朱砂根和树豆叶的化学成分及抗肿瘤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是当前危害人类健康的重大疾病之一。其死亡率之高,已跃居所有死亡病因的第二位。肿瘤治疗的主要手段是化学药物的治疗,简称化疗。肿瘤化疗药物主要有合成药物和天然药物。合成的抗肿瘤药物中,许多都是以天然抗肿瘤活性成分为先导化合物发展起来的,我国的药用植物资源丰富,从中草药中寻找有效的天然抗肿瘤活性成分作为肿瘤化疗药物先导化合物,具有明显的优势。
     本学位论文旨在研究发现天然抗肿瘤药物活性先导化合物。由两部分组成。
     第一部分朱砂根中百两金皂苷A的分离鉴定、批量制备及抗肿瘤作用研究
     研究背景和目的
     作者通过前期的试验和文献调研,认为中药朱砂根(Ardisia crenata Sims.)中的三萜皂苷类化合物百两金皂苷A、B (ardisiacrispin A, B)及其结构类似物具有明显的抗肿瘤药效;鉴于文献主要集中在朱砂根皂苷的体外抗肿瘤药理研究方面,本课题对朱砂根三萜皂苷类化合物进行分离鉴定,开展毒理学和体外体内抗肿瘤活性研究,为考察百两金皂苷A类似物作为抗肿瘤药物先导化合物的可行性提供实验依据。
     研究方法
     (1)利用正相硅胶、MCI、反相ODS等柱层析手段,从朱砂根的正丁醇部位中分离皂苷类化合物;采用MS、1H-NMR、13C-NMR等波谱学方法鉴定化学结构。
     (2)采用MTT法检测百两金皂苷A对多种人肿瘤细胞株和人非肿瘤细胞株的细胞毒性作用,利用瑞氏-吉姆萨染色法和流式细胞仪检测了百两金皂苷A对HCT-15细胞凋亡和细胞周期的影响。
     (3)首次完成了化合物百两金皂苷A纯品的急性毒性和亚急性毒性研究。
     (4)采用人HCT-15肿瘤裸鼠皮下移植模型,对化合物百两金皂苷A开展了体内抗肿瘤作用试验。
     研究结果
     (1)从朱砂根中分离得到3个化合物,其化学结构鉴定为:百两金皂苷A(ardisiacrispin A)、朱砂根皂苷B(ardisicrenoiside B)和岩白菜素(Bergenin)。分离制备了多达45g的百两金皂苷A纯品作为体内实验研究用药。
     (2)体外抗肿瘤试验结果表明,百两金皂苷A对人非小细胞肺癌细胞株NCI-H460、人前列腺癌细胞株PC-3、人乳腺癌细胞株MCF-7、人宫颈癌细胞株Hela.人结直肠腺癌细胞株HCT-15、人口腔上皮癌耐药细胞株KB-V1等肿瘤细胞均具有明显的增殖抑制作用,其半数抑制浓度(IC5o)分别为7.61μM、8.29μM、8.64μM、5.30μM和4.05μM;对人肝静脉内皮细胞株ED-25的细胞毒性(IC50为8.11μM),与对上述肿瘤细胞的细胞毒性无显著差异(P>0.05),提示百两金皂苷A的细胞毒作用可能无选择性。其中,百两金皂苷A对HCT-15细胞的体外研究结果系首次发表。经细胞形态学观察发现,8μM的百两金皂苷A处理后,HCT-15细胞出现早期凋亡样形态学改变:细胞变圆,核染色质浓集,固缩,碎裂。推测其细胞毒性可能与诱导凋亡有关。Annexin V/PI双染法检测试验结果表明,随着百两金皂苷A药物浓度的增加,HCT-15细胞平均早期凋亡率逐渐上升,并呈一定的浓度依赖性。结合形态学观察结果,表明百两金皂苷A对HCT-15的细胞毒作用是通过诱导凋亡产生的。流式细胞仪检测发现,经百两金皂苷A处理可以引起HCT-15细胞发生S期阻滞。因此,百两金皂苷A可能是藉此诱导HCT-15细胞凋亡的。
     (5)急性毒性试验结果显示,百两金皂苷A对昆明种小鼠的半数致死量LD50为1.44g/kg,属于低毒化合物。亚急性毒性试验中,连续灌胃4周造成了大鼠轻微肝损伤,肝细胞轻度嗜酸性变,细胞固缩,连接松散。预示着百两金皂苷A对肝脏可能有一定影响。
     (6)在人HCT-15肿瘤裸鼠移植瘤模型实验中,以60mg/kg、50mg/kg、40mg/kg剂量灌胃给药百两金皂苷A,与阳性药多西他赛组相比,相对肿瘤增殖率AT/AC大于42%,根据NCI评判标准,认为该途径下百两金皂苷A对HCT-15人癌裸鼠模型的抗肿瘤药效不明显。
     结论与创新点
     (1)从朱砂根中分离得到3个化合物,经波谱学技术鉴定为百两金皂苷A、B,以及岩白菜素;制备了多达45g的百两金皂苷A纯品,作为体内实验研究用药。
     (2)首次研究报告了百两金皂苷A对HCT-15细胞的细胞增殖抑制作用;该作用的机理与诱导肿瘤细胞凋亡和阻滞细胞增殖于S期有关。
     (3)首次研究评价了百两金皂苷A的急性、亚急性毒性。结果表明,该化合物口服低毒。
     (3)在人HCT-15肿瘤细胞裸鼠皮下移植模型上,测试了灌胃给药条件下百两金皂苷A的体内抗肿瘤作用,结果表明作用不明显。
     第二部分树豆叶的化学成分及抗肿瘤作用研究
     研究背景、目的
     作者通过预实验和文献调研,认为树豆(Cajanus cajan (L.) Millsp.)叶中木豆素A、C (longistylin A, C)的二苯乙烯(菧)结构类似物有明显的抗肿瘤作用,而且目前对树豆蔗类成分的研究尚不够系统和深入。因此,课题组对树豆叶的菧类化合物进行了较为系统的分离和结构鉴定研究、体外抗肿瘤活性与机理研究,以期获得新菧类抗癌先导化合物。
     研究方法
     (1)利用『正相硅胶、Sephadex LH-20凝胶等柱层析手段,从树豆的三氯甲烷部位中分离蔗类化合物,并采用IR、1H-NMR、13C-NMR、2D-NMR等波谱学技术,结合EI-MS、ESI-MS和HRESI-MS等质谱和元素分析进行综合分析,鉴定化学结构。
     (2)采用MTT法检测分离得到的菧类化合物对多种人肿瘤细胞株和人非肿瘤细胞株的细胞毒性作用,利用瑞氏-吉姆萨染色法和流式细胞仪检测菧类化合物对肿瘤细胞的凋亡和细胞周期的影响。
     研究结果
     (1)从树豆中分离得到7个化合物(1-7)。它们的化学结构经波谱学分析鉴定为:木豆素A(longistylin A)(1)、木豆素C(longistylin C)(2)、树豆菧H (cajanstilbene H)(3)、树豆内酯A (cajanolactone A)(4)等4个蔗类化合物;异美五针松双氢黄酮(pinostrobin)(5)、柚皮素4’,7-二甲醚(naringenin-4',7-dimethyl ether)(6)等2个黄酮;以及1个甾类化合物β-谷甾醇(β-sitosterol)(7)。其中3和4为新化合物,分别命名为树豆菧H (cajanstilbene H)和树豆内酯A (cajanolactone A),前者是从该属植物中首次发现的含卤素的羟基异戊烯取代二苯乙烯衍生物,后者为该属植物中首次发现的内酯化的羟基异戊烯取代二苯乙烯羧酸衍生物。
