双组份加成型导热绝缘灌封硅橡胶的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着电子集成电路的运用和微型化,使得电子器件的热量趋于集中,难以散发,给电子器件的使用安全和使用寿命带来了很多的负面影响。而导热材料的使用往往使这些困扰人们的问题迎刃而解。导热材料尤其是导热灌封料的应用不仅可以有效的使电子器件产生的热量及时散发,保证器件的使用安全,还可以有效的起到防尘、防振的效果,大大延长器件的使用寿命。
     本文研究了各种导热绝缘粉体对导热胶的各种应用性能的影响。研制了有机硅橡胶为基体材料的导热绝缘复合材料。然后参照Agari Y的导热模型建立了新的适用于高填充的导热模型,并给出了合理的解释。
     采用导热率高的导热陶瓷材料可以明显有效提高聚合物的材料的导热性能。用氧化铝粉体对有机硅橡胶进行填充改性时,随着氧化铝粉体填充量的提高,复合材料的导热率逐渐提高。复合材料的导热率不仅与氧化铝粉体的填充量有关,而且与氧化铝填充粉体的粒径有关。当氧化铝粉体的粒径分布在5-6微米之间时,复合材料的导热率随着粉体粒径的增大而提高。当氧化铝粉体的粒径只有150纳米时,复合材料的导热率伴随着填充量的提高而显著提高,当填充量相同时,复合材料的导热率要高于大粒径粉体的填充效果。
     本文采用导热仪测试导热填料改性有机硅橡胶得到的复合材料的导热率,发现用陶瓷导热粉体对聚合物改性使导热率与粉体的体积含量几乎呈线性关系,但是,当粉体含量超过40%,复合材料的导热率有激增的趋势。
     采用旋转粘度计对陶瓷粉体填充聚合物基体材料得到的基胶进行粘度测试。通过测试我们发现:(1)伴随着粉体体积含量的提高,基胶的粘度逐渐提高,粉体体积含量超过一定值时,基胶的粘度会出现一个突变点,在此点之后基胶的粘度随粉体含量变化明显。(2)当粉体含量相同时,基胶的粘度随着粉体粒径的降低而提高。
     采用电镜分析,观察了粉体在基体材料中的分布状态。发现粉体在基体材料中分布较为均匀,团聚现象较少。通过电镜分析明显可以看出粒径大小对粉体在基体材料分数状态的影响,从而给出了导热性能差异的合理解释。
Electronic products have been applied widely with the development and application of integrated circuits. Electronic products has been an indispensable part of modern human civilization. And accompanied by the use of integrated circuits and miniaturization technologies, the distribute of thermal is becoming more and more difficult. It has brought a lot of negative impact on safety performance and life of electric products. Thermal conductive material often used as the solution to this problem. The products not onlyhave higher thermal conductivity, but also have longer life used with thermal conductive materials, especially the thermal conductive encapsulants. The thermal conductive encapsulants not only work as the thermal conductive materials, but also work as Anti-Vibration and dustproof material.
     In this paper, the effect of thermal conductive and insulation on application properties of composite was studied. The silicone rubber matirx thermal conductive composite was developed. And the reasonable explanation had been given for some thermal conductive phenomena based on Agari Y thermal model.
     The thermal conductivity of the composite could be improved significantly by filling with high conductive ceramic filler. The thermal conductivity increased gradually filled with the loading of alumina powder. The thermal conductive properties not only dominated by the volume content offiller, but also by the size and the morphology. When the size of alumina powder between 5 and 40μm in diameter, the thermal conductivity of composite increased slowly filled with the increasing load of the powder. The size of the filler is larger, the thermal conductivity of the composite is higher. Compared with the composite filled with large size alumina powder, the thermal conductivity of composite filled with alumina powder in 150nm increasd significantly with the increase of the load of filler and have higher conductivity than that of larger filler in the same volume fraction.
     In this paper, the thermal conductivity of composite was valuated by thermal Conductivity Measurement Instruments. The results showed that the relationship of thermal conductivity of composite and the content of filler can be described as a linear realationship. And thermal conductivity of silicone rubber composite increase rapidly above the point where powder accounts for 40% in volume.
     Rotary viscometer was employed to measure the viscosity of the mixture of silicone ruuber and powder before curing. The results showed that the viscosity of the mixture increase gradually with the loading of pwder. And the viscosoty increases rapidly above some the point where powder accounts for special value in volume.
