祛瘀化痰法防治肾纤维化的作用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本课题以中医“痰瘀互结”是肾纤维化发生发展的主要病理特点为立论基础,采取临床与动物实验相结合的方法,探讨观察祛瘀化痰法对慢性肾衰大鼠模型的影响及防治肾纤维化患者的临床效果。并主要从TGF-β/Smads信号通路,深入研究祛瘀化痰法对慢性肾衰大鼠模型的影响和可能机制。总体评判在祛瘀化痰法基础上防治肾纤维化的临床效果,为临床防治肾纤维化提供新的临床证据与指导理论。
     方法
     1.祛瘀化痰法防治肾纤维化的临床研究
     通过观察祛瘀化痰中药对慢性肾衰患者的临床症状及实验室指标如血肌酐、尿素氮、肾纤维化相关因子水平(TGF-β1.TIMP-1).肝纤四项、血脂、凝血四项等的影响,实事求是评判祛瘀化痰中药对肾纤维化的临床防治效果。
     2.祛瘀化痰法防治肾纤维化的作用机理研究
     通过建立慢性肾衰大鼠模型,观察经过使用祛瘀化痰中药后,对大鼠模型肾单位结构的病理组织学及肾功能实验室指标影响,判断祛瘀化痰中药对大鼠模型肾纤维化的有效性。并应用间接免疫荧光法测定各组大鼠肾组织TGF-β1.p-Smad2/3和α—SMA.E-cadherin及p-Smad7蛋白的表达,揭示祛瘀化痰中药对调节TGF-β/Smads信号通路与拮抗肾纤维化的关系,初步阐明祛瘀化痰法防治肾纤维化的作用机制。
     结果
     (一)祛瘀化痰法防治肾纤维化的临床研究
     1.治疗组与对照组中医症候积分比较
     研究结果显示,用药前两组中医症候积分比较差异无显著性(P>0.05);治疗后,治疗组的面色晦暗,困怠身重,脘闷腹胀,肌肤甲错,肢体麻木或刺痛,口干不欲饮或口中粘腻,恶心呕吐,食少纳呆,大便粘滞不爽等症状,较治疗前有明显改善(P<0.05或P<0.01);对照组经治疗后,面色晦暗,肌肤甲错,肢体麻木或刺痛,口中粘腻,反胃泛酸、恶心呕吐,大便粘滞不爽,较治疗前有明显改善(P<0.05或P<0.01);治疗后,两组中医症候积分组间比较,治疗组面色晦暗,肌肤甲错,肢体麻木或刺痛,困怠身重,脘闷腹胀,口干不欲饮,口中粘腻,纳呆食少,大便粘滞不爽的改善作用明显优于对照组(P<0.05或P<0.01),表明祛瘀化痰中药在提高中医痰瘀互阻症候疗效方面,治疗组优于对照组。
     2.两组血清中TGF-β1.TIMP-1因子水平比较
     结果显示,治疗组与对照组血清中TGF-β1.TIMP-1因子水平治疗前比较,差异无显著性(P>0.05);TGF-β1治疗组治疗前后之间比较差异有非常显著性(P<0.01),对照组治疗前后之间比较差异有显著性(P<0.05);TIMP-1两组治疗前后差异均有显著性(P<0.05);治疗后两组组间比较,治疗组血清中TGF-β1与TIMP-1因子水平降低程度均优于对照组(P<0.05)。
     3.肝纤四项、肾功能、血脂、凝血功能指标的治疗前后比较
     结果显示,反映纤维化程度的指标肝纤四项,两组治疗前比较,差异无显著性(P>0.05);两组治疗后与疗前比较,均有所降低,但治疗组4项指标差异均有统计学意义(P<0.05),对照组仅HA一项有统计学意义(P<0.05);治疗后,两组组间比较,差异有显著性(P<0.05或<0.01);表明慢性肾衰患者服用祛瘀化痰中药对肝纤四项指标有一定的降低,且优于对照组。结果显示,两组尿素氮(BUN)、血肌酐(Scr)治疗前比较,差异无显著性(P>0.05);两组治疗后比较, BUN及Scr均有所降低,但仅治疗组的差异有统计学意义(P<0.05):治疗后两组比较,治疗组的治疗结果优于对照组(P<0.05或<0.01);表明慢性肾衰患者服用祛瘀化痰中药,对其肾功能有更好的保护作用。两组治疗前低密度脂蛋白(LDL-C)、高密度脂蛋白(HDL-C)、甘油三酯(TG)、总胆固醇(TC)比较,差异无显著性(P>0.05);两组治疗前后比较则均有明显改善(P<0.05);治疗后两组比较,治疗组的改善作用优于对照组(P<0.05),表明祛瘀化痰中药在改善血脂方面,有更好的效果。治疗后两组患者纤维蛋白原(FIB)含量较治疗前降低,活化部分凝血活酶时间(APTT)、凝血酶原时间(PT)均有所延长。两组治疗后与治疗前比较差异均有显著性(P<0.05),且治疗组的改善明显优于对照组(P<0.05,或<0.01)。
     4.两组药物治疗后安全性观察指标的比较
     结果显示,治疗组患者未发现各种不良症状和体征,治疗组反映心脏功能、肝功能的指标肌酸激酶-MB同工酶(CK-MB)、谷丙转氨酶(ALT)、谷草转氨酶(AST),治疗前后,差异无统计学意义(P>0.05),表明慢性肾衰患者服用祛瘀化痰中药,对心脏功能及肝功能无明显影响。
     (二)祛瘀化痰法防治肾纤维化的作用机理研究
     1.各组大鼠肾组织学观察
     HE染色镜下显示:正常对照组大鼠’肾组织无异常病理改变,肾小球、肾小管无异常,小管管腔无结晶物沉积,肾间质无异常改变。模型组肾皮质区肾小球数量减少,萎缩呈分叶状,大多数肾小球毛细血管基底膜增厚,MC增多,肾小管上皮细胞坏死、变性、脱落,大量肾小管萎缩、破坏、消失,可见较多肉芽肿形成。肾小管管腔内可见蛋白管型、细胞管型,部分小管代偿性扩张。肾皮质可见炎症细胞浸润,及异物巨细胞反应,间质纤维化明显。而中药组肾小球MC轻度增生,。肾小管轻度扩张,上皮细胞颗粒变性,腔内可见管型形成,脱落较少,肾间质少量炎症细胞浸润与纤维化。尤以中药高剂量组差异明显。
     2.各组实验结果比较
     四组大鼠血清中尿素氮、血肌酐检测结果比较结果显示,实验前各组尿素氮、血肌酐平均浓度之间分别比较,差异均无显著性(P>0.05)。手术后8周,正常对照组大鼠尿素氮与血肌酐均值分别为6.42±1.33mmol/L.46.65士5.90umol/L,与文献正常参考值基本接近。而模型组分别为24.11士6.37mmol/L.130.71士14.52umol/L,经统计差异具有非常显著性(P<0.01),说明慢性肾功能衰竭大鼠建模成功。而用药组中,中药高剂量组尿素氮与血肌酐均值分别为16.50±5.38mmol/L.115.93±11.45umol/L;中药低剂量组尿素氮与血肌酐均值分别为18.16士5.41mmol/L.118.06±12.89umol/L.中药高剂量组的尿素氮和血肌醉均值与模型组相比均下降,差异具有显著性(P<0.05);中药低剂量组的尿素氮均值与模型组相比下降,差异具有显著性(P<0.05)。说明经过8周的祛瘀化痰中药复方灌胃治疗后尿素氮和血肌酐均值明显降低,肾功能有所改善。但中高组和中低组的尿素氮、肌酐均值之间分别比较,中高组均值虽有下降,但差异均无显著性(P>0.05)。
     免疫荧光结果显示Smad2/3主要表达在胞核,Smad7、α-SMA和TGF-β1主要表达在胞浆。正常对照组Smad2/3.TGF-β1. α-SMA.Smad7的表达很少,而E-cadherin的表达十分明显;模型组Smad2/3.Smad7.TGF-β1和α-SMA表达较高,E-cadherin表达极低,与正常对照组比较差异有非常显著性(P<0.01)。
     中高组、中低组Smad2/3.TGF-β1和α-SMA表达均较模型组减少,而Smad7. E-cadherin表达均较模型组增加,两组与模型组相比,差异均有显著性(P<0.05)。
     中高组Smad2/3.TGF-β1和α-SMA表达均较中低组明显减少,两者比较差异有显著性(P<0.05);中高组Smad7.E-cadherin表达均较中低组明显增加,两组比较差异有显著性(P<0.05)。
     结论
     1临床研究
     (1)祛瘀化痰中药复方可以改善慢性肾衰患者临床症状,提高慢性肾衰治疗效果。
     (2)祛瘀化痰中药复方能明显降低反映肾纤维化的相关指标(肝纤四项、血清中TGF-β1.TIMP-1因子)水平,初步显示祛瘀化痰中药在防治肾纤维化中有较好的作用。
     (3)祛瘀化痰中药复方应用于肾纤维化患者,临床未见明显不良反应,心肝功能未见异常。
     2实验研究
     (1)祛瘀化痰中药可以改善肾纤维化大鼠模型的临床症候,及肾功能指标,以中药高剂量组效果更明显。
     (2)祛瘀化痰中药可以明显减轻慢性肾衰大鼠模型肾组织的炎症反应及病理改变程度,保护肾组织形态结构的完整,从而起到拮抗肾纤维化的作用,这一作用呈量效关系,以中药高剂量组效果更明显。
     (3)祛瘀化痰中药是通过对TGF-β/Smads信号通路的影响来拮肾纤维化的,其作用机制可是通过下调TGF-β1水平、上调TGF-β抑制性信号蛋白Smad7的表达,进而抑制TGF-β受体调控信号蛋白(Smad2/3)的活化,阻止肾纤维化动物模型肾组织间皮细胞转分化的发生,从而阻止或减轻肾纤维化的发生和进展。
Objective