     (2)四种菧类化合物树豆菧H (cajanstilbene H)、树豆内酯A (cajanolactone A)、 longistylin A、longistylin C对NCI-H460、PC-3、MCF-7、Hela、HCT-15、KB-V1等人源肿瘤细胞株的增殖表现出明显抑制作用。
     其中新化合物cajanstilbene H对上述肿瘤细胞的半数抑制浓度IC5o分别为21.47μM、25.83μM、21.42μM、25.85μM、24.81μM、22.29μM;对人肝静脉内皮细胞株ED-25的IC5o为38.51μM,小于对肿瘤细胞的细胞毒性,差异有显著性(P<0.05)。
     细胞形态学观察发现,经42μM的cajanstilbene H处理后,NCI-H460细胞出现早期凋亡样形态学改变:细胞变圆,核染色质浓集,核固缩,碎裂。推测其细胞毒性也可能与诱导凋亡有关。Annexin V/PI双染法检测结果表明,随着cajanstilbene H药物浓度的增加,NCI-H460细胞平均早期凋亡率逐渐上升,并呈一定的浓度依赖性。说明cajanstilbene H对NCI-H460细胞的细胞毒作用是通过诱导凋亡产生的。
     经流式细胞仪检测,cajanstilbene H将NCI-H460细胞能阻滞于G0/G1期而抑制增殖。
     结论与创新点
     (1)从树豆叶中发现了2个新的菧类化合物,其结构系通过详细的波谱学综合分析所确定,分别命名为树豆菧H (cajanstilbene H)和树豆内酯A (cajanolactone A),前者是从该属植物中首次发现的含卤素的羟基异戊烯取代二苯乙烯衍生物,后者为该属植物中首次发现的内酯化的羟基异戊烯取代二苯乙烯羧酸衍生物。
     (2)研究了新化合物树豆菧H (cajanstilbene H)、树豆内酯A (cajanolactone A)、和结构类似物longistylin A、longistylin C对NCI-H460、PC-3、MCF-7、Hela、HCT-15、 KB-V1等肿瘤细胞株的体外作用,发现新化合物具有明显的体外抗肿瘤作用。初步揭示了新化合物树豆菧H的体外抗肿瘤作用机理,发现树豆菧H可诱导NCI-H460细胞的凋亡,并使细胞周期阻滞于G0/G1期。
Malignant tumor or cancer is one of the major diseases that damage severely human health, and is the second leading cause of death in the world. Chemical medication is the major treatment method for cancer at present. Chemotherapeutic agents mainly contain synthetic and natural medicines. Many of synthetic drugs are of natural origin or derived from the structures of natural products. China is rich in medicinal plant resources, so it is a decided advantage on development of safe and effective anticancer drugs or lead compounds from medicinal herbs. The aim of this dissertation is to search natural anticancer leading compounds. It consists of two parts.
     Part One Ardisiacrispin A from Ardisia crenata:Isolation, Identification, Lot Manufacture, and Anticancer Effect
     Background and Objective
     According to our previous experiments and literatures, ardisiacrispin A, B from Ardisia crenata Sims., as well as their derivatives, exhibited significant anticancer activity They are worthy of our further and systemaic researches, including phytochemical study, in vitro and in vivo pharmacological studies for searching of anticancer leading compounds
     Method
     (1) Ardisiacrispin A and relavent constituents were isolated from the n-BuOH extract of Ardisia crenata by silica gel, MCI and ODS column chromatographies. The structures were elucidated on the basis of spectroscopic analysis, mainly on MS and NMR.
     (2) Effects of ardisiacrispin A on cancer cell lines were examined by MTT assay. The apoptosis was observed by Wright-Giemsa's staining and Annexin V-FITC/PI dual staining. Cell cycle was also determined by FCM.
     (3) Preliminary toxicology of ardisiacrispin A, when administered orally was carried out by acute and subacute toxicity tests.
     (4) In vivo anticancer effect on human colon adenocarcinoma xenograft tumor in nude mice of ardisiacrispin A was also carried out.