     Electron microscope was taken to observe the distribution of powders. The results showed that the powder distributed in silicone rubber as a homogeneous dispersion system with little agglomeration. The effect of size on distribution of filler can be measured obviously on the picture taken by electron microscope. And reasonable explanation had been given.
引文
[1]中国电子学会生产技术学分会丛书编委会组编.微电子封装技术[M].合肥:中国科学技术大学出版社.2003:1-3.
    [2]况延香,赵光云.迅速发展的三维电子封装技术[J].电子世界,1998,9:47-48.
    [3]周宇琳.有机硅聚合物导论[M].北京:科学出版社,2005,5:134-1453.
    [4]范元蓉,徐志君,庸颂超.加成型液体硅橡胶[J].弹性体,2001,11(3):44.
    [5]黄应吕,吕正芸.弹性密封胶与胶黏剂[M].北京:化学工业出版社.2003:387-393.
    [6]王德中.环氧树脂生产与应用[M].北京:化学工业出版社.2001:1-2.
    [7]郑瑞琪.合成胶牯剂丛书[M].北京:化学工业出版杜,1982,125-154.
    [8]曹有名,孙军.分子设计改性硅橡胶及增韧环氧树脂[J].高分子材料科学与工程,2001,17(5):101-104.
    [9]李三军.聚氨酯灌封胶的技术进展[J].化工新型材料,2001,3:3-6.
    [10]吴敏娟,周玲娟,江国栋,王庭慰.导热电子灌封硅橡胶的研究进展[J].有机硅材料,2006,20:81-85.
    [11]潘大海,刘梅,孟岩,齐士成.导热绝缘室温硫化硅橡胶的研制[J].橡胶工业,2004,51:534-536.
    [12]朱毅.填充片状铝粉的硅橡胶热接口材料研究[J].特种橡胶制品,2002,23(6):7-9.
    [13]CHUNG S,IM Y,KIM H,et al.Evaluation for micro scale structures fabricated using epoxy-aluminum particle composite and its application[J],J Materials Processing Technology:2005,16(5):168-179.
    [14]周吻英,齐署华,涂春潮等.混杂填料填充导热硅橡胶性能研究[J].材料工艺,2006,8:15-19.
    [15]李胜方.导热硅橡胶的性能与应用[J].化工新型材料,2002-12,12(30):11-13.
    [16]汪倩,高伟,谢择民.高导热室温硫化硅橡胶和硅脂[J].有机硅材料,2000,14(1):5-7.
    [17]Nielson L E.Generalized equation for the elastic moduli of composite materials[J].J Appl Phys,1970,41:4626
    [18]Kondo Toshiki.Polyamide compositions for housing of electronic parts[p].Japan Patent:0379666,1991-06-04.
    [19]潘大海,刘梅.刚玉粉对室温硫化导热硅橡胶性能的影响[J].有机硅材料,2004,18(6):9-12
    [20]HIRSCHI D D,Lutz M A.Silicone composition and thermally conductive cured silicone product cured silicone product[p].US Patent:6448329,2002-9-10.
    [21]GEO N-WOO NG L,M IN P,KIM J,Enhanced thermal conductivity of polymer composite filled with hybrid filler[J].Composites:Part A,2005,37(5):727-734
    [22]DALBE B,GIRAUD Y.Silicone elastomer of high thermal conductivity[p].US Patent:6284829,2001-09-04.
    [23]丁峰,谢维章.导热树脂基复合材料[J].复合材料学报.1993,10(3):19-24
    [24]石彤非,李树忠,张万喜.填充型导热塑料[J].高分子材料科学与工程.1993(3):8-13
    [25]Y.agari,A.Ueda,S.Nagai.Thermal Conductivity of a Polymer Composite[J].Journal of Applied Polymer Science.1993(49):1625-1934
    [26]Y.agari,A.Ueda,S.Nagai.Thermal Conductivity of Composites in Several Types of Dispersion Systems[J].Journal of Applied Polymer Science.1991(42):1665-1669
    [27]Y.agari,A.Ueda,S.Nagai.Thermal Conductivity of Polyethylene Filled with Disoriented Short-Cut Carbon Fibers[J].Journal of Applied Polymer Science.1991(43):1117-1124
    [28]丁峰,谢维章.导热树脂基复合材料[J].复合材料学报.1993,10(3):19-24.
