轴向气磁复合轴承的理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前科学技术的突飞猛进,对一些装置的轴系提出了更高的精度要求。超精密回转轴系的研究水平,关系到宇航技术、精密机床和精密仪器仪表业的发展,是一个国家工业和军事技术的综合体现。能胜任构成精密轴系的轴承,首推气体轴承和磁轴承两类。但这两种轴承都存在着一定的缺陷,如气体轴承不易控制;磁浮轴承承载能力低等。本文提出了一种结构紧凑、承载能力大、应用前景广的新型气磁复合动压止推轴承。
     基于静磁学理论建立了永磁磁浮轴承承载能力的理论模型,推导出轴向永磁磁浮轴承承载能力与结构参数、转速之间的关系。利用MATLAB编程进行可视化模拟计算,得出永磁轴承承载能力与轴承间隙的关系曲线,为永磁磁浮轴承的设计及性能测试奠定了理论基础。
     以气体动压原理为基础建立了螺旋槽型气体动压推力轴承承载能力的理论模型,计算得出气体动压轴承的理论承载能力与转速的关系。结果表明当转速达到12000r/min时,气体动压轴承的气浮力理论值为21N。利用流体力学软件(CFD)对气槽内空气的流速及压强分布进行仿真模拟,分析了了影响气体动压轴承承载能力的因素,特别是是轴承转速与承载能力的关系。
     实现气磁复合动压轴承组件的研制。在气体动压止推轴承的轴承上、下片内分别嵌入直径30mm,高7.95mm的圆柱形永磁体。气体动压轴承的上下片均采用45号钢加工,外径均为80mm,其中下片旋转,上片只沿轴向窜动,气体动压轴承下片表面加工有螺旋形气槽。
     为了测试气磁复合动压轴承的性能,设计并搭建了气磁复合动压轴承测试试验台。该试验台主要由钢架结构、传动系统、加载装置、调速和测速装置组成,具有性能稳定、操作方便等特点。分别对气体动压轴承和永磁磁浮轴承进行了承载能力测试及轴承性能研究,有效地解决了气磁复合动压轴承中气体轴承和永磁轴承两者的耦合性问题。测试结果表明转速为12000r/min时,气磁复合动压轴承能稳定工作,承载能力达到126N。
The current rapid development of science and technology has a strict requirement to the precision of the shaft of some device. The research level of ultra-precision rotary shaft matters the development of space technology, precision machine tools and precision instruments and meters industry. It’s a integrated reflection of national industrial and military technology. Gas bearing and magnetic Bearing are the first choice for bearing of precision shafting. However, they have such defects as the difficulty to control the gas bearing and low carrying capacity of magnetic bearing. A new gas-magnetic dynamic pressure thrust bearing which has a compact structure, large carrying capacity and wide application prospect is proposed in the paper.
     Based on the theory of static magnetism, the theoretical model of the carrying capacity of permanent magnet magnetic bearing is built. The relationship between structural parameters, speed and carrying capacity of axial permanent magnet magnetic bearing is deduced. The relationship between carrying capacity of permanent magnet magnetic bearing and bearing clearance is got with the visualization simulation of MATLAB. The theoretical basis has been laid for the design and performance testing of permanent magnet magnetic bearing.
     Based on gas dynamic pressure principle, the theoretical model of the carrying capacity of spiral groove gas dynamic pressure thrust bearing is built. The relationship between the theoretical carrying capacity of gas dynamic pressure bearing and speed is calculated. When the speed is 12000r/min, the air buoyancy of gas dynamic pressure bearing is 21N. The velocity and pressure distribution of the air in the gas tank is simulated with fluid dynamics software(CFD). Finally the factors which influence the carrying capacity of gas dynamic pressure bearing are found, especially the relationship between bearing speed and carrying capacity.
     The manufacture of components of gas-magnetic dynamic pressure bearing is realized. Two cylindrical permanent magnet of 30mm diameter and 7.95mm height are embedded individually in the upper side and lower side of gas dynamic pressure thrust bearing. The upper and lower side of gas dynamic bearing with 80mm outer diameter are made of 45#. The lower side rotates and the upper side moves along the axis only. The spiral gas groove is machined on the surface of the lower side.