     This study based on the theory of "the phlegm ties stasis mutually" is the pathogenesis key which the renal fibrosis occurs.Uses the clinical method which unifies with the animal experimentation, observes and discusses the clinical effect by the method of eliminating phlegm and removing stasis to prevent the renal fibrosis in renal treatment patients. And further discusses the function and the mechanism by the method of eliminating phlegm and removing stasis to prevent the big mouse model of renal fibrosis from TGF-β/Smads signal passage. Comprehensive evaluation of the clinical efficacy by use of eliminating phlegm and removing stasis to prevent and treat the renal fibrosis, and provide a new theoretical basis and methods of Chinese medicine for the prevention of renal fibrosis in renal treatment patients.
     Methods
     Through the collection of our hospital cases met the inclusion criteria of the renal treatment patients from January2011to January2012, We observe the change in patients on of clinical symptoms and laboratory parameters such as serum creatinine, urea nitrogen, albumin, blood lipids,blood analysis, liver filament four items and the level of TGF-β1,TIMP-1expression in renal fluid of the impact of herbs which can eliminate phlegm and remove stasis. We also can objective evaluate herbs clinical efficacy of prevention and treatment of renal fibrosis. Through establishing the big mouse model of renal flbrosis, observation the mouse model renal structure's histology change after the intervention of herbs which can eliminate phlegm and remove stasis. To expound the validity of herbs to oppress the big mouse model renal fibrosis. And applies the indirect immunity fluorescence method to determine the protein expression of each group of big mouse somatopleura renal such as TGF-β1, p-Smad2/3and α-SMA, E-cadherin and the p-Smad7, to discuss relations of phlegm reduction removes extravasted blood the traditional Chinese medicine to oppress the renal fibrosis with the regulative TGF-β/Smad signal passage's, promulgates initially the function mechanism.
     Result
     (一)The clinical research of prevention renal fibrosis by the law phlegm reduction and removal extravasted blood
     1、Phlegm and blood stasis influnce syndrome score of Chinese medicine
     After the treatment the improvement function of the treatment group clinical symptoms such as the facial color is gloomy, the flesh armor is wrong, the body numb or the stabbing pain, the feeling of heaviness in the limbs is sleepy, wan abdomen puffiness, in the mouth sticks greasily, dry mouth do not want to drink, losses of appetite, stool viscosity surpasses the control group obviously (P<0.05), which show phlegm reduction removes extravasted blood the traditional Chinese medicine to improve the symptoms, the treatment group better than the control group.
     2、Phlegm and blood stasis related indicators of the impact of renal fibrosis
     After treatment the treatment group TGF-β1levels effluent decreased significantly, compared with before treatment, there was significant difference (P<0.05);the control group compared with pre-treatment showed no significant difference (P>0.05);After treatment, comparison between the two groups, the treatment group TGF-β1levels renal treatment effluent decreased was significantly higher (P <0.01).
     After treatment the treatment group TIMP-1levels renal treatment effluent were significantly decreased, compared with before treatment, there was significant difference (P<0.05); the control group compared with pre-treatment showed no significant difference (P>0.05); After treatment, comparison between the two groups, the treatment group factor of decline in effluent TIMP-1levels were significantly higher (P<0.01). Indicators reflect the degree of fibrosis:hepatic-fibrosis four items, treatment and control groups before treatment compared after treatment were decreased,but only the treatment group has statistically significant difference (P<0.05), no statistical difference between the control group significance (P>0.05);After treatment between the two groups was statistically significant difference (P<0.01); showed that patients treated with phlegm reduction and stasis removal herbs renal treatment on hepatic-fibrosis four items have some improvement. In conclusion, the results suggest that phlegm and blood stasis can significantly reduce the level of renal fibrosis-related indicators, play antagonistic renal fibrosis, and protect the renal function.