    [29]王家俊.聚酰亚胺/氮化铝复合材料的制备与性能研究[D].浙江:浙江大学,2001-06.
    [30]Md.R.Isalam and A.Pramila.Thermal Conductivity of Fiber Reinforced Composites by the FEM[J].Journal of Composite Materials.1999(33):1699-1715.
    [31]高华,赵海霞.灌封技术在电子产品中的应用[J].电子工艺技术,2003,24(6):258.
    [32]赵怀东,刘文静.有机硅橡胶在灌封技术中的应用[J].航天制造技术,2002,4(2):38.
    [33]廖明惠.灌封材料在航天产品中的应用[J].宇航材料工艺,1995,3:50.
    [34]章文捷,马静.绝缘导热有机硅灌封材料的研制和应用[J].电子工艺技术,2004,25(1):31.
    [35]王峻松,朱金凤.印刷电路板组件灌注GN521有机硅橡胶工艺[J].航天工艺,1998,5:16.
    [36]范召东,张鹏,成晓阳.耐350℃有机硅胶粘剂的研制[J].粘接,2005,26(4):11.
    [37]吴敏娟,周玲娟,江国栋,王庭慰.导热电子灌封硅橡胶的研究进展[J].有机硅材料,2006,20(2):81-85.
    [38]Jason L.Sanders,George E.Sears.Higher Thermal Conductivity Spin Castable Potting Compound [P].US Patent:6770326,2004-08-03.
    [39]储九荣,张小辉,徐传骧[J].高分子材料科学与工程,2000,16(4):17-21.
    [40]Sugimoto Toshio,Kawaguchi Sadahiko.Casting epoxy resin composition and cured product thereof[P].EP Patem:19930113654,1994-03-23.
    [41]Agari Y,Ueda A,Nagai S.Electrical and Thermal-Conductivities of Polyethylene Composites Filled with Biaxial Oriented Short-Cut Carbon-Fibers[J].Journal of Applied Polymer Science,1990,40:929-941.
    [42]Agari Y,Ueda A,Nagai S.Thermal conductivities of composites in several types of dispersion systems[J].Journal of Applied Polymer Science,1991,42:1665-1669
    [43]Wonho Kim,Jong-too Bae.Thermally Conductive EMC(Epoxy Molding.Compound) for Microelectronic Encapsulation,Polym[J].Polymer Engineering and Science,April 1999,39(4):756-766.
    [44]张立群,耿海萍.CaSO4晶须与EPDM/PP共混型热塑性弹性体复合材料的研究[J].合成橡胶工业,1998,21(2):80-83.
    [45]E.Mikhail Sagal,Kevin A.McCullough,James D.Miller,Polymer Electronic Devicr Package Having High Thermal Conductivity and Dielectric Strength[P].US Patent,7476702,2009-01-13
    [46]Toyokazu Ozaki,Akira Taomoto,Masahiro Deguchi,Motoshi Shibata.High Thermal Conductive Element,Method for Manufacturing Same,and Heat Radiating System[P].US Patent.7402340B2,2008-7-22.
    [47]M.Ray Fairchild,Aleksandra Djordjevic,Javier Ruiz.Thermal Conductive Electornics Substrate and Assembly[P].US Patent 72744105,2007-09-25.
    [48]Gwo-Ji Homg,Jen-I Kuo,Feng-Ger Hsiau.Method of Fabricating A Ceramic Substrate With a Thermal Conductive Plug of A Multi-Chip Package[p].US Patent.7222419,2007-05-29.
    [49]Satoshi Okamoto,Tomoya Hosoda.Highly Thermal-Conductive Resin Composition[P].US Patent.7214761,2007-05-08.
    [50]Shunichi Kikuchi,Masumi Suzuki,Michimasa Aoki.Rfid Tag with Thermal Conductive Cover [P].US Patent.7199718,2007-04-03.
    [51]Toshiharu Kinoshita,Tsuneo Tomiyama.High Thermal Conductive Material Having High Thermal Conductivity And Process For Proudcing The Same[P].US Patent:7141309,2006-11-28.