     Result
     (1) Three compounds, ardisiacrispin A (1), ardisicrenoiside B (2) and bergenin (3), were isolated from the n-BuOH extract of Ardisia crenata and their structures were identified by means of spectroscopic analysis. Forty-five grams of purified ardisiacrispin A was manufactured by means of repeated chromatography for in vivo studies.
     (2) Ardisiacrispin A dose-dependently reduced cell viability in NCI-H460, PC-3, MCF-7, Hela, HCT-15, KB-V1cell lines and cell line ED-25, human liver vein endothelial cells, by MTT assay. The IC50values at48h were7.61μM,8.29μM,8.64μM,5.30μM,4.05μM and8.11μM, respectively. It was no significant difference between the IC50of cancer cells and that of ED-25(P>0.05). It indicated that the cytotoxicity of ardisiacrispin A was non-selective. The result of ardisiacrispin A against HCT-15cell lines in vitro was reported for the first time. Exposed to8μM ardisiacrispin A for48h, partial HCT-15cells presented characteristic morphological changes of apoptosis, including cell shrinkage, nuclear condensation. It suggested that apoptosis was possibly responsible for the cell death. Flow cytometric analysis displayed that ardisiacrispin A induced apoptosis of HCT-15cells and arrest of the cell cycle at S-phase.
     (3) Acute toxicity test showed ardisiacrispin A is a low-toxic compound. It's median lethal dose (LD50) was1.44g/kg. After4weeks of oral administration, the livers of the high-dose group rats were showed mild acidophilic change, cell shrinkage and loose connection. It suggested that ardisiacrispin A maight effect on liver.
     (4) The in vivo antitumor activity of ardisiacrispin A per os showed that relative tumor proliferation rate AT/AC of the human colon adenocarcinoma xenograft tumors in nude mice was more than42%. It was considered as no significant anticancer activity by the Division of Cancer Treatment, NCI, NIH.
     Conclusion
     (1) Three compounds, ardisiacrispin A (1), ardisicrenoiside B (2) and bergenin (3), were isolated from the n-BuOH extract of Ardisia crenata and their structures were identified by means of spectroscopic analysis. Forty-five grams of purified ardisiacrispin A was manufactured by means of repeated chromatography for in vivo studies.
     (2) Ardisiacrispin A dose-dependently reduced cell viability in NCI-H460, PC-3, MCF-7, Hela, HCT-15, KB-V1cell lines. The result of ardisiacrispin A against HCT-15cell lines in vitro was reported for the first time. Flow cytometric analysis displayed that ardisiacrispin A induced apoptosis of HCT-15cells and arrest of the cell cycle at S-phase.
     (3) Preliminary toxicology of ardisiacrispin A, when administered orally was carried out by acute and subacute toxicity tests. Acute toxicity test showed ardisiacrispin A is a low-toxic compound.
     (4) In vivo anticancer effect on human colon adenocarcinoma xenograft tumor in nude mice of ardisiacrispin A was carried out, and no significant anticancer activity for oral administration was observed.
     Part Two Studies on chemical constituents from the leaves of Cajanus cajan, and their anticancer effect
     Background and Objective
     According to our previous experiments and literatures, the stilbene-structural analogues of longistylin A, C from Cajanus cajan (L.) Millsp. exhibited significant anticancer effect. Meanwhile researches on stilbenes from Cajanus cajan were still insufficient. Therefore in order to discover new anticancer leading compounds with stibene strcture we carried out a systematic studies on isolation and structural identification of stilbenes from the leaves of Cajanus cajan, as well as their anticancer effect.
     Method
     (1) Stilbenes were isolated from the CHCl3extract of the leaves of Cajanus cajan by silica gel and Sephadex LH-20column chromatography. Their structures were elucidated on the basis of IR, MS and NMR spectrum, as well as elementary analysis.
     (2) Effects of the isolated and identified stilbenes on cell proliferation were examined in vitro by MTT assay. The apoptosis effect on cell line was evaluated by Wright-Giemsa's staining and Annexin V-FITC/PI dual staining. Cell cycle was also determined by FCM.
     Result
     (1) Seven compounds were isolated and identified as longistylin A (1), longistylin C (2), cajanstilbene H (3), cajanolactone A (4), pinostrobin (5), naringenin-4',7-dimethyl ether (6) and β-sitosterol (7). Among them cajanstilbene H (3) and cajanolactone A (4) were new compounds. The former was the first halogen-containing derivative of stilbene obtained from the genus Cajanus, and the latter was the first lactone-type of stilbene carboxylic acid isolated from genus Cajanus.
     (2) Stilbenes1-4exhibited significant anticancer effects in vitro. New compound cajanstilbene H dose-dependently reduced cell viability in NCI-H460, PC-3, MCF-7, Hela, HCT-15, KB-V1cell lines in a MTT assay test. The IC50values at48h were21.47μM,25.83μM,21.42μM,25.85μM,24.81μM, and22.29μM, respectively. After48h of exposure to42μM cajanstilbene H, partial NCI-H460cells presented characteristic morphological changes of apoptosis, including cell shrinkage, nuclear condensation. It suggested that apoptosis was possibly responsible for the cell death. Flow cytometric analysis displayed that cajanstilbene H induced apoptosis of NCI-H460cells, and arrest of the cell cycle at G0/G1phase.
     Conclusion
     (1) Two new stilbenes, cajanstilbene H and cajanolactone A, were found from the leaves of Cajanus cajan. The former was the first halogen-containing derivative of stilbene obtained from the genus Cajanus, and the latter was the first lactone-type of stilbene carboxylic acid isolated from genus Cajanus.
     (2) Cajanstilbene H showed significant in vitro anticancer effect on NCI-H460cells. Flow cytometric analysis displayed that cajanstilbene H induced apoptosis of the cells and arrest of cell cycle at G0/G1phase.
引文
[1]丁莉,王海黎.恶性肿瘤的中医药治疗[J].中国现代药物应用,2010,4(20):152-154.