     In order to test the performance of bearing, the test-bed of gas-magnetic dynamic pressure bearing is designed and manufactured. The test-bed is mainly composed of steel-framed structure, transmission system, loading equipment, timing and speed measuring device. The performance of the test-bed is stable and it’s easy to operate. Through the carrying capacity testing and bearing performance study of air dynamic pressure bearing and permanent magnet magnetic bearing individually, the coupling problem between them in the gas-magnetic dynamic pressure bearing is fully solved. The test results show that when the speed is 12000r/min, gas-magnetic dynamic pressure bearing can work stably and its carrying capacity is up to 126N.
引文
1刘暾,葛卫平,齐乃明,费源明.超精气磁轴承混合轴系的研究.中国机械工程. 2002, 23(02):167~170
    2刘暾,刘育华.静压气体润滑.哈尔滨工业大学出版社. 1990:122~153
    3刘永良,李树森.精密磨床气磁轴承主轴系统结构及静态特性分析.林业机械与木工设备. 2008,36(5):19~21
    4戚社苗,耿海鹏,虞烈.动压气体轴承性能计算方法研究.机械强度. 2006,28(3):369~373
    5于贺春,马文琦.气体轴承技术的研究与发展.第四届全国流体传动及控制学术会议. 2006,12(06):533~535
    6景敏卿,刘恒,沈园,虞烈.新型挤压膜气体轴承的研究.西安交通大学学报. 2008,42(7):799~802
    7王云飞.气体润滑理论与气体轴承设计.哈尔滨工业大学出版社. 1999:9~15
    8党根茂著.气体润滑技术.东南大学出版社. 1990:106~120
    9 Krzysztof Czolczynski. Stability of Symmetrical Rotor Supported in Flexibly Mounted. Self-acting Gas Journal Bearings. Wear. 1996, 194 :190~197
    10 Katto Y, Soda N. Theory of Lubrication by Compressible Fluide with Special Reference to Air Bearing.Proc.of the second Japanese Congress on Applied Mechanics. 1952:267~270
    11 Ausman J S. An Improved Analytical solution for Self-Acting Gas-Lubricated Jonurnal Bearing of Finite Length. Trans.ASME, Seri se D, 1961, 83 (2):153~167
    12 Castelli v, Stevenson C H, Gunter E J. Steady state characteristics of Gas Lubricated SelfActing,Partial Arc Journal Bearing of Finite Width. Trans. ASLE, 1964(7):153~167
    13 Lee Y B. Dynamic characteristics of a flexible rotor system supported by a viscoelastic foil bearing (VEFB). Tribology International. 2004,37(9) :679 ~687
    14陈汝刚,侯予,袁秀玲,陈纯正.气体轴承在高速透平机械中的应用.流体机械. 2007,35(4):28~32
    15齐乃明,杨国军,刘暾.静压气体轴承设计支持系统的研究.润滑与密封. 2000,15 (1):13~14
    16杜建军,姚英学,高栋,刘暾.气体静压轴颈止推串接型轴承涡流力矩的有限元分析.润滑与密封. 2005,(03):57~59
    17李树森,张鹏顺,曲全利.气体轴承技术的应用及发展趋势.润滑与密封.1992,20(02):9~10
    18赵文广,薛贵侠.空气静压止推轴承球头支承对坐标测量机重复性及示值误差的影响.计量技术. 2005,14(05):20~22
    19李树森,孟庆鑫,刘暾.小孔节流静压气体轴颈轴承主轴系统的动态特性分析.润滑与密封. 2006,12(05):20~22
    20李树森,刘暾.精密离心机静压气体轴承主轴系统的动力学特性分析.机械工程学报. 2005,41(02):42~50
    21李树森,孟庆鑫,刘暾.小孔节流静压气体轴颈轴承的静态特性研究.润滑与密封. 2006,174(02):20~23
    22杨磊,房建成,韩邦成,孙津济.磁悬浮飞轮用永磁偏置磁轴承漏磁分析.轴承. 2008,52(2):24~28
    23 Knospe CR. Instrouction to the special Issue on Magnetic Bearing. IEEE Trans on Control Systems Technology. 1996,4(5):481~485