    [52]Shunsuke Yamada,Masakazu Hattori,Hajime Funahashi.Thermal conductive composition,a heat dissipating putty sheet and heat dissipating structure using the same[P].US Patent:7135232, 2006-11-14.
    [53]Masayuki Tobita,Toru Kimura,Naoyuki Shimoyama,Tsukasa Ishigaki.Thermal Conductive Polymer Molded Article And Method For Producing The Same[P].US Patent,70790405.2006-07-18.
    [54]Koichi Hirano,Seiichi Nakatani,Mitsuhiro Matsuo,Yoshihisa Yamashita.Method of manufacturing a thermal conductive circuit board with grounding pattem connected to a heat sink [P].US Patent:7059042,2006-06-13.
    [55]Ju-Liang He.Method for manufacturing a high-efficiency thermal conductive base board[P].US Patent:7036219,2006-05-02.
    [56]Koochi Hirano,Yoshihisa Yamashita,Seiichi Nakatani.Thermal conductive substrate and semiconductor module using the same[P].US Patent:6958535,2005-10-25.
    [57]Yasuhlro Kawaguchi.Thermal conductive material and method for producing the same[P].US Patent:6890970,2005-05-10.
    [58]Kenji Morimoto,Shinji Kawasaki,Hiroaki Sakai.High-heat conductive Si-containing material and its manufacturing method[P].US Patent:7442662,2008-10-28.
    [59]Chung Wu.Protective cover for heat-conductive material of heat sink[P].US Patent:7441593,2008-10-28.
    [60]Frank Wang,Yi-Lun Cheng,Jui-Chan Fan,Chnn-Yi Chang,Chnn-Lung Lin,Chih-Kai Yang.Recyclable protective cover for a heat-conductive medium[P].US Patent:7319592,2008-01-15.
    [61]Kia Silverbrook,Gregory John McAvoy.Thermoelastic Inkjet Actuator With A Heat Conductive Layer[P].US Patent:7287837,2007-10-30
    [62]Tetsuya Tsumura,Shinya Tanaka,Michihiro Miyauchi,Hisatoshi Atsumo,Yoshiyuki Miyoshi.Method of manufacturing heat conductive substrate[P].US Patent:7279365,2007-10-09.
    [63]Yoshitaka Aoki,Tsutomu Yoneyama,Kunihiko Mita.Heat conductive composite sheet and process for producing same[P].US Patent:7279224,2007-10-09.
    [64]Charles M.Coushaine,Thomas Tessnow,Fred Peterson,Kim Albright,Florence Taitle,Howard Eng.LED lamp with LEDs on a heat conductive post and method of making the LED lamp[P].US Patent:7207695,2007-04-24.
    [65]Masashi Sakaguchi.Curable composition for heat conductive material[P].US Patent:7195720,2007-03-27.
    [66]Noriyukl Meguriya,Satao Hirabayashi,Shigeru Ubukata,Nobumasa Tomizawa.Highly heat conductive silicone rubber composition,fixing roll and fixing belt[P].US Patent:7166363,2007-01-23.
    [67]Shyh-Ming Cheng.Heat-dissipating device with heat conductive tubes[P].US Patent:7120026,2006-10-10.
    [68]Yukihiro Matsamoto,Takeshi Nishlmura.Purification apparatus provided with low heat conductive member[P].US Patent:7081185,2006-07-25.
    [69]Kia Silverbrook,Gregory John McAvov.Micro-electromechanical actuator assembly with heat conductive pathways.US Patent:7077490,2006-07-18.
    [70]Shyh-Ming cheng.Heat dissipating device with heat conductive tubes[P].US Patent:7077188,2006-07-18.
    [71]Kia Silverbrook,Gregory John McAvoy.Thermoelastic inkjet actuator with heat conductive pathways[P].US Patent:7066580,2006-06-27.
    [72]Min Jie Chen.Heat conductive tubular electric heater[P].US Patent:7039305.2006-05-02.
    [73]Mzsaya Asaine.Heat conductive silicone composition and shaped article[P].US Patent:7034073,2006-04-25.
    [74]Chin Wen Wang,Pei Choa Wang,Ching Chung Wang.Structure of heat conductive plate[P].US Patent:7032652,2006-04-25.
    [75]Shingi Hashimoto.Semiconductor device having a fuse and a low heat conductive section for blowout of fuse[P].US Patent:6972474,2005-12-06.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700