    [2]Chen JG, Zhu J, Parkin DM, et al. Trends in the incidence of cancer in Qidong, China,1978-2002[J]. Int J Cancer,2006,119(6):1147-1154.
    [3]Cragg GM, Newman DJ. Impact of natural products ondeveloping new anti-cancer agents[J]. Chem Rev,2009,109(7):3012-3043.
    [4]Mohammad S. Anticancer agents from medicinal plants[J]. Bangladesh J Pharmacol,2006,1(2): 35-41.
    [5]郭仕华,姿红祥,贺艳丽.天然抗肿瘤药物的研究进展[J].国外医药·植物药分册,2005,20(5):190-196.
    [6]谢峻,谈锋.植物来源抗肿瘤药物研究进展[J].中草药,2007,38(2):285-288.
    [7]刘岱琳.朱砂根和密花石豆兰活性成分的研究.博士论文.沈阳药科大学,95,2004.
    [8]林吉品.中医药在恶性肿瘤治疗中的作用机理探析[J].光明中医,2009,24(2):207-208.
    [9]李忠.临床中医肿瘤学[M].沈阳:辽宁科学技术出版社,2002:8,28-33.
    [10]周岱翰.中医肿瘤学临床研究现状与评析[J].新中医,2006,38(6):4-6.
    [11]郭青龙.肿瘤药理学[M].北京:化学工业出版社,2007:49,61,144,264-276.
    [12]Tsuchida Y, Shitara T, Kuroiwa M, et al. Current treatment and future directions in neuroblastoma[J]. Indian JPediatr,2003,70(10):809-812.
    [13]林茂芳,孟小莉.高三尖杉酯碱诱导白血病细胞凋亡与人端粒酶逆转录酶及端粒酶的关系[J].上海医学,2003,26(6):285-288.
    [14]李建农,蒋建东.微管的生物学特性与药物研究[J].药学学报,2003,38(4):311-315.
    [15]国家药典委员会.中华人民共和国药典.一部[M].北京:化学工业出版社.2010:129.
    [16]祁振声.关于朱砂根原植物的考证[J].河北林学院学报,1994,9(3):221-223.
    [17]邓素芳,黄烯,赖钟雄.朱砂根的药用价值与观赏价值[J].亚热带农业研究,2006,2(3):176-178.
    [18]陈尚钎,胡文杰,黄艳丽,等.朱砂根化学成分的分析[J].安徽农学通报,2007,13(18):152-153.
    [19]夏从龙,刘光明,马小匡.岩白菜素的研究进展[J].时珍国医国药,2006,17(3):432-433.
    [20]韩力,倪慕云.中药朱砂根化学成分的研究[J].中国中药杂志,1989,14(12):33-35.
    [21]Jia ZH, Koike K, Ohmoto T, et al. Triterpenoid saponins from Ardisia crenata[J]. Phytochemistry, 1994,37(5):1389-1396.
    [22]Jia ZH, Koike K, Nikaido T, et al. Triterpenoids aponins from Ardisia crenata and their inhibitory activity on cAMP phosphodiesterase[J]. Chem Pharm Bull,1994,42(11):2309-2314.
    [23]Jia ZH, Koike K, Nikaido T, et al. Two novel triterpenoid pentasaccharides with an unusual glycosyl glycerol side chain from Ardisia crenata[J]. Tetrahedron,1994,50(41):11853-11864.
    [24]Koike K, Jia ZH, Ohura S, et al. Minor triterpenoid saponins from Aridsia crenata[J].Chem Pharm Bull,1999,47(3):434-435.
    [25]Liu DL, Wang NL, Zhang X, et al. Two new triterpenoid saponins from Ardisia crenata[J]. JAsian Nat Prod Res,2007,9(2):119-127.
    [26]Wang MT, Guan XT, Han XW, et al. A new triterpenoid saponin from Aridsia crenata [J]. Planta Med,1992,58(2):205-207.
    [27]Jansukul C, Baumann H, Kenne L, et al. Ardsiacrispin A and B two utero -contracting saponins from Ardisia crispa[J]. Planta Med,1987,53(5):405-409.
    [28]Liang B, Tian JK, Xu LZ, et al. Triterpenoid saponins from Lysimachia davurica[J]. Chem Pharm Bull,2006,54(10):1380-1383.
    [29]Chang XL, Li W, Jia ZH, et al. Biologically active triterpenoid saponins from Ardisia japonica[J]. J Asian Nat Prod Res,2007,70(2):179-187.
    [30]Zheng ZF, Xu JF, Feng ZM, et al. Cytotoxic triterpenoid saponins from the roots of Ardisia crenata[J].JAsian Nat Prod Res,2008,10(9-10):833-839.
    [31]边宝林.朱砂根能抑制癌细胞[J].中医药信息月报,2003,(1):11.
    [32]沈欣.朱砂根总皂苷抗癌作用及作用机理研究.硕士论文.北京中医药大学,28-30,2003.
    [33]魏少荫,李敏,刘岱琳,等.三萜皂苷混合物ardisiacrispin(A+B)对人白血病HL-60细胞的增殖抑制作用及机制探讨[J].中国药理学通报,2007,23(5):586-590.
    [34]Li M, Wei SY, Xu B, et al. Pro-apoptotic and microtubule-disassembly effects of ardisiacrispin(A+B), triterpenoid saponins from Ardisia crenata on human hepatoma Bel-7402 cells[J]. J Asian Nat Prod Res,2008,10(8):729-736.
    [35]黄新安,胡英杰,邓文娣,等.巴东过路黄中三萜皂苷及其体外抗肿瘤活性研究[J].热带亚热带植物学报,2007,15(4):363-365.
    [36]Wen P, Zhang XM, Yang Z, et al. Four new triterpenoid saponins from Ardisia gigantifolia Stapf[J]. J Asian Nat Prod Res,2008,10(9):873-880.