     3、Phlegm and blood stasis effect on laboratory parameters
     Treatment group after treatment with phlegm and blood stasis, the improvement of creatinine, urea nitrogen, total cholesterol, triglycerides, low density lipoprotein, fibrinogen better than the control group (P<0.05), indicating that the phlegm and blood stasis in improving renal functi on, blood lipid and cogulation have a good effect.
     4、Phlegm and blood stasis indicators of drug safety
     Treatment group during the medication, the symptoms do not appear all kinds of adverse reactions, and reflecting the heart and liver function indicators of CK-MB, AST, ALT, before and after treatment, the difference was not statistically significant (P>0.05), showed that patients treated with phlegm and blood stasis, on cardiac function and liver no functional effect, taking safety.
     (二)Experimental study of phlegm and blood stasis to Prevent and Treat the renal fibrosis
     1、Observation renal tissue of rats and comparison dense layer thickness Control group, HE staining showed thin and dense renal smooth, flat layer of mesothelial cells covering intact, thin basement membrane between the skin and connective tissue attached to the skin, between the collagen fibers had no significant deposition, capillary dilatation and congestion-free, non-inflammatory cell infiltration. Model group was significantly thicker renal, mesothelial cell loss, spindle fiber cells, fibroblasts, generated by multi-layer, between the loose skin matrix, a large number of collagen fiber deposition, capillary dilatation and congestion, accompanied by inflammatory cell infiltration, suggesting that renal fibrosis model success. The western medicine group and the morphological changes of rat renal have different levels of mitigation to reduce, the level of medicine in high dose group significantly. The group compared the thickness of dense layer parietal renal, renal thickening model rats in which the most obvious level, compared with the control group were significantly different (P<0.01); Chinese medicine high dose group and low dose group and western medicine group were significantly different (P<0.05); western medicine group and low dose group, significant differences (P<0.05). Phlegm and blood stasis can be effectively shown to improve renal fibrosis pathological changes, especially in the high dose of Chinese medicine.
     2、Comparison of immunohistochemistry
     Immunofluorescence showed that Smad2/3was mainly expressed in the nucleus, Smad7, α-SMA and TGF-β1expressed mainly in the cytoplasm. Control group, Smad2/3, TGF-β1, α-SMA, Smad7expression is low, and the expression of E-cadherin is obvious; Model group Smad2/3, Smad7, TGF-β1and α-SMA expression in a high, E-cadherin expression is very low; the two groups there was a significant difference(P<0.01); In the high group and low group and western medicine group Smad2/3, TGF-β1and α-SMA expression compared with model group decreased, but Smad7, E-cadherin expression compared with model group increased, compared with model group, three groups were significantly different (P<0.05); in the high group Smad2/3, TGF-β1and α-SMA expression than those in the low group and western medicine group significantly reduced. In the high group were compared with the latter two groups were significantly different(P<0.05); In the high group of Smad7, E-cadherin expression than those in the low group and western medicine group was significantly increased. In the high group were compared with the latter two groups were significantly differences (P<0.05); Western medicine group Smad2/3, TGF-β1and α-SMA expression decreased than those in the low group, Smad7, E-cadherin expression was increased by lower than those in the two groups were significantly different(P<0.05).
     Conclusion
     1、Through January2011to January2012,40patients met the criteria of the standard treatment of clinical studies suggest that: phlegm and blood stasis can improve clinical symptoms of patients and treatment effection.
     2、Blood stasis and phlegm can significantly reduce the level of relevant indicator of renal fibrosis (liver fiber four, renal fluid TGF-β1, TIMP-1factor), can protect the structural integrity of renal morphology and reduce the rat model of renal fibrosis, play the role of renal fibrosis antagonist. This effect was dose-effect relationship, the best high-dose group.Phlegm and blood stasis initially showed better prevention and treatment of renal fibrosis. Through5/6nephrectomy rats application of caused by renal fibrosis were found: phlegm and blood stasis on the impact of TGF-β/Smad signaling pathway possibly by increased TGF-β signaling inhibition protein expression of Smad7and inhibit TGF-β receptor signaling protein regulated (Smad2/3) activation, prevents renal fibrosis in animal models of renal mesothelial cell transdifferentiation occurs, thereby preventing or reducing the incidence and progression of renal fibrosis, Protecting the renal function.
引文
[1]Prunotto M, Ghiggeri G, Bruschi M, et al. Renal fibrosis and proteomics:current knowledge and still key open questions for proteomic investigation. J Proteomics. 2011,74(10):1855-1870
    [2]刘必成,伍敏.肾脏纤维化的进展与挑战.中华内科杂志,2011,50(7):547-549
    [3]陈腾峰,谢庆祥,张跃红.肾脏纤维化机制的研究进展.国际泌尿系统杂志,2011,31(3):404-408
    [4]Lan HY. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci.2011,7(7):1056-1067
    [5]0 Donnell MP. Renal tubulointerstitial fibrosis new thoughts on its development and progression. Postgrad Med,2010:208-219
    [6]Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol,2009,295(5):1024-1032
    [7]Li Mo,Wan YY, Sanjabi S, et al. Transforming growth factor beta regulation of immune responses.Annu Rev Immunol,2006,24:99-146
    [8]Yamada M, Ueda M, Naruko T, et al. Mast cell chymase expression and mast cell phenotypes in human rejected kidneys.Kidney Int,2010,59(4):1374-1381
    [9]卢宏柱,周建华.转化生子因子2作用于系膜细胞的信号转导与肾小球纤维化.实用儿科临床杂志,2007,22(17):1346-1348
    [10]Johnson TS,Haylor JL, Thomas GL, et al. Matrix metalloprotein ases and their inhibitions in experimental renals carring. Exp Nephrol,2002,10(3)182-195
    [11]王海燕,主编.肾脏病学.第三版.北京:人民卫生出版社,2008:1813-1815
    [12]王海燕,主编.肾脏病学.第三版.北京:人民卫生出版社,2008:799
