金属熔体结构随温度变化的时间滞后性规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多金属材料的制备过程都包含液-固转变,作为母相的液体结构和性质对所形成的固体材料的组织和性能有重要影响。虽然人们对液态金属熔体的结构进行了大量的实验和理论研究,但是,国内外的研究主要集中在熔体在一定温度下的结构及其随温度的变化上,未见有温度变化后其结构随时间的变化规律研究。本文主要研究熔体温度变化后,其电阻率、形核过冷度和凝固组织随时间的变化规律。取得的主要研究结果主要有:
     采用四电极法对连续升降温和非连续升降温后过热和过冷液态镓的电阻率进行了测定。结果发现温度变化后液态镓的电阻率随保温时间的延长而发生变化。温度快升后,液态镓的电阻率随保温时间的延长而增大,温度快降后,液态镓的电阻率随保温时间的延长而减小。这说明镓熔体结构的变化滞后其温度的变化。这一滞后时间超过20分钟。在连续升降温过程中,在同一温度下液态镓的在升温过程中的电阻率小于其在降温过程中的电阻率,这与温度快变后液态镓电阻率随时间的变化规律是一致的。
     首次发现镓熔体电阻率随温度的变化在熔点温度附近具有不连续性。加热过程中,过冷镓熔体的电阻率在接近镓的熔点时有一个突变。连续加热时,完成突变所需的时间为6分钟左右;急速加热时,完成突变所需时间为7分钟左右。经过过热的镓熔体冷到其熔点温度以下时,其电阻率的突变存在非常明显的滞后性,镓熔体的电阻率开始发生突变的滞后时间超过67分钟,镓熔体电阻率发生突变所用的时间为7分钟。
     采用DSC热分析技术研究了过热的镓熔体降温后的保温时间与形核过冷度及放热峰面积的关系。结果发现,镓的形核过冷度及放热峰面积均随降温后的保温时间的延长而减小,这与镓熔体电阻率实验所得结果是一致的。
     建立了预测液态金属原子团尺寸的理论模型。根据此模型可确定液态金属中最大原子团尺寸与温度的关系。从此模型中预测的液态镓中最大原子团尺寸随温度变化规律符合其电阻率、过冷度和结晶潜热随温度的变化实验规律。
     研究了熔体加热温度和保温时间对Al-11.6%Si合金显微组织及性能的影响。结果发现:合金液的加热温度和保温时间不仅影响合金凝固的组织,而且也影响其力学性能。将合金液温度从720℃升到900℃,共晶硅由粗大的针片状变为点状或短棒状、合金抗拉强度提高了6.33%、延伸率提高了10.83%。升温后的保温时间对合金组织和力学性能的影响时间不同于降温后的保温时间,随升温后保温时间的延长,合金的组织变细、抗拉强度和延伸率提高;随降温后保温时间的延长,合金的组织变粗、抗拉强度和延伸率降低。
For many metal materials,the preparation process involves a transformation from liquid to solid.So the structure and character of liquid inevitablely influence the structure and property of solid.Many experimental and the theoretical researches have been done to the structure of metal melt.However,these researches mainly concentrate on the melt structure at a certain temperature or the effect of temperature on the melt structure.It has not been reported that the effect of the time after changing the melt temperature on its structure.This thesis mainly deals with the effects of the time after changing the melt temperature on the resistivity,the nucleation undercooling and the solidification structure of metal melts.
     The resistivitiese of the overheated and the undercooled liquid gallium during continuous and discontinuous heating and cooling processes have been determined by using four electrodes method.It is found that the resistivity of liquid gallium varies with the time after changing the melt temperature.For the discontinuous heating process,the resistivity of liquid gallium increases with the time after changing the melt temperature.For the discontinuous cooling process,the resistivity of liquid gallium decreases with the time after changing the melt temperature.These mains that structure transformation of melt lags behind its temperature.The lagging time for liquid gallium is beyond 20 minutes.For the continuous heating and cooling processes,the resistivity of liquid gallium at a temperature during the continuous heating processes is lower than that during continuous heating processes,which is in agreement with the result of discontinuous heating and cooling processes.