    [37]Tian Y, Tang HF, Qiu F, et al. Triterpenoid saponins from Ardisia pusilla and their cytotoxic activity[J]. Planta Med,2009,75(1):70-75.
    [38]张清华.紫金牛属植物化学成分研究概况[J].华西药学杂志,1994,9(2):99-103.
    [39]田振华,何燕,骆红梅,等.朱砂根抗炎抗菌作用研究[J].西北药学杂志,1998,13(3):109-110.
    [40]Piacente S, Pizza C, Tommasi ND. Constituents of Ardisia japonica and their in vitro anti-HIV activity[J]. Nat Prod,1996,59(6):565-569.
    [41]尹鲁生,范俊源.矮地茶挥发油化学成分的研究[J].中草药,1989,20(10):5-8.
    [42]周大云.矮地茶镇咳祛痰作用的药理试验研究[J].基层中药杂志,1998,12(1):39-41.
    [43]湖南医学院药理组.矮地茶治疗慢性气管炎的实验研究[J].中华医学杂志,1973,53(12):70.
    [44]丁惟培.抗生育植物药研究初报[M].武汉:武汉医学院计划生育研究所,1985:5.
    [45]江苏中医学院.中药大辞典(上册)[M].上海:上海人民出版社,1977:914.
    [46]关雄泰,汪茂田,宫予敏.朱砂根中皂甙元及次生甙的研究[J].中草药,1987,18(8):2-5.
    [47]王怀真,何功倍,孙江桥.朱砂根三萜总皂甙对子宫的兴奋作用[J].中草药,1988,19(11):19-20.
    [48]Sparg SG, Light ME, Van-Staden J. Biological activities and distribution of plant saponins [J].J Ethnopharmacol,2004,94(2-3):219-243.
    [49]Foubert K, Theunis M, Apers S, et al. Chemistry, distribution and biological activities of 13,28-epoxy-oleanane saponins from the plant families Myrsinaceae and Primulaceae[5]. Curr Org Chem,2008,12(8):629-642.
    [50]常海涛,孔维梁,屠鹏飞.珍珠菜属植物化学成分及药理作用研究进展[J].中国中药杂志,2004,29(4):295-298.
    [51]黄新安,杨仁洲.珍珠菜属植物三萜类化合物研究进展[J].热带亚热带植物学报,2007,15(2):175-182.
    [52]Zhang Y, Qu Y, Zhang J. Ardipusilloside I purified from Ardisia pusilla competitively binds VEGFR and induces apoptosis in NCI-H460 cells[J]. Phytomedicine,2010,17(7):519-526.
    [53]Lin H, Zhang X, Cheng G, et al. Apoptosis induced by ardipusilloside III through BAD dephosphorylation and cleavage in human glioblastoma U251MG cells[J]. Apoptosis,2008,13(2): 247-257.
    [54]Park JH, Kwak JH, Khoo JH, et al. Cytotoxic effects of triterpenoid saponins from Androsace umbellata against multidrug resistance (MDR) and non-MDR cells[J]. Arch Pharm Res,2010,33(8): 1175-1180.
    [55]Dorchai RO, Thomson JB. Triterpenoids-Ⅲ:The structure of cyclamigenin B[J]. Tetrahedron,1968, 24(3):1377-1384.
    [56]Tian LJ, Yang NY, Chen WQ. Triterpene saponins from Lysimachia christinae[J]. J Asian Nat Prod Res,2008,10(3):265-269.
    [57]Chaweewan J, Herbert B, Lennart K, et al. Ardsiacrispin A and B, two utero -contracting saponins from Ardisia crispa[J]. Planta Med,1987,53(5):405-409.
    [58]Lavaud C, Massiot G, Barrera JB, et al. Triterpene saponins from Myrsine pellucida[J]. Phytochemistry,1994,37(6):1671-1677.
    [59]Bloor SJ, Qi L. Cytotoxic saponins from New Zealand Myrsine species[J]. J Nat Prod,1994, 57(10):1354-1360.
    [60]Ahmad VU, Sultana V, Saqib QN. Triterpenoid Saponins from Primula denticulate[J]. Planta Med, 1990,56(1):94-97.
    [61]Podolak I, Janeczko Z, Galanty A, et al. A triterpene saponin from Lysimachia thyrsiflora L.[J]. Acta Pol Pharm,2007,64(1):39-43.
    [62]Dall'Acqua S, Castagliuolo I, Brun P, et al. Triterpene glycosides with in vitro anti -inflammatory activity from Cyclamen repandum tubers[J]. Carbohydr Res,2010,345(5):709-714.
    [63]Calis I, Yuriiker A, Tanker N, et al. Triterpene saponins from Cyclamen coum var. coum[J]. Planta Med,1997,63(2):166-170.
    [64]Calis T, Satana ME, Yiiruker A, et al. Triterpene saponins from Cyclamen mirabile and their biological activities[J]. J Nat Prod,1997,60(3):315-318.
    [65]Mihci-Gaidi G, Ozbey S, Orhan I, et al. Triterpene saponins from Cyclamen trocopteranthum[J]. Planta Med,2010,76(8):818-821.
    [66]Pal BC, Mahato SB. New triterpenoid pentasaccharides from Androsace saxifragifolia [J]. J Chem Soc, Perkin Trans 1,1987:1963-1967.
    [67]Waltho JP, Williams DH, Mahato SB, et al. Structure elucidation of two triterpenoid tetrasaccharides from Androsace saxifragifolia[J]. J Chem Soc, Perkin Trans 1,1986:1527-1531.
    [68]Zhang DM, Wang Y, Tang MK, et al. Saxifragifolin B from Androsace umbellata induced apoptosis on human hepatoma cells[J]. Biochem Biophys Res Commun,2007,362(3):759-765.
    [69]Wang Y, Zhang DM, Ye WC, et al. Triterpenoid saponins from Androsace umbellata and their anti-proliferative activities in human hepatoma cells[J]. Planta Med,2008,74(10):1280-1284.