    [13]Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nature Reviews, Nephrology.2011,7 (12):684-696
    [14]高春芳,陆伦根.纤维化疾病的基础和临床.上海:上海科学技术出版社,2004:401-403
    [15]Fogo AB. Glumerular hypertension, abnormal glomerular growth, and progression of renal diseases. Kidey Int,2000,57(Suppl 75):15-21
    [16]Tapaloglu R. Progression to renal failure.Turk J Pediatr,2005,47suppl:3-8
    [17]Kubiak A, Niemir ZI.The role of podocytes in normal glomerular function and in the pathogenesis of glomerulonephritis.Postepy Hig Med Dosw(Online),2006,60:259-264
    [18]梁燕,程丽静,黄海长.足细胞损伤与肾小球疾病.中国病理生理杂志,2005,21(9):1864-1866
    [19]陈灏珠,主编.实用内科学.第13版.北京:人民卫生出版社,2009:2080-2081
    [20]Shankland SJ.The podocyte's response to injury:Role in proteinuria and glomeruloscleerosis. Kidney Int,2006,10:24-26
    [21]Chow FY, Nikolic-Patersone DJ, Atkins RC, et al. Macrophages in streptozoto cin-induced diabetic nephropathy:potential role in renal fibrosis. Nephrol Dial Transplant,2004,19(12):2987-2996
    [22]Huang H, Fu J. Effects of quercetin and enalapril on amount of PDGF-β and VEGF-1 in kidney of diabetic rats. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2005,22(4):791-794
    [23]王海,胡世莲,苏克亮,等.慢性肾间质纤维化机制的研究进展.中国临床保健杂志.2011,14(3):327-329
    [24]Dudas PL, Argentieri RL, Farrell FX. BMP-7 fails to attenuate TGF-beta induced epithelial to mesenchymal ttransition in human proximal tubule epithelial cells. Nephrol Dial Transplant,2009,24(5):1406-1416
    [25]Wu G,Tu,Y'Jia R. The influence of fasudil on the epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells from diabetic rats. Biomed Pharmacother.2010,64(2):124-129
    [26]Aresu L, Rastaldi MP, Pregel P, et al.Dog as model for down-expression of E-cadherin and beta-catenin in tubular epithelial cells in renal fibrosis. Virchows Arch.2008,453(6):617-625
    [27]Hertig A, Anglicheau D, Verine J, et al. Early epithelial phenotypic changes predict graft fibrosis.Am Soc Nephrol,2008,19(8):1584-1591
    [28]Lan HY. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci.2011,7(7):1056-1067
    [29]Iaka Y, Fu jiwara Y, Ueda N, et al. Glomerular sclerosis induced by in vivo transforming growth factorβ or platelet-derived growth factor gene into the rat kidney. Jclin Invest,1993,92:2597-2601
    [30]Yamamoto T, Nobole NA, Cohen AH, et al. Expression of TGF-β1 isoforms in human glomerular diseases. Kidney Int,1996,49:461-469
    [31]Makino H,Mukoyama M, Sugawara A, et al. Roles of connective tissue growth factor and prostanoids in early strptozotocin-induced diabetic rat kidney:the effect of aspirin treatment. Clin Exp Nephrol,2003,7(1)33-40
    [32]Wahab NA, Schaefer L,Weston BS,et al. Glomerular expression of thrombospondin-1 transforming growth factor beta and connective tissue growth factor at different stages of diabetic neprhropathy and their interdependent roles in mesangial response to diabetic stimuli. Diabetologia,2005,48(12):2650-2660
    [33]Burns WC, Twigg SM, Forbes JM, et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epit-helial-to-mesenchymal transition:implications for diabetic renal disease. Soc Nephrol,2006,17(9):2484-2494
    [34]Gore-Hyer E, Shegogue D, Markiewicz M, et al. TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Physiol Renal Physiol,2002,283(4):707-716
    [35]Frazier KS, Paredes A, Dube P, et al. Connective tissue growth factor expression in the rat remnant kidney model and association with tubular epithlial cells. Kidney Dis,2005,46(3):112-116
    [36]Van Roeyen CR, Ostendorf T, Denecke B, et al. Biological responses to PDGF-BB versus PDGF-DD in human mesangial cells.Kidney Int,2006,69(8):1393-1402
    [37]Teng J, Zhang PL, Russell WJ, et al. Insights into mechanismas responsible for mesangial alterations associated with fibrogenic glomerulopathic light chains. Nephron Physiol,2003,94(2):28-38
    [38]Kodgers K,Fuhro R, Wang Z, et al. Rapamycin ameliorates proteinuria-associated tubulointerstitial inflammation and fibrosis in experimental membranous nephropathy. J Am Soc Nephrol,2005,16(7):2063-2072
    [39]B. L. Slomiany,A. Slomiany. Role of endothelin-1 dependent up regulation of leptin in oral mucosal repair. Journal of Physiology and Pharmacology,2005,56(4):531-541
    [40]Forbes JM, Jandeleit Dahm K, Allen TJ, et al. Endothelin and endothelin A/B receptors are increased after ischaemic acute renal failure. Exp Nephrol,2001,9(5):309-316
    [41]Orth SR, Amann K, Gehlen F, et al.Adult human mesangial cells(HMCs) express endothlin-B-receptors which mediate endothelin-1-induced cell growth. J cardiovasc Pharmacol,2000,36(Supp 2):230-233
    [42]Atsushi Masamune, Masahiro Satoh, Kazuhiro Kikua, et al. Endothelin-1 stimulates contraction and migration of rat pancreatic stellate cells.World J Gastroenterol,2005,11(39):6144-6151
    [43]Benigni A. Tubulointerstitial disease mediators of injury:the role of endothelin.Nephrol Dial Transplant,2000,15(6):50-52
    [44]Pollock DM, Pollock JS. Evidence for endothelin involvement in the response to high salt. Am. J.Physiol. Renal Physiol,2001,281(1):144-150
    [45]Mclennan SV,Kelly DJ, Schache M,et al. Advanced glycation and products decrease mesangial cell MMP-1:a role in matrix accumulation in diabetic nephropathy. Kideny Int,2007,72(4):481-488
    [46]Ganea E, Trifan M, Laslo AC, et al. Matrix metalloproteinases:useful and deleterious. Biochen Soci Transac,2007,35:689-691
    [47]Naduk-kik J, Hrabec E. The role of matrix metalloproteinases in the pathogenesis of deabetes mellitus and progression of deabetes reinopathy. Postepy Hig Med Dosw(online), 2008,62:442-450
    [48]Easterbrook JD, Klein SL. Corticosteroids modulate Seoul virus infection, regulatory T-cell responses and matrix metalloprotease 9 expression in male, but not female, Norway rats. J Gen Virol,2008,89(pt 11):2723-2730
    [49]Lei FY,Qin YH, Pei J, et al. Expression and Significance of Matrix Metalloproteinase and Tissue Inhibitor of Metalloproteinase-1 in Rats with Glomerular Sclerosis. J Appl Clin Pediatr,2007,22(23):2181-2182
    [50]Maria Fragiadaki, Roger M. Mason.Epithelial-mesenchymal transition in renal fibrosis-evidence for and against. International Journal of Experimental Pathology. 2011,92:143-150.