    24马兰兰,李树森,苏健.超精密气磁轴承的发展.林业机械与木工设备. 2005,(1):13~15
    25 Lyndon Scott Stephens, David L Trumper. Proceedings of the ninthinternational symposium on magnetic bearings[C]. 2004:3~6
    26 Ha-Yong Kim, Seung-Jong Kim. An Effective Way toCombine Radial and Axial Magnetic Bearings in a Unit[C]. Proc 10th Int.Symp On Magnetic Bearings. 2006: 21~23
    27赵家文.一种新型轴承永磁体磁力轴承.机械设计与研究. 1992,6(2):39~42
    28 D. L. Trump, etal. Linearizing Control of Magnetic Suspension Systems. IEEE Trans.on control systems technology. 1997, 5(4):427~438
    29汪通悦,陈辽军,周峰.磁浮轴承的技术进展.机械制造. 2002:21-23
    30 Paden Brad, Groom Nelson, Antaki James F. Design formulas for permanent-magnet bearings. Journal of Mechanical Design, Transactions of the ASME. 2003, 125(4) :734~738
    31 W. P. Kelleher, A. S. Kondoleon. A Magnetic Bearing Suspension System For High Temperature Gas Turbine Applications, Part 3—Magnetic Act-uator Development. Presented at the International Gas Turbine&Aero-engine Congress&Exhibition. 1997: 2~5,
    32 Zhillichev Y. Analysis of a magnetic bearing pair with a permanent magnet excitation. IEEE Trans on Magnetics. 2000, 36(5) :3690~3692
    33 V.F.Muzhitskii,D.A.Kudryavtsev. Some Problems in Determining the Optimum Sizes of Magnetizing Systems Based on Permanent Magnets. Russian Journal ofNondestructive Testing. 2004,40(2) :124~129
    34月曾励,汪通悦,徐龙祥等.永磁电磁轴承产生悬浮力的机理研究.航空学报. 2000,21(5): 2l9~221
    35王彤宇.电磁轴承系统的动力学建模与运动稳定性分析.长春理工大学学报. 2004, 27(2):41 ~44
    36靳光华,胡升魁,张锦文.主动磁悬浮轴承的原理及结构.上海微电机研究所, 1983:142~156
    37孙立军,张涛,赵兵.永磁磁轴承数学模型的研究.机械工程学报. 2005,41(4):69~74
    38黄明辉,杨安全,杨峰力.一种磁轴承的两永磁环间作用力的计算.机械研究与应用. 2005,18(1):39~41
    39赵博.磁浮轴承的实验研究.哈尔滨工业大学. 2007:1~19
    40李树森,孟庆鑫,刘永良.超精气磁轴承主轴系统的结构设计与控制.机械工程师. 2005,(10):37~39
    41黄作英,阙沛文.应用磁荷法建立漏磁信号模型.应用基础与工程科学学报. 2006, 14(1): 115~120
    42田录林,杨晓萍,李言等.适用于永磁悬浮轨道及永磁轴承的解析磁力模型研究.摩擦学学报. 2008,28(1):73~76
    43田录林,安源,李言等.轴向放置轴向磁化的多个永磁环轴承轴向磁力研究.机械科学与技术. 2008,27(4):549~553
    44 Wong C W, Zhang X, Jacobson S A. A self-acting thrust beating for high speed micro-rotors. The Fifteenth IEEE International conference on Micro Eleltro Mechanical Systems. 2002,105:276~279
    45 Zhang Dongming, Luo Jisheng, Zhou Heng. Dynamic model of coherent structure in the wall region of a turbulent boundary layer. Science in China (Series G). 2003,46(3):291~299
    46池长青.流体力学润滑.国防工业出版社. 1998:9~11
    47戚社苗,耿海鹏,虞烈.动压气体轴承的动态刚度和动态阻尼系数.机械工程学报. 2007,43(5):91~98
    48江帆,黄鹏. Fluent高级应用与实例分析.清华大学出版社. 2008:8~15
    49 Bran dani S,Zhang K. A new model for the prediction of the behaviour of fluidized beds. Powder Technology. 2006,163(12):80~87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700