     It is found that the dependence curve of resistivity on temperature is discontinuous around the melting point.For the heating process,the resistivity of undercooled liquid gallium increases suddenly when the temperature approaches the melting point.The time for accomplishing the sudden change of resistivity is 6 minutes for the continuous heating processe, and 7 minutes for the discontinuous heating processe.For the cooling process,the resistivity of superheated liquid gallium decreases suddenly when the temperature is lower than the melting point.The lagging time for the resistivity to start sudden change is as long as 67minutes,and the time for accomplishing the sudden change of resistivity is 7 minutes.
     The effects of the time holding melt in a temperature after a heating process on the nucleation undercooling and the exothermic peak area of gallium have been determined by using DSC.It is found that the nucleation undercooling and the exothermic peak area decrease with increasing the time holding the melt in a temperature after a heating process,which is in agreement with the result of resistivity.
     A model to predict the size of atom cluster in liquid metal has been made.In terms of this model,the dependence of the largest atom cluster in liquid metal on temperature can be determined.The results of the dependence of the largest atom on temperature predicted from present model is in agreement with the experimental results of the resistivity,nucleation undercooling and the exothermic peak area obtained in liquid gallium.
     The effects of melt temperature and holding time on the microstructure and the mechanical property of Al-11.6%Si alloy have been studied.It is found that the melt temperature and the holding time influence the microstructure and the mechanical property of alloy.When the melt temperature increases from 720℃to 900℃,the eutectic silicon transforms from large plate to short rod or small point,and the tensile strength and extensibility increase 6.33%and 10.83%, respectively.The effect of the time holding melt in a temperature after a heating process on the microstructure and the mechanical property of Al-11.6%Si alloy is different from that of a cooling process.For the heating process,increasing the holding time can refine the microstructure and increase the mechanical property of alloy.For the cooling process,the microstructure becomes large and the mechanical property of alloy decreases with increasing the holding time.
引文
[1]胡汉起.金属凝固理论[M].北京:机械工业出版社,1999.11.
    [2]Berezutski V V,Ivanov M I.Electrical resistivity of liquid Cu-Eu and Cu-Gd alloys[J].Journal of Alloys and Compounds,1999,282(1):1-4.
    [3]Jian Zengyun,Nagashio K,Kuribayashi Kazuhiko.Direct observation of the crystal growth transition in undercooled silicon[J].2002,33(9):2947-2953.
    [4]Bringer A,Wagner D.Conductivity of liquid metals[J].1971,241(4):295-307.
    [5]下地光雄.液态金属[M].郭淦钦,译.北京:科学出版社,1987.2.
    [6]刘全坤,祖方遒.材料成形基本原理[M].北京:机械工业出版社,2005:10-12.
    [7]郭景杰,傅恒志.合金熔体及其处理[M].北京:机械工业出版社,2005:78-151.
    [8]Monaghanl B J.A Four-Probe do Method for Measuring the Electrical Resistivities of Molten Metals[J].International Journal of Thermophysics,1999,20(2):677-690.
    [9]Sat F,Gasser J G.Electronic transport properties of liquid Ga-Zn alloys[J].Intermetallics,2003,11(11):1369-1376.
    [10]Hirokatsu Aoki,Koichi Hotoduka,Toshio Itami.The hidden structure in liquid ⅢB-ⅤB alloys[J].Journal of Non-Crystalline,Solids 2002,312-314:222-226.
    [11]王强,李言祥.液态金属电子输运性质的理论研究[J].材料导报,2001,15(8):7-9.
    [12]Wang Qiang,Lu Kunquan,Li Yanxiang.The relationship between electrical resistivity,thermopower and temperature for liquid InSb[J].Acta Physica Sinica,2001,50(7):1355-1358.
    [13]Wang Qiang,Lu Kunquan.Li Yanxiang.Anomalous temperature dependence of the electrical resistivity of molten Sb[J].Chinese Science Bulletin,2001,46(17):990-994.
    [14]Wang Yuren,Lu Kunquan,Li Chenxi.Structure of liquid GaSb and InSb studied with the extended X-ray-absorption fine structure method[J].Physical Review Letters,1997,79(4):3664-3667.
    [15]郭丽君,祖方遒,朱震刚.以内耗技术探索Pb-Sn合金熔体的结构变化[J].物理学报,2002,51(2):300-304.
    [16]王连文,冼爱平.Y射线吸收法测量液态金属In的密度[J].金属学报,2004, 40(6):643-646.