    [70]Tang HF, Yun J, Lin HW, et al. Two new triterpenoid saponins cytotoxic to human glioblastoma U251MG cells from Ardisia pusilla[J]. Chem Biodivers,2009,6(9):1443-1452.
    [71]Huang J, Ogihara Y, Zhang H, et al. Triterpenoid saponins from Ardisia mamillata [J]. Phytochemistry,2000,54(8):817-822.
    [72]张清华,王晓娟.川产九节龙皂甙的化学研究[J].药学学报,1993,28(9):673-678.
    [73]韩定献,韩建伟,乔明等.重楼排草皂甙的研究[J].药学学报,1987,22(10):746-749.
    [74]Reznicek G, Johann J, Robien W, et al. Saponins in Cyclamen species:Configuration of cyclamiretin C and structure of isocyclamin [J]. Phytochemistry,1989,28(3):825-828.
    [75]De TN, Piacente S, De SF, et al. Characterization of three new triterpenoid saponins from Ardisia japonica[J]. JNat Prod,1993,56(10):1669-1675.
    [76]Li YF, Hu LH, Lou FC, et al. PTP1B inhibitors from Ardisia japonica[J]. J Asian Nat Prod Res, 2005,7(1):13-18.
    [77]丁智慧,和韵苹,丁靖垲.小果香草的化学成分[J].云南植物研究,1993,15(2):201-204.
    [78]Huang J, Zhang H, Shimizu N, et al. Ardisimamillosides G and H, two new triterpenoid saponins from Ardisia mamillata[J].Chem Pharm Bull,2003,51(7):875-877.
    [79]Dorchai RO, Rubalcava HE, Thomson JB. Triterpenoids-IV:The cyclamigenins Al, A2, C, and D[J]. Tetrahedron,1968,24(6):5649-5654.
    [80]Huang J, Ogihara Y, Zhang H, et al. Ardisimamillosides C-F, four new triterpenoid saponins from Ardisia mamillata[J].Chem Pharm Bull,2000,48(10):1413-1417.
    [81]田景奎,邹忠梅,徐丽珍等.黄连花中两个新的三萜皂苷[J].药学学报,2004,39(3):194-197.
    [82]Tian JK, Zou ZM, Xu LZ, et al. Two New Saponins from Lysimachia davurica[J]. Chin Chem Lett, 2005,16(2):212-214.
    [83]Mu LH, Gong QQ, Zhao HX, et al. Triterpenoid saponins from Ardisia gigantifolia [J]. Chem Pharm Bull,2010,58(9):1248-1251.
    [84]Liu DL, Wang NL, Zhang X, et al. Two new triterpenoid saponins from Ardisia crenata[J]. J Asian Nat Prod Res,2007,9(2):119-127.
    [85]刘岱琳,张晓明,王乃利,等.紫金牛属植物中三萜皂苷类成分核磁共振波谱学特征[J].沈阳药科大学学报,2004,21(5):394-400.
    [86]Galanty A, Michalik M, Sedek L, et al. The influence of LTS-4, a saponoside from Lysimachia thyrsiflora L., on human skin fibroblasts and human melanoma cells[J]. Cell mol boil lett,2008,13(4): 585-598.
    [87]李伟芳,李茂,覃良,等.九节龙皂甙体内的抗肿瘤作用[J].中国医药学报,2003,18:60-61.
    [88]宗绪晓.木豆[M].大连:大连出版社,2003:2-4.
    [89]Sharma KK, Sreelatha G, Dayal S. Pigeonpea (Cajanus cajan L. Millsp.) [J]. Methods Mol Biol 2006,343:359-367.
    [90]中国科学院植物研究所.中国高等植物图鉴:第二册[M].北京:科学出版社,1979:504.
    [91]冉先德.中华药海[M].哈尔滨:哈尔滨出版社,1993:15-18.
    [92]刘中秋,周华,林励,等.生脉成骨片中木豆叶提取工艺研究[J].中成药,1998,20(3):7-9.
    [93]孙绍美,宋玉梅,刘检,等.木豆素制剂药理作用研究[J].中草药,1995,26(3):147-148.
    [94]孙兰,杨京,刘景生.小剂量雌激素对去卵巢骨质疏松大鼠骨小梁结构的影响[J].中国医学科学院学报,2001,23(3):224-227.
    [95]唐勇,王兵,周学君.木豆制剂外敷对开放创面纤维结合蛋白含量的影响[J].广州中医药大学学报,1999,16(4):302-304.
    [96]曾意荣,袁浩,何伟.生脉成骨胶囊防治维甲酸所致骨质疏松的实验研究[J].中医正骨,2001,13(12):11-12.
    [97]Luo QF, Sun L, Si JY, et al. Hypocholesterolemic effect of stilbenes containing extract-fraction from Cajanus cajan L. on diet-induced hypercholesterolemia in mice[J]. Phytomedicine,2008,15(11): 932-939.
    [98]Duker-Eshun G, Jaroszewski JW, Asomaning WA, et al. Antiplasmodial constituents of Cajanus cajan[J]. Phytother Res,2004,18(2):128-130.
    [99]郑元元,杨京,陈迪华,等.木豆叶提取物对人的类成骨细胞TE85成骨功能和体外破骨细胞分化的影响[J].药学学报,2007,42(4):386-391.
    [100]Ashidi JS, Houghton PJ, Hylands PJ, et al. Ethnobotanical survey and cytotoxicity testing of plants of South-western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. leaves[J]. JEthnopharmacol,2010,128(2):501-512.
    [101]Luo M, Liu X, Zu Y, et al. Cajanol, a novel anticancer agent from Pigeonpea [Cajanus cajan(L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway[J]. Chem Biol Interact,2010,188(1):151-160.
