZnSe strained-layer quantum wells.Phys.Rev.B,1992,45(16):9505-9508.
    [86]Andre R,Cibert J,Dang Le Si.Nonlinear piezoelectricity:The effect of pressure on CdTe.Phys.Rev.B,1992,53(11):6951-6954.
    [87]Mccluskey M D,Haller E E,Walker J,et al.Local vibrational modes in GaAs under hydrostatic pressure.Phys.Rev.B,1997,56(11):6404-6407.
    [88]Abbar B,Bouhafs B,Aourag H,et al.First-principles calculations of optical properties of AlN,GaN,and InN compounds under hydrostatic pressure.Phys.Stat.Sol.(b),2001,228(2):457-460.
    [89]Wagner J M,Bechstedt F.Pressure dependence of the dielectric and lattice-dynamical properties of GaN and AlN.Phys.Rev.B,2000,62(7):4526-4534.
    [90]Campos C E M,Lima J C de,Grandi T A,et al.Pressure-induced phase transition of nanocrystalline ZnSe.J.Phys.:Condens.Matter,2005,17:5187-5200.
    [91]Reparaz J S,Goni A R,Alonso M I,et al.Size-dependent strain effects in self-assembled CdSe quantum dots with Zn_(0.38)Cd_(0.23)Mg_(0.39)Se barriers.Appl.Phys.Lett.,2006,89:231109-1-3.
    [92]Ban S L,Liang X X.Pressure effect on the binding energies of donors in GaAs/Al_xGa_(1-x)As heterojunctions.J.Lumin.,2001,94-95:417-420.
    [93]Yan Z W,Ban S L,Liang X X.Effect of electron-phonon interaction on surface states in zinc-blend GaN,AlN,and InN under pressure.Eur.Phys.J.B,2003,35(1):41-47.
    [94]Yan Z W,Ban S L,Liang X X.Presure dependence of electron-IO-phonon interaction in multi-interface heterostructure systems.Int.J.Mod.Phys.B,2003,17(31-32):6085-6096.
    [95]Guo Z Z,Liang X X,Ban S L.Pressure tuning of strains in Zn_(1-x)Cd_xSe/ZnSe single quantum wells.Phys.Lett.A,2002,306:160-165.
    [96]Guo Z Z,Liang X X,Ban S L.Interface excitons in a type- Ⅱ ZnSe/ZnTe heterojunction under hydrostatic pressure:The triangle potential well approximation.Phys.Scr.,2006,73:137-142.
    [97]Zhao G J,Liang X X,Ban S L.Binding energies of donors in quantum wells under hydrostatic pressure.Phys.Lett.A,2003,319(1-2):191-197.
    [98]Zhao G J,Liang X X,Ban S L.Binding energies of excitons in GaAs/AlAs quantum well under pressure.Modern Physics Letters B,2003,17(16):863-870.
    [99]Hao G D,Ban S L,Jia X M.Pressure effect on the electron mobility in AlAs/GaAs quantum wells.Chin.Phys.,2007,16(12):3766-3771.
    [100]Xu Gangyi,Li Aizhen.Interface phonons in the active region of a quantum cascade laser.Phys.Rev.B,2005,71(23):235304-1-9.
    [101]Savic Ivana,Ikonic Zoran.Electron transport in quantum cascade lasers in a magnetic field.Phys.Rev.B,2006,73(7):075321-1-8.
    [102]Jin S R,Ahmad C N,Sweeney S J,et al.Spectroscopy of GaAs/AlGaAs quantum-cascade lasers using hydrostatic pressure.Appl.Phys.Lett.,2006,9(22):221105-1-3.
    [103]Rajakarunanayake Y,Miles R H,Wu G Y,et al.Band structure of ZnSe-ZnTe superlattices.Phys.Rev.B,1988,37(17):10212-10215.
    [104]Ting D Z Y,Chang Y C.F -X mixing in GaAs/Al_xGa_(1-x)As and Al_xGa_(1-x)As/AlAs superlattices.Phys.Rev.B,1987,36(8):4359-4374.
    [105]Anderson O L.The use of ultrasonic measurements trader modest pressure to estimate compression at high pressure.J.Phys.Chem.Solids,1966,27(3):547-565.
    [106]Cerdeira F,Buchenauer C J,Pollak F H,et al.Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors.Phys.Rev.B,1972,5(2):580-593.
    [107]Menendez J,Pinczuk A,Valladares J P,et al.Resonance Raman scattering in CdTe-ZnTe superlattices.Appl.Phys.Lett.,1987,50(16):1101-1103.
    [108]白鲜萍,班士良.Al_xGa_(1-x)As/GaAs异质结中电子迁移率的压力效应.半导体学报,2005,26(12):2422-2427.
    [109]Bai X P,Ban S L.Electron mobility for a model Al_xGa_(1-x)As/GaAs heterojunction under pressure.Eur.Phys.J.B,2007,58(1):31-36.
    [110]Adachi S.GaAs,AlAs,and Al_xGa_(1-x)As:Material parameters for use in research and device applications.J.Appl.Phys.,1985,58(3):R1-R28.
    [111]Lam P K,Cohen M L,Martinez G.Analytic relation between bulk moduli and lattice constants.Phys.Rev.B,1987,35(17):9190-9194.
    [112]宋荣利.线性斜量子阱Al_xGa_(1-x)As中的电子态.半导体杂志,2000,25(1):27-30.
    [113]贺利军,程兴奎,李华,等.GaAs/AlGaAs超晶格微带带宽的计算.半导体学报,2006,27(1):59-62.
    [114]王福明,贺正辉,索瑾.应用数值计算方法.北京:科学出版社,1992.
    [115]白鲜萍,班士良.静压下ZnSe/Zn_(1-x)Cd_xSe应变异质结中电子的本征态.内蒙古大学学报(自然科学版),2007,38(6):621-626.
    [116]Sing J.Quantum mechanics.London:John Wiley & Sons,1997.
    [117]Tuchman J A,Herman I P.General trends in changing epilayer strains through the application of hydrostatic pressure.Phys.Rev.B,1992,45(20):11929-11935.
    [118]Ban S L,Hasbun J E.Interface polarons in a realistic heterojunction.Eur.Phys.J.B,1999,8:453-461.
    [119]Camphausen D L,Connell G A N,Paul W.Calculation of energy-band pressure coefficients from the dielectric theory of the chemical bond.Phys.Rev.Lett.,1971,26(4):184-188.
    [120]Puls J,Rabe M,Siarkos A,et al.Excitonic properties of ZnSe/(Zn,Mg) Se quantum wells:a model study of the tensile-strain situation.Phys.Rev.B,1998,57(23):14749-14757.
    [121]Gavin A,Cardona M.Modulated piezoreflectance in semiconductors.Phys.Rev.B,1970,1(2):672-682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700