    [17]洪新国.熔体性质与测量方法的研究[D].北京:中国科学院物理研究所博士学位论文,1994.6.
    [18]李月珠.快速凝固技术和材料[M].北京:国防工业出版社,1993.1.
    [19]吴兴惠,项金钟.现代材料设计与计算教程[M].北京:电子工业出版社,2002.6.
    [20]罗旋,费维栋,李超,等.材料科学中的分子动力学模拟研究进展[J].材料科学与工艺,1996,4(1):124-128.
    [21]Poole P H,Grande T,Angell C A,et al.Polymorphic phase transitions in liquids and glasses[J].Science,1997,275:322-323.
    [22]Jahn S,Pratesi G,Suck J B.Collective atomic dynamics in molten Rb_(100-x)Sb_x investigated by inelastic neutron-scattering[J].Non-cryst Solids,1999,250:263-266.
    [23]边秀房,王伟明,李辉,等.金属熔体结构[M].上海:上海交通大学出版社,2003.
    [24]Itami T,Munejiri S,Masaki T,et al.Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation:A comparison to liquid Pb[J].Physical Review B,2003,67(6):064201-012.
    [25]Ivanov M I,Berezutski V V.Electrical resistivity of liquid Cu-Ce alloys[J].Journal of alloys and Compounds,2004,375(1-2):58-61.
    [26]Bian Xiufang,Sun Minhua,Xue Xianying,et al.Medium-range order and viscosity of molten Cu-23%Sn alloy[J].Materials Letters,2003,57:2001-2006.
    [27]丛红日,边秀房,李辉.Al_5Fe_2合金熔体中程有序结构的研究[J].化学学报,2002,60(2):278-292.
    [28]Reichert H,Klein O,Dosch H,et al.Observation of five-fold local symmetry in liquid lead[J].Nature,2000,408:839-841.
    [29]Spaepen F.Five-fold symmetry in liquids[J].Nature,2000,408:781-82.
    [30]周兵,祖方遒,刘兰俊,等.Pb-Sb30%液-液结构转变的不可逆性及其对凝固的影响[J].铸造,2007,56(7):750-753.
    [31]郭丽君,祖方遒,朱震刚.液态Pb-Sn合金的内耗研究[J].中山大学学报,2001,40(A):273-275.
    [32]Zu Fangqiu,Zhu Zhengang,Guo Lijun,et al.Liquid-Liuid phase transition in Pb-Sn melts[J].Phys Rev,2001,64(18):180203-07.
    [33]Zhu Zhengang,Zu Fangqiu,Guo Lijun.Intemal friction methord:uitable also forstructural changes of liquids[J].Materials Science and Engineering,2004A370(1-2):427-430.
    [34]Zu Fangqiu,Zhu Zhengang,Guo Lijun,et al.Observation of an Anomalous Discontinuous liquid-Structure Change with Temperature[J].Phys Rev Lett,2002,89(12):125505-08.
    [35]丁国华,祖方遒,余谨,等.温度诱导液态In-80%Sn合金结构的非连续变化的分形分析[J].金属学报,2006,42(12):1259-1261.
    [36]边秀房,李辉,张林,等.Pb-Sb合金液相线上方的异常区[J].科学通报,1996,41(13):1237-1240.
    [37]余谨,李强,祖方遒,等.二元合金PbBi电阻率随温度的异常变化[J].合肥工业大学学报,2006,29(2):151-154.
    [38]余谨,张燕,祖方遒,等,二元SnZn的电阻率随温度的变化特性[J].中国有色金属学报,2006,16(8):1337-1342.
    [39]李强.PbBi及InSn合金熔体结构的电阻率法研究[D].安徽:合肥工业大学硕士学位论文2005.6.
    [40]王强.液态In_(1-x)Sb_x,、Ga_(1-x)Sb_x电子输运性质的研究[D].北京:中科院物理研究所博士学位论文,1999.5.
    [41]Wang Qiang,Lu Kunquan,Li Yanxiang.The relationship between electrical resistivity,thermopower and temperature for liquid InSb[J].ACTA Physica Sinica,2001,50(7):1355-1358.