    [102]Hua X, Fu YJ, Zu YG, et al. Plasma pharmacokinetics and tissue distribution study of cajaninstilbene acid in rats by liquid chromatography with tandem mass spectrometry[J]. J Pharm Biomed Anal,2010,52(2):273-279
    [103]Wu N, Fu K, Fu YJ, et al. Antioxidant activities of extracts and main components of Pigeonpea [Cajanus cajan (L.) Millsp.] leaves[J]. Molecules,2009,14(3):1032-1043.
    [104]陈迪华,李慧颖,林蕙.木豆叶化学成分研究[J].中草药,1985,16(10):2-7.
    [105]Kong Y, Fu YJ, Zu YG, et al. Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea [Cajanus cajan (L.) Millsp.] leaves[J]. Food Chemistry,2010,121(4):1150-1155.
    [106]Green PW, Stevenson PC, Simmonds MS, et al. Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behavior of Helicoverpa armigera larvae[J]. JChem Ecol,2003,29(4):811-821.
    [107]Cooksey CJ, Dahiya JS, Garratt PJ, et al. Two novel stilbene-2-carboxylic acid phytoalexins from Cajanus cajan[J]. Phytochemistry,1982,21(12):2935-2938.
    [108]付玉杰,祖元刚,刘霞,等.木豆叶超临界提取物及木豆芪酸在制备抗肿瘤药物中的应用[P].中国专利:CN101569654,2009.11.04.
    [109]林励,谢宁,程紫骅.木豆黄酮类成分的研究[J].中国药科大学学报,1999,30(1):21-23.
    [110]Bhanumati S, Chhabra S C, Gupta S R, et al. A new isoflavone glucoside from Cajanus cajan[J]. Phytochemistry,1978,18(2):365-366.
    [111]Dahiya JS, Strange RN, Bilyard KG, et al. Two isoprenylated isoflavone phytoalexins from Cajanus cajan[J]. Phytochemistry,1984,23(4):871-873.
    [112]Preston NW. Cajanone:An antifungal isoflavanone from Cajanus cajan[J]. Phytochemistry,1977, 16(1):143-144.
    [113]Bhanumati S, Chhabra S, Gupta SR, et al.2'-O-methylcajanone:a new isoflavanone from Cajanus cajan[J]. Phytochemistry,1979,18(4):693.
    [114]Bhanumati S, Chhabra SC, Gupta SR. Cajaisoflavone, a new prenylated isoflavone from Cajanus cajan[J]. Phytochemistry,1979,18(7):1254.
    [115]Bhanumati S, Chhabra SC, Gupta SR, et al. Cajaflavanone:A new flavanone from Cajanus cajan[J]. Phytochemistry,1978,17(11):2045.
    [116]史达.木豆叶联合骨髓间充质干细胞治疗股骨头坏死的实验与相关临床研究.博十论文.广州中医药大学,43-44,2007.
    [117]郑元元,杨京,陈迪华,等.木豆叶芪类提取物对雌激素缺乏性大鼠骨质丢失的影响[J].药学学报,2007,42(5):562-565.
    [118]袁浩,姚伦龙,陈隆宽,等.柳豆叶用于感染创面546例疗效观察[J].中西医结合杂志,1984,4(6):352-353.
    [119]袁浩,何伟,蔡振基.柳豆叶治疗开放性骨折感染性创面40例临床总结[J].广州中医药大学学报,1991,8(2):160.
    [120]方永奇,黄可儿,谢沙,等.柳豆叶抗炎作用研究[J].中药新药与临床药理,1992,3(2):39-41.
    [121]骆庆峰,孙兰,斯建勇,等.木豆叶芪类提取物对高脂模型小鼠血脂和肝脏胆固醇的降低作用[J].药学学报,2008,43(2):145-149.
    [122]黄桂英,廖雪珍,廖惠芳,等.木豆叶水提物抗脑缺血缺氧损伤的作用研究[J].中药新药与临床药理,2006,17(3):172-174.
    [123]Ji XY, Xue ST, Zheng GH, et al. Total synthesis of cajanine and its antiproliferative activity against human hepatoma cells[J]. Acta Pharmaceutica Sinica B,2011,1 (2):93-99.
    [124]Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential[J]. J Ethnopharmacol,2002,81(1):81-100.
    [125]邱声祥,沈小玲.一种具有降血糖和减肥作用的菧类天然药物[P].中国专利:CN101422450,2009.05.06.
    [126]付玉杰,祖元刚,吴楠,等.木豆叶中木豆芪酸及球松素在制备抗疱疹病毒药物中的应用[P].中国专利:CN 101485649A,2009.7.22.
    [127]Zu YG, Fu YJ, Wang W, et al. Comparative study on the antiherpetic activity of aqueous and ethanolic extracts derived from Cajanus cajan (L.) Millsp[J]. Forsch Komplementmed,2010,17(1): 15-20.
    [128]Liu XL, Zhang XJ,Fu YJ, et al. Cajanol inhibits the growth of Escherichia coli and Staphylococcus aureus by acting on membrane and DN A damage [J]. Planta Med,2011,77(2):158-163.
    [129]Zu YG, Liu XL, Fu YJ, et al. Chemical composition of the SFE-CO2 extracts from Cajanus cajan(L.) Huth and their antimicrobial activity in vitro and in vivo[J]. Phytomedicine,2010,17(14): 1095-1101.
    [130]倪慕云,韩力.中药朱砂根化学成分的研究[J].中药通报,1988,13(12):33-34.
    [131]Masatoshi T, Seiichi Y, Michio K, et al. Isolation of norbergenin from Saxifraga stolonifera[J]. Phytochemistry,1983,22(4):1053-1054.
    [132]Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008[J]. Int J Cance,2010,127(12):2893-2917.
    [133]Bonomi PD. Implications of key trials in advanced nonsmall cell lung cancer[J]. Cancer,2010, 116(5):1155-1164.
    [134]Mosmann T. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assays[J]. J Immunol Methods,1983,65(1-2):55-63.
    [135]郝静.花榈木素抗肿瘤活性及其作用机理的研究.博士论文.中国科学院研究生院,1-50,2011.