    [51]Shi Y.Massague J.Mechanisms of TGF-beta signaling from cellmembrane to the nucleus. Cell.2003,113(6):685-700
    [52]Ogata Y, Ishidoya S, Fukuzaki A, et al. Upregulated expression of transforming growth factor-beta, typeⅣ collagen, and plasminogen activator inhibitor-1 mRNA are decreased after release of unilateral ureteral obstruction. Tohoku J Exp Med,2002,197(3):159-168
    [53]Li Y,Tan X, Dai C, et al. Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. Am soc Nephrol,2009,20(9):1907-1918
    [54]Qi w, Chenx, PolhillTS, etal. TGF-betalinducesL-8 and MCP-1 through a connective tissue growth factor-independent pathway [J]. AmJ Physiol Renal Physiol,2006,290(3):F703-F709
    [55]LeaskA, AbrahamDJ. The role of connective tissue growth factor, a multi functional marticellularprotein, infibroblast biology[J]. Biochem Cell Biol,2003,81 (6):355-363
    [56]BlomIE, vanDijkAJ, WietenL, etal. InvitroevidencefordiferentialinvolvementofCTGF, TGF β, andTGF-BBinmesangialresponsetoinjury[J]. NephrolDialTransplant,2001,16:1139-1148
    [57]FanWH, PechM, KarnovskyMJ. Connectivetissuegrowthfactor(CTGF)stimulatesvascularsmoo thmusclecellgrowthandmigrationinvitro[J]. EurJCellBiol,2000,79:915-923
    [58]GuhaM, XuZG, TungD, etal. Specificdown-regulationofconnectivetissuegrowthfactattenua tesprogressionofnephropathyinmousemodelsoftypelandtype2diabetes[J]. FASEBJ,2007,21(1 2):3355-3368
    [59]OhshimY, MaRc. YasudaY, etal. Reductionofdiabetes-inducedoxidativestress,fibroticcyt okineexpression, andrenaldysfunctioninproteinkinaseCbeta-nullmice[J]. Diabets,2006,55 ( 11):3112-3120
    [60]GuhaM,XuZG, TungD,etal. Specificdown-regulationofconnectivetissuegrowthfactattenua tesprogressionofnephropathyinmousemodelsoftypelandtype2diabetes[J]. FASEBJ,2007,21(1 2):3355-3368
    [61]LiuN, shimizuS, Ito-IharaT, etal. Angiotensin Ⅱreceptorblockadeamelioratesmesangiop rolliferativeglomerulonephritisinratsthroughsuppressionofCTGFandPAI-1, independendyof thecoagulationsystem[J]. NephronExpNephrol,2007,105(3):E65-E74
    [62]SuzumaK, NaruseK, Suzumal, etal. Vascularendothelialgrowthfactorinducesexpressionofc onnectivetissuegrowthfactorviaKDR, Fltl, andphosphatidylinositol3-kinase-akt-dependent pathwaysinretinalvascularcells[J]. JbioJchem,2000,275(52):4072-40731
    [83]MatsudaS,GomiF,katayamaT, etal. Inductionofconnectivetissuegrowthfactorinretinalpi gmentepitheliumcellsbyoxidativestress[J]. JpnJOphthlalmol,2006,50(3):229-234
    [64]Haydont V, Riser BL, Aiguepers J, et al. Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation:a role for CCN2 and low concentration of TGF-beta. Am J Physiol,2008,294(6):1332-1341
    [65]Carvajal Gonzalez G, Rodriguez Vita J, Rodrigues Diez R, et al. Angiotensin Ⅱ activates the Smad pathway during epithelial mesenchymal transdifferentiation AngⅡ,Smads and EMT.Kidney International,2008,74(1):585-595
    [66]Yang F, Chung AC, Huang XR, et al. Angiotensin Ⅱ induces connective tissue growth factor and collagen I ecpression via transforming growth factor-beta dependent and independent Smad pahtways:the role of Smad3. Hypertension,2009,54(4):877-884
    [67]Ruiz Ortega M, Rodriguez Vita J, Sanchez Lopez E, et al. TGF-beta sigaling in vascular fibrosis. Cardiovasc Res,2007,74(2):196-206
    [68]Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int,2006,70(11):1914-1919
    [69]Kroening S, Solomovitch S, Sachs M, et al. Regulation of connective tissue growth factor by hepatocyte growth factor in human tubular epithelial cells.Nephrol Dial Transplant.2009,24(3):755-762
    [70]Eddy AA. Serine proteases, inhibitors and receptors in renal fibrosis. Thromb Haemost. 2009,101(4):656-64.
    [71]Clark IM, Swingler TE, Sampieri CL, et al.The regulation of matrix metalloproteinases and their inhibitors. Int J biochem Cell Biol,2008,40(6):1362-1378
    [72]Catania JM,Chen G, Arrish AR. Role of matrix netalloproteinases in renal pathophysiologies. Am J Physiol,2007,292(3):905-911
    [73]Mclennan SV,Kelly DJ,Schache M, et al. Advanced glycation end products decrease mesangial cell MMP-7:a role in matrix accumulation in diabetic nephropathy. Kidney Int,2007,72(4):481-488
    [74]Cai G, Zhang X, Hong Q, et al. Tissue inhibitor of metalloproteinase-1 exacerbated renal interstitial fibrosis throug enhancing inflammation. Nephrol Dial Transplant,2008,23(6): 1861-1875
    [75]YoshioY,MiyazakiM, AbeK, etal. SuppressestheProgressionofPeritonealFibrosisinMouseE xperimentalModel[J]. KidneyInt,2004,66:1677-1685
    [76]LiuFY, XiaoL, PengYM, etal. InhibitioneffectofsmallinterferingRNAofconnectivetissueg rowthfactorontheexpressionofvascularendothelialgrowthfactorandconnectivetissuegrowth factorinculturedhumanperitonealmesothelialcells[J].ChinMedJ(Engl),2007,120(3):231-23 6
    [77]AguileraA, Yanez-MoM, SelgasR, etal. Epithelialtomesenchymaltransitionasatriggeringf actorofperitonealmembranefibrosisandangiongenesisinperitonealdialysi spatients[J]. Cur rOpinInvestigDrugs,2005,6(3):262-268
    [78]DevuystO, TopleyN, WilliamsJD. Morphologicalandfunctionalchangesinthedialysedperito nealcavity:impactofmorebiocompatiblesolutions[J]. NephrolDialTransplant,2002,17(Suppl 3):12-15
    [79]BrownKJ,MaynesSF, BezosA, etal. Anovelinvitroassayforhumanangiogenesis[J]. Lablnvest ,1996,75(4):539-555