    [42]Wang Qiang,Lu Kunquan,Li Yanxiang.Anomalous temperature dependence of the electrical resistivity of molten Sb[J].2001,46(17):1431-1433
    [43]Lu Kunquan,Wang Qiang,Li Chenxi,et al.Yhe structures,electronic states and properties in liquid Ga-Sb and In-Sb systems[J].Journal of Non-Crystalline Solids,2002,34:312-314.
    [44]Gu Tingkun,Qin Jingyu,Bian Xiufang,et al.Ab initio molecular-dynamics simulations of liquid GaSb and InSb[J].Physical Review B,2006,71(10):104206-104213.
    [45]Xi Yun,Zu Fangqiu,Li Xianfen,et al.High-Temperature abnormous behavior of resistivities for Bi-In melts[J].Physics Letters A,2004,329(3):221-225.
    [46]Shen Rongrong,Zu Fangqiu,Li Qiang,et al.Study on temperature dependence of resistivity in liquid In-Sn alloy[J].Physica Scripta,2006,73:184-187.
    [47]Wang Li,Bian Xiufang,Li Hui.Structural characteristics of alloy melt and crystal growth by molecular dynamics simulation[J].Materials Letters,2001,51(1):7-13.
    [48]王伟民.Al-Si合金熔体的微观结构及Si原子集团的演变行为[D].山东:山东工业大学博士学位论文,1998.8.
    [49]Jank W,Hafner J.Structural and electronic properties of the liquid polyvalent elements:The group-Ⅳ elements Si,Ge,Sn,and Pb[J].Physical Review B,1990,41(3):1497-1515.
    [50]Stich L,Car R,Parrinello M.Bonding and disorder in liquid Silicon[J].Physical Review Lett,1989,63(20):2240-2243.
    [51]Itami T,Munejiri S,Masaki T,et al.Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation:A comparison to liquid Pb[J].Physical review B,2003,67(6):064201-06411.
    [52]Liu Changsong,Li Guangxu.Quantitative analysis based on the pair distribution function for understanding the anomalous liquid-structure change in In_(20)Sn_(80)[J].Physical Review B,2005,71:06204-06208.
    [53]席贇,刘兰俊,祖方遒,等.温度诱导液相结构转变对Pb-Sn合金凝固行为及组织的影响[J].铸造,2004,53(8):587-589.
    [54]陈光,傅恒志.非平衡凝固新型金属材料[M].北京:科学出版社,2005.7.
    [55]边秀房,刘相法,马家骥.铸造金属遗传学[M].济南:山东科学技术出版社,1999.2.
    [56]Andre Levi.Heredity in cast iron[J].The Iron Age,1927,6:960-965.
    [57]Kita Y,Van Zytveld J B,Movrita Z,et al.Covalency in liquid Transition-Metal Si Alloy:X-ray diffraction studies[J].J.Phys:Condens Matter,1994,6(4):811-820.
    [58]王广厚.原子团簇科学[J].科技导报,1994,2(10):9-11。
    [59]王广厚.团簇物理学[J].物理,1995,24(1):13-19.
    [60]边秀房,刘相法,马家骥.铸造金属遗传学[M].山东:山东科学技术出版社,1999.
    [61]李培杰,桂满昌.Al-16%Si合金的液态相结构转变[J].铸造,1995,23(9):15-20.
    [62]坚增运,杨根仓,周尧和.Al-18%Si合金的温度处理[J].中国有色金属学报,1995,5(4):133-135.
    [63]何树先,孙宝德,王俊,等.熔体温度处理工艺对A319合金组织和性能的影 响[J].中国有色金属学报,2001,11(5):834-839.
    [64]李培杰,桂满昌,贾均,等.Al-16%Si合金熔体的电阻率及其结构遗传[J].铸造,1995.9:15-20.
    [65]桂满昌,贾均,李庆春.液态过热对高硅AlSi合金组织和性能的影响[J].航空材料学报,1996,16(1):26-31.
    [66]陶静梅.AI-Si系列合金熔体温度处理及其凝固过程的研究[D].重庆:重庆大学硕士学位论文,2004.10.
    [67]张林,边秀房,马家骥.铝硅合金的液相结构转变[J].铸造,1995.10(1):7-12.
    [68]周振平,李荣德,马建超.热速处理对Al-Fe合金组织和性能的影响[J].中国有色金属学报,2004,14(8):1420-1425.
    [69]刘勇,李金山,胡锐,等.熔体过热对Ag-Cu合金生长取向的影响[J].特种铸造及有色合金,2004,(1):22-23.