    [136]Lundberg AS, Weinberg RA. Control of the cell cycle and apoptosis[J]. Eur J Cancer,1999,35(4): 531-539.
    [137]Huang L, Pardee AB. beta-lapachone induces cell cycle arrest and apoptosis in human colon cancer cells[J]. Mol Med,1999,5(11):711-720.
    [138]Pugacheva EN, Ivanov AV, Kravchenko JE, et al. Novel gain of function activity of p53 mutants: activation of the dUTPase gene expression leading toresistance to 5-fluorouracil[J]. Oncogene,2002, 21(30):4595-4600.
    [139]Andriana BB, Tay TW, Maki I, et al. An ultrastructural study on cytotoxic effects of mono(2-ethylhexyl)phthalate(MEHP) on testes in Shiba goat in vitro[J]. J Vet Sci,2004,5(3):235-240.
    [140]Jones KR, Elmore LW, Jackson-Cook C, et al. p53-Dependent accelerated senescence induced by ionizing radiation in breast tumour cells[J]. Int J Radiat Biol,2005,81(6):445-458.
    [141]Wesierska-Gadek J, Wojciechowski J, Ranftler C, et al. Role of p53 tumor suppressor in ageing: regulation of transient cell cycle arrest and terminal senescence[J]. J Physiol Pharmacol,2005,56(1): 15-28.
    [142]Zhang JY, Zhang HJ, Chen YX. Sensitive apoptosis induced by microcystins in the crucian carp {Carassius auratus) lymphocytes in vitro[J], Toxicology in Vitro,2006,20(5):560-566.
    [143]Fisher DE. Apoptosis in cancer therapy:Crossing the threshold[J]. Cell,1994,78(4):539-542.
    [144]Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy[J]. Cancer,1994,73(8):2013-2026.
    [145]Ikebukuro K, Adachi Y, Toki J, et al. Morphological change, loss of delta psi(m) and activation of caspases upon apoptosis of colorectal adenocarcinoma induced by 5-FU[J]. Cancer Lett,2000,153(1-2): 101-108.
    [146]Ohta T, Kunimasa K, Kobayashi T, et al. Propolis suppresses tumor angiogenesis by inducing apoptosis in tube-forming endothelial cells[J]. Biosci Biotechnol Biochem,2008,72(9):2436-2440.
    [147]Zhivotovsky B, Orrenius S. Clinical perspectives of cell death:where we are and where to go[J]. Apoptosis,2009,14(4):333-335.
    [148]王青秀.大黄及其主要成分的毒性毒理研究.博士论文.军事医学科学院,7,2007.
    [149]王心如.毒理学基础[M].北京:人民卫生出版社,2003,8:103-111.
    [150]Wang GX, Zhang XY, Yao CZ, et al. Four-week oral toxicity study of three metabolites of nitrobenzene in rats[J]. Drug Chem Toxicol,2010,33(3):238-243.
    [151]Wang M, Shu B, Bai WX, et al. A 4-week oral toxicity study of an antiviral drug combination consisting of arbidol and acetaminophen in rats[J]. Drug Chem Toxicol,2010,33(3):244-253.
    [152]王心如.毒理学实验方法与技术[M].北京:人民卫生出版社,2003,8:37.
    [153]Giovanella BC, Yim SO, Stehlin JS, et al. Development of invasive tumors in "nude" mouse after injection of cultured human melanoma cells[J]. J Natl Cancer Inst,1972,48(5):1531-1533.
    [154]Boxma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse[J]. Nature,1983,301(5900):527-530.
    [155]Rygaard J, Povsen CO. Heterotransplantation of a human malignant tumour to "nude" mice. 1969[J]. Acta Pathology Microbiol Scand,2007,115(5):604-608.
    [156]Kim JS, Jeong TY, Cho CK, et al. Antitumor effect of skin of venenum bufonis in a NCI-H460 tumor regression model[J]. JAcupunct Meridian Stud,2010,3(3):181-187.
    [157]Hatziantoniou S, Dimas K, Georgopoulos A, et al. Cytotoxic and antitumor activity of liposomeincorporated sclareol against cancer cell lines and human colon cancer xenografts[J]. Pharmacol Res,2006,53(1):80-87.
    [158]Dimas K, Hatziantoniou S, Tseleni S, et al. Sclareol induces apoptosis in human HCT116 colon cancer cells in vitro and suppression of HCT116 tumor growth in immunodeficient mice[J]. Apoptosis, 2007,12(4):685-694.
    [159]Dimas K, Hatziantoniou S, Wyche JH, et al. A mastic gum extract induces suppression of growth of human colorectal tumor xenografts in immunodeficient mice[J]. In Vivo,2009,23(1):63-68.
    [160]Mclafferty FW. Interpretation of Mass Spectra(第三版)[M].北京:化学工业出版社,1990,7:15-18.
    [161]王达武,肖敏勋,李宜融,等.树豆菧类化合物Longistylin A和Longistylin C的检测[J].中国中药杂志,2005,36(18):16-19.
    [162]林鹏程,李帅,王素娟,等.白花酸藤果化学成分的研究[J].中国中药杂志,2005,30(15):1215-1216.
    [163]谢晓燕,贡济宇,王立岩,等.山刺玫根的化学成分研究[J].时珍国医国药,2009,20(2):366-367.
    [164]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008[J]. CA Cancer JClin,2008,58(2):71-96.
    [165]王权,何曦冉,田金徽,等.艾迪联合紫杉醇和顺铂治疗晚期非小细胞肺癌的neta分析[J].中国肺癌杂志,2010,13(11):1027-1034.
    [166]Chang AY, Kim K, Glick J, et al. Phase Ⅱ study of taxol, merbarone, and piroxantrone in stage IV non-small-cell lung cancer:The Eastern Cooperative Oncology Group Results[J]. J Natl Cancer Inst,1993,5(5):388-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700