    [80]江燕.细胞因子及其靶向干预在肾间质纤维化治疗中的应用.泸州医学院学报.2001,34(4):431-433
    [81]Russo LM, Del Ree, Brow D, et al. Evidence for a role oftransforming growth factor (TGF)-beta in the induction of postglomerular albuminuria in diabetic nephropathy: amelioration by soluble TGF-beta type Ⅱ receptor [J]. Disbetes,2007,56(2):380
    [82]Choi YK, Moon J, Jung HK, et al. prevention of tissue injury by ribbon antisense to TGF-betal in the kidney[J]. Int J Mol Med,2005,15(3):391
    [83]Liu Y. Hepatocyte growth factor in kidney fibrosis:therapeutic potential and mechanism of action[J]. Renal Physiol,2004,287(1):7
    [84]Hui JunW, Long C, Zhi Gang Z, et al. Ex vivo transfer of the decorin gene into rat glomerulus via a mesangial cell vector suppressed extracellular matrix accumulation in experimental glomerulonephritis[J]. Exp Mol pathol,2005,78(1):17
    [85]Delas Heras N, Ruiz-ortega M, Ruperez M, et al. Role of connective tissue growth factor in vascular and renal damage associated with hypertension in rats. interactions with angiotensin Ⅱ[J].Renin Angiotensin Aldosterone Syst,2006,7 (4):192
    [86]闫晗,刘淑华.他汀类药物的肾保护作用研究进展[J].中华全科医师杂志,2009,8(1):40
    [87]郎明健,闵新文,李健,等.RNA干扰靶向抑制结缔组织生长因子拮抗肾脏纤维化的发展[J].中华急诊医学杂志,2010;19(6):615
    [88]汤殉,蔡德鸿,曾莉,等siRNA沉默CTGF表达对高糖诱导人肾小管上皮细胞转分化的影响[J].广东医学,2010:31(1):55
    [89]Either F, Bucher E, Van Roeyen CR, et al. PDGF-C acts as a potent pro-inflammatory cytokine that mediates renal interstitial fibrosis in vivo[J]. J Am Soc Nephrol in Revision, 2007,22(6):213
    [90]沈建平,朱宁希,陈均法,等.维甲酸综合征诊断和治疗的探讨[J].浙江临床医学杂志,2002,4(05):9-14
    [91]王春来,李晶晶.全反式维甲酸对大鼠肾间质纤维化的干扰.中国老年保健医学杂志,2011,9(6):24-26
    [92]Usui H, ShikataK, MatsudaM, et al. HMG-CoA reductase inhibitor ameliorates diabetic nephropathy by its pleiotropic effects in rats[J]. Nephrol Dial Transplant,2003;18(2): 265
    [93]张旭,张翠薇,高岑,等.利用抗体芯片分析肾间质纤维化的治病因子.泸州医学院学报,2011,34(5):505-510
    [94]Hewitson ID.Martic M.Kelynack KJ, et al. Pentoxifytline reduces in vitro renal myofibroblast proliferation and collagen secretion. Am J Nephrol,2000, (1),82-88
    L95] FangCC, Yen CJ, Chen YM, et al. Pontoxifytline inhibits human peritoneal mesothelial cell growth and collagen synthesis:effects on TGF-beta. Kidney Int,2000,57(6),2626—263
    [96]Hung KY, Huang JW, Chen CT,et al. PontoxifyUine modulates intracellular signalling of TGF-beta in cultured human peritoneal mesothelial cells:implications for prevention of encapsulating peritoneal lsclerosis. Nephrol Dial Transplant,2003,18(4),670—676
    [97]Hung KY.Chen CT, Huang JW, et al. Dipyridamole inhibits TGF-beta induced。collagen gene expression in human peritoneal mesothelial cells. Kidney Int,2001,60(4),1249-1257
    [98]DumanS, GunalAI,SenS, AsciG, et al.Does enalanpril prevent peritoneal fibrosis induced by hypertonie(3.86%) peritoneal dialysis solution. Petit Dial Int,2001,21(2),219-224
    [99]Turkeapar N, Bayar S, Koyuncu A, et al. Octreotide inhibits hepatic fibrosis, bileduct proliferation and bacterial translocation in obstructive jaundice Hepatongastroenterology,2003,50(51),680-683
    [100]Wang ZR,Li DG,Chen XM, et al. Therapentic efects of octreotide on hepatofibrosis-induced with tetrachloride in rats. Zhonghua Can Zang Bing Za Zhi,2003,11(7),408-411
    [101]MargettsPJ, GyorffyS, KolbM, et al.Antiangiogenic and antifibrotic genetherapy in achronic infusion model of peritoneal dialysis in rats[J].Jam Soc Nephrol,2002,13(3): 721-728
    [102]Smyth AP, Rook SL, Detmar M, et al. Antisense oligonucleotides inhibit vascaular endothelial growth factor/vascular permeability factor expression in normal human epidermal keratinocytes[J]. J Invest Dennmol,1997,108:523-526
    [103]Oettinger C,D Souza M, lversen P, et al. Microencapsulated antisense oligomers to NFkB[J]. J Am Soe Nephrol,2000,11:497
    [104]Akagi Y, lsaka Y,Arai M, el al. Inhibition of TGF-β lexpression by antisense oligonueleelides suppressed extratelular nmtfix accumulation in experimental glomendonephritis[J]. Kidney lnt,1996,50:148-155
    [105]Lsaka Y, Akagi Y,Ando Y, et al. Genetherapy by transforming growth factor-b receptor-IgG Fc chimera supressed extracellutar matrix accumtdation in experimental glomeraloneohritis[J]. Kidney lnt,1999,55:465-475
    [106]刘晓倩,闫军堂,马春雷.肾间质纤维化中医病因病机的认识探讨.辽宁中医杂志.2011,38(12):2373-2376
    [107]王冰.重广补注黄帝内经素问[M].北京::学苑出版社,2004:223
    [108]钱超尘,郝万山整理,张仲景著.伤寒论[M].北京:人民卫生出版社,2005:13
    [109]竹剑平等整理,李用粹著.证治汇补[M].北京:人民卫生出版社,2006:386
    [110]龚廷贤.寿世保元[M].北京:人民卫生出版社,2001:226
    [111]山东中医学院,河北医学院.黄帝内经素问校释[M].北京:人民卫生出版社,1982:328
    [112]山东中医学院,河北医学院.灵枢经校释[M].北京:人民卫生出版社,1982:49
    [113]张景岳.景岳全书[M].太原:山西科学技术出版社,2010:389
    [114]何廉臣重订,戴天章著.重订广温热论[M].福州:福建科学技术出版社,2005:198
    [115]李东垣.脾胃论[M].北京:人民卫生出版社,2005:26
    [116]周学海.读医随笔[M].北京:中国中医药出版社,1997:49
    [117]唐宗海.血证论[M].北京:人民卫生出版社,2005:5
    [118]陶静莉,郭敏,刘华锋,等.三七总苷对慢性肾衰竭大鼠模型肾纤维化的治疗作用及机制[J].中国中西医结合肾病杂志,2008,9(9):799
    [119]宁英远,王俭勤,屈燧林.大黄素对人肾成纤维细胞增殖的影响.中国中西医结合杂志,2000,20(2):184-186
    [120]何东元,王笑云,王宁宁,等.大黄酸抑制肾间质成纤维细胞激活的实验研究.中华肾脏病杂志,2006,22(2):105-108
    [121]周忠启.西红花酸对单侧输尿管结扎大鼠肾组织结缔组织生长因子表达的影响[J].牡丹江 医学院学报,2008,29(4):34
    [122]陆海英,张悦,刘煜敏,等.丹参酚酸B对肾纤维化大鼠肾组织MMP-2表达的影响[J].上海中医药大学学报,2009,23(2):55
    [123]瓮孝刚,窦敬芳.百令胶囊对实验性糖尿病大鼠肾脏的保护作用[J].中华实用中西医杂志,2005,18(21):1475.