    [70]陈光,颜银标,崔鹏,等.熔体过热对Sb-Bi合金凝固组织的影响[J].材料科学与工艺,2001,9(2):113-116.
    [71]关绍康.熔体热历史对快凝铝铁基合金显微结构影响的研究[J].材料导报,1995,(4):76-79.
    [72]陈光,俞建威,谢发勤,等.熔体过热历史对Ni基高温合金定向凝固界面形态的影响[J].金属学报,2001,37(5):488-492.
    [73]Wang Weimin,Bian Xiufang,Qin Jingyu,et al.Atomic-structure changes in Al-16 pet Si alloy above the liquids[J].Metallurgical and Meterial Transactions A:Physical Metallurgy and Materials Science,2000,31(9):2163-2168.
    [74]Holland-Morutz D,Schenk T,Simonet V,et al.Short-range order in undercooled metallic liquids[J].Materials Science and Engineering,2004,375-377(15):98-103.
    [75]Yin Fengshi,Sun Xiaofeng,Guan Hengrong,et al.Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963[J].Journal of Alloy and Compounds,2004,364(1-2):225-228.
    [76]高建华,管立,曲斌.液态金属及其研究现状[J].现代物理知识,1999,5(11):27-29.
    [77]耿兴国,陈光,傅恒志.过热熔体的几种物性滞后效应[J].材料科学与工程,2002,20(4):549-551.
    [78]李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社.1986.4.
    [79]徐炜.PbSnBi三元合金熔体温度诱导液-液结构转变行为研究[D].安徽:合肥工业大学硕士学位论文,2006.5.
    [80]谢朝阳,田荫棠,包荫鸾.液态合金Al-4.5%Cu的粘滞性[J].西北工业大学学报,1988,6(2):119-122.
    [81]Rei K,Hajime T.Critical-Like Phenomena Associated with Liquid-Liquid Transition in a Molecular Liquid[J].Science,2004,306(5697):845-848.
    [82]Rei K,Hajime T.Control of the Fragility of a Glass-Forming Liquid Using the Liquid-Liquid Phase Transition[J].J.Phys.Conden.Matter,2005,95(6):065701-065709.
    [83]张材荣.金属及半导体团簇结构与性质的理论研究[D].西安:西北师范大学硕士学位论文,2004.5.
    [84]官万兵,高玉来,瞿启杰,等.金属熔体微滴凝固过冷度的DSC研究[J].科学通报,2005,5(11):1142-1144.
    [85]李荣德,孙玉霞,白彦华,等.冷却速度和合金成分对ZA合金结晶潜热的影响[J].特种铸造及有色合金,2001(2):57-59.
    [86]罗强,王新强,何焕典,等.铜银及铂原子纳米团簇熔点随尺寸非单调变化的分子动力学模拟研究[J].人工晶体学报,2006.4,35(2):351-354.
    [87]徐延祎,王丽,边秀房.液态Ni原子团簇演变的计算机模拟[J].原子与分子物理学报,2002.1,19(1):65-68.
    [88]坚增运,常芳娥,马卫红,等.金属的形核和过冷度[J].中国科学(E辑),2000,30(1):9-14.
    [89]Mikhailov A A,Modifying Al-Si alloys by overheating[J].Litejnoe Proizvodstvo,2001,(2):12-16.
    [90]Li Peijie,Nikitin V I,Kandalova E G,et al.Effect of melt overheating,cooling and solidification rates on Al-16wt.%Si alloy structure[J].Materials Science and Engineering A,2002,332(1-2):371-374.
    [91]Pytsze L,Nikitin V I,Investigation of hereditary influence of charge composition and melt overheat on the structure of silumins[J].Litejnoe Proizvodstvo,2001,(5):15-18.
    [92]陈忠伟,介万奇.熔体过热对Al2.7%Si20.50%Mg合金的显微组织和力学性能的影响[J].铸造,2001,50(12):724-727。
    [93]司乃潮,孙克庆.熔体过热处理对Al-4.7%Cu合金定向凝固力学性能及晶体取向的影响[J].铸造,2007,56(7):683-686.
    [94]耿兴国,陈光,傅恒志.熔体过热对定向凝固界面形态稳定性的影响[J].金属学报,2002,38(3):225-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700