湖泊湖滨带沉积物重金属污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊重金属污染因其具有持久性、生物富集性和毒性而备受关注,一直是国际环境科学界的热点研究课题之一。本文依托于国家水体污染控制与治理科技重大专项(2008ZX07101),对太湖及滇池湖滨带表层底泥中几种主要重金属进行了调查研究,分析评价了重金属(Pb、Cd、Cu和Zn)污染程度、形态分布及其生态风险,并研究了不同环境因素对重金属释放的影响,旨在为合理预防和治理太湖、滇池重金属污染及湖滨带生态系统修复提供基础资料。获得的主要研究成果及认识如下:
     (1)与《全国土壤环境质量标准》(GB-15618-1995)比较,在研究的四种重金属中,太湖湖滨带表层沉积物中Cd污染严重,而滇池Cd和Cu污染严重,且滇池四种元素的平均含量均高于太湖,因此,就本次调查的四种重金属而言,其滇池重金属污染强度大于太湖。根据区域内各点位所处地理位置,太湖重金属污染强度总体上是北部区域>南部区域,而滇池则呈现出草海>外海北部>外海南部,但两湖总体均符合入湖口污染重于出湖口的规律。
     (2)由沉积物中各重金属及TOC含量相关分析可知:太湖湖滨带沉积物中各重金属之间并无显著相关性,各重金属与TOC之间相关性也不大;而滇池沉积物中Cu-Cd,Cu-Zn,Zn-Cd间均极显著相关,但各重金属与TOC之间相关性不大。
     (3)太湖和滇池湖滨带沉积物中四种重金属的生物有效性顺序分别为Zn>Cu>Cd>Pb和Zn>Cd>Pb>Cu,有明显差异。需要值得注意的是,太湖湖滨带沉积物中四种重金属的可提取态含量均超过60%,而滇池四种重金属中最高可提取态含量仅为53.06%,说明太湖湖滨带沉积物中四种重金属的活性较大,二次释放潜力高于滇池。
     (4)以单个重金属潜在生态危害系数评价,太湖湖滨带表层沉积物中主要生态风险因子是元素Cd,达到强生态危害,其余三种元素属轻微生态危害,各重金属对太湖湖滨带生态风险影响程度由高到低依次为:Cd>Cu>Pb>Zn。滇池湖滨带表层沉积物中主要生态风险因子同样是元素Cd,但其平均Eri值达到533.61,已具极强生态危害,远高于太湖,各重金属对滇池湖滨带生态风险影响程度与太湖一致,由高到低依次为:Cd>Cu>Pb>Zn。以多个重金属潜在生态危害指数评价,太湖湖滨带只是略微超过中等生态危害,而滇池湖滨带已具极强生态危害。
     (5)在6种pH条件下,底泥中四种重金属均随着pH值的增加,其释放率明显下降,在pH=2时,四种重金属的释放率最大。不同温度对不同重金属释放率的影响不同,但四种重金属的释放趋势基本相似,均是随着温度的升高,重金属的释放率增大。有机酸用量的增加,可明显促进四种重金属的释放,其中柠檬酸对Zn的释放能力最强,最大释放率可达77.53%;酒石酸对Zn的释放能力最强,最大释放率可达90.65%;草酸对Pb的释放能力最强,最大释放率可达43.16%。综合本次试验所用三种有机酸,其浸提能力大小顺序为酒石酸>柠檬酸>草酸。在相同有机酸用量不同pH条件下,底泥中四种重金属均随着pH值增加,释放作用逐渐减弱,但与无外加有机酸条件下相比,四种金属的释放率均有所增加。随着投加Nacl浓度的升高,四种金属的释放率均呈现增大趋势,在NaCl浓度<60 mmol/L时,四种重金属的释放率虽然随浓度的升高而增大,但变化幅度均不大,趋于平稳;当NaCl浓度>60 mmol/L时,各重金属的释放率随浓度的升高,变化幅度明显变大。
Because of the persistence, bio-accumulation and toxicity, heavy metal pollution of lake has been one hot research topic in the international environment community. This study relied on the National Water Pollution Control and Management (2008ZX07101), investigated the surface sediments from lakeside belt of Lake Taihu and Lake Dianchi, analyzed species distribution and ecological risk of heavy metal pollution, and studied the release mechanism of heavy metals(Pb, Cd, Cu, Zn) in the different environmental factors. Aim of this study is to control heavy metal pollution in Lake Taihu and Lake Dianchi, and provide the basic information of ecosystem recovery of lakeside belt. The main research results obtained are listed below:
     (1)The surface sediment from lakeside belt of Lake Taihu was mainly polluted by Cd compared with the《Environmental quality standard for soils》(GB-15618-1995), while Lake Dianchi was mainly polluted by Cd and Cu, and the Lake Dianchi pollution was stronger than Lake Taihu, with the four heavy metals in Lake Dianchi having a higher concentration. The overall intensity of heavy metal pollution of Lake Taihu was northern estuaries>southern estuaries, outflow estuaries>inflow