    [124]刘迟,郭刚,胡仲仪.莪术对单侧输尿管梗阻大鼠肾间质纤维化的影响[J].上海中医药杂志,2006,12(12):71.
    [125]朱永俊,张克非,郭明好.商陆皂甙甲对阿霉素致肾小球硬化大鼠TGF-β1表达的影响.现代中西医结合杂志,2009,18(7):735-737.
    [126]党红星,金玉,李宇宁.氧化苦参碱对脂多糖诱导的人肾小球系膜细胞增殖p-STATl/PIAS1信号分子的影响.第三军医大学学报,2009,31(17):1645-1648.
    [127]朱辟疆,周逊,赵华,等.肾衰康胶囊治疗慢性肾衰竭临床观察及对尿TGF-β1、Ⅳ型胶原的影响.世界中西医结合杂志,2009,4(3):189-192.
    [128]李夏玉,范永升.肾纤康汤对系膜增生性肾小球肾炎患者血清层粘连蛋白及Ⅳ型胶原的影响.中国中西医结合肾病杂志,2002,3(11):643-644,656.
    [129]王怡,何立群.抗纤灵冲剂对慢性肾衰竭肾功能及纤维化指标影响的临床研究.中国中西医结合肾病杂志,2002,3(7):396-398.
    [130]胡昭,裴斐,王荣,等.海昆肾喜胶囊治疗慢性肾衰竭的多中心临床研究.临床肾脏病杂志,2005,5(3):135-138.
    [131]王永钧,张敏鸥.痰瘀互结与肾内微型癥积[J].中国中西医结合肾病杂志,2003,4(1):1-3
    [132]于秀辰,吕仁和.糖尿病肾病的中西医结合治疗[J].中国医刊,2000,35(8):42-43
    [133]孙建芝,牛晓亚,韩丽华等.痰浊证微观辨证指标的实验研究[J].河南中医,1996,16(2):21-22
    [134]孙敬昌.从痰瘀论治肾小球硬化理论探析[J].中华中医药学刊,2007,25(8):1691-1693
    [135]GuoH, LeungJC, LamMF, etal. Smadtransgeneattenuatesperitonealfibrosisinuremicratstr eatedwithperitonealdialysis[J]. JAmSocNephro,12007,18(10):2689-2703
    [136]王钢,陈以平,邹燕勤,主编.现代中医肾脏病学.人民卫生出版社.2003:850
    [137]郑筱萸,主编.中药新药临床研究指导原则.北京:中国医药科技出版社,2002:163
    [138]谌贻璞,主编.肾内科学.人民卫生出版社.22008:240-265
    [139]陈学忠,孙文勇,叶望云,等.川芎嗪、丹参对体外培养成纤维细胞的作用[J].中西医结合杂志,1987,7(9):547
    [140]余先杰,吴晋湘,王新星,等.川芎嗪对血管平滑肌细胞增殖的抑制作用及其机理[J].湖南医科大学学报,1992,17(4):350
    [141]曾升民,魏民,黄启福.川芎嗪及活血注射液对家兔实验性肾小球肾炎的影响[J].中西医结合杂志,1983,3(6):357
    [142]孙林,易著文,虞佩兰.川芎嗪对人胚肾系膜细胞增殖的影响及其机理探讨[J].中国中西医结合杂志,1995,15(3):134
    [143]屈燧林,方勤,陈高翔,等.汉防已甲素,川芎嗪对苦杏仁苷对人肾成纤维细胞的影响[J].中华肾脏病杂志,2000,16(3):186-189
    144[144]远方,叶任高.叶任高治疗慢性肾功能衰竭经验集要.辽宁中医杂志,2001,28(6):336-337
    [145]魏向阳.大黄延缓慢性肾功能衰竭机制的研究进展.现代中医药,2003,(3):58-59
    [146]何东元,王笑云,王宁宁,等.大黄酸抑制肾间质成纤维细胞激活的实验研究.中华肾脏病杂志,2006,22(2):105-108
    [147]秦建华,陈明.大黄素抗肾间质纤维化研究进展[J].中国中西医结合肾病杂志,2006,7(3):184-186
    [148]罗海清,梁东,刘华锋.肾间质纤维化的形成机制及中药防治作用[J].中国中西医结合肾病杂志,2004,5(7):432-434
    [149]宁英远,王俭勤.大黄素对人肾成纤维细胞增殖的影响[J].中国中西医结合杂志,2000,20(2):105-106
    [150]王晓玲,王检勤.大黄素对人肾成纤维细胞抑制作用的研究[J].中国中西医结合肾病杂志,2002,3(11):629
    [151]陈高翔,屈燧林,方勤.大黄素对人胚肾成纤维细胞产生纤溶酶原激活物抑制剂的影响.交通医学,2000,14(6):576-578
    [152]姚建,黎磊石,周红.大黄素对培养人系膜细胞纤维连接蛋白产生的抑制作用.肾脏病与透析肾移植杂志,1994,3(5):349-351
    [153]HuZ, WangZH, PengT, etal. Renoprotecteffectoffucoidanonadriamycin-inducedglomerulos clerosisinrats[J]. JournalofShandongUniversity(HealthSciences),2006,44(3):291-295
    [154]CoothanKV, AnthonyJ, SreenivasanPP, etal. Renalperoxidativechangesmediatedbyoxalate :theprotectiveroleoffucoidan[J].LifeSciences,2006,79(19):1789-1795
    [155]张永,丁国华,张建鄂.绞股蓝总皂甙对梗阻性肾病大鼠TGF-β/Smad信号通路及CTGF表达的影响[J].中国医师杂志,2006,8(1):67-69
    [156]胡兴荣,崔显念,徐早先.糖尿病肾病HA, LN. PCⅢ、Ⅳ-C检测及其临床意义、检验医学与临床,2007,4(3):168-169
    [157]孙元莹,李志军,史晓峰,等.益肾康对糖尿病大鼠转化生长因子β1表达的影响.中国中西医结合急救杂志,2004,11(3):169-172
    [158]梁栋,王辉,王涛,等.联合检测TNF、尿β2-MG、肝纤四项对肾纤维化无创诊断的评价.中国中西医结合肾病杂志,2008,9(1):91-92
    [159]Yungetal. Kidney Int,1996:50:1337-1343
    [160]Lipkin GW, et al.Nephrol Dial Transplant,1993,8:357-360
    [161]YungSS. etal. Kindney Int,1994,46:527-533
    [162]Szetocc, ChowKM, Lamcw, etal. Clinicalbioccompatibilityofaneutralperitonealdialysi ssolutionwithminimalglucosedegradationproducts-Al-yearrandomizedcontrioltrial[J]. Nep hrolDialTransplant,2007,22(2):552-559
    [163]RastaldiMP, FerraioF, Giardinol, etal. Epithelial-mesen-chymaltransitionoftub ulanepithelialcellsinhumanrenalbiopsies[J]. Kidneylnt,2002,62(3):137-146
    [164]史跃先,黎磊石,周虹,等.107例IgA肾病患者肾组织胶原蛋白Ⅳ与肾脏病理关系.解放军医学杂志,1993:18(2):114-117
    [165]Cai G, ZhangX, HongQ, et al. Tissue in hibitor of metalloproteinase-1 exacerbated renal in terstitial fibrosis through enhancing inflammation. Nephrol Dial Transplant.2008, 23(6):1861-1875
    [166]Nee L,Tuite N, Ryan MP, et al.TNF-alpha and IL-1 beta-mediated regulation of MMP-9 and TIMP-1 in human glomerular mesangial cells. Nephron Exp Nep hrol.2007,107(2):e73-86
    [167]吕学爱,刘芬芬,刘翠珍,等.心肝宝对在糖尿病大鼠肾脏MCP-1、TIMP-1表达的影响.泰山医学院学报.2009,30(11):812-817
    [168]科学技术部.《关于善待实验动物的指导性意见》.2006年9月30日
    [169]陈香美.主编.肾脏病学实验技术操作规程.人民军医出版社.2011:199-201
    [170]徐叔云,陈修,卞如濂.药理实验方法学.北京:人民卫生出版社,2006:1889
    [171]赵宗江,谷海英,张新雪,等.复方鳖甲软肝片对单侧输尿管结扎大鼠肾组织TGF-β1蛋白及其mRNA表达影响的实验研究.北京中医药大学学报,2005,,28(2):23-25
    [172]邵悦,赵宗江,杨美娟.复方鳖甲软肝片对5/6肾切除大鼠肾组织FN表达影响的实验研究.山东中医药大学学报,2005,,29(3):240-242
    [173]包玉生,毕增祺.肾纤维化动物模型.国外医学泌尿系分册.1994,14:66-69
    [174]何永成,栾韶东,陈海波,等.非免疫性慢性肾衰大鼠模型的建立.宁夏医学杂志,2004,26(8):465-466
    [175]李洪燕,郑旭光,程桂芳,等.贝那普利、氯沙坦在冷冻致慢性肾衰模型的疗效比较.哈尔滨商业大学学报(自然科学版),2003,19(5):509-511
    [176]Gibb IA, Hamilton DH. An experimental model of chronic renal failure in mice.Clin Immimopathol,1985,35:276-284
    [177]陈亮,薛痕.肾纤维化模型的研究进展.四川动物,2003,22(3):197-201
    [178]赵宗江,张新雪,牛建昭,等.温阳降浊汤治疗肾功能衰竭的实验研究.中国中医药信息杂志,2000,7(3):21-23
    [179]Scholey JW, Miller PL, Rennke HG, et al. Effect of converting enzyme inhibition on the course of adria myrin-induced nephropathy.Kidney Int,1989,36:816-818
    [180]何立群,王怡,郑平东.阳离子化牛血清白蛋白制作慢性肾衰动物模型.安徽中医临床杂志,1998,(10):356
    [181]Wang W, Tzanidis A, Divjak M, et al. Altered signaling and regulatory mech anisms of apoptosis in focal and segmental glomerulosclerosis. J Am Soc Nephrol,2001,12(7):1422-1433
    [182]熊祖应,丁长海,张伯科,等.大鼠慢性肾功能不全模型的建立.安徽医科大学学报,2000,5(2):100-103
    [183]赵宗江,牛建昭,张新雪,等.肝肾宝对5/6肾切除大鼠肾组织细胞外基质影响的实验研究.北京中医药大学学报,2004,27(5):26-30
    [184]YouHua Liu. Renal fibrosis:New Insights into Epithelial-Messenchymal-Transition in Kidney Fibrosis. J Am Soc Nephrol,2001,21(2):212-222
    [185]Willis BC, Borok Z. TGF-β induced EMT:Mechanisms and implications for fibrotic llung disease. Am J Physiol Lung Cell Mol Physiol,2007,293:525-534
    L186]Li J H, Zhu HJ, Huang XR, et al. Smad7 inhibits fibrotic effect of TGF-β on renal fubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol,2002,13(6):1464-1472
    [187]Zhang C, Meng X, Zhu Z, et al. Connective tissue growth factor regulates the key events in tubular epithelial to myofibroblast transition in vitro. Cell Bio Int,2004,28(12):863-873
    [188]Roxburgh SA, Murphy M, Pollock CA, Brazil DP. Recapitulation of embryological programmes in renal fibrosis--the importance of epithelial cell plasticity and developmental genes. Nephron Physiol.,2006,103(3):139-48
    [189]Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis-evidence for and against. Int J Exp Pathol.2011,92(3):143-50
    [190]LiuY.Epithelialtomesenchymaltransitioninrenalfibrogenesis:Pathologicsignificanc e, molecularmechanism, andtherapeuticintervention[J]. JAmSocNephrol,2004,15(1):1-12
    [191]Nelson PJ, von Toerne C, Grone HJ. Wnt-signaling pathways in progressive renal fibrosis. Expert Opin Ther Targets.2011 Sep;15(9):1073-83
    [192]HuangYJ, WangZH,ZhangJB, etal. Smad7 instead of Smad6 blocks epithelialmesenchymal transition induced byTGF-beta inhuman renal proximal tubule epithelial cells. Journal of Cellular and Molecular Immunology,2008,24(11):1074-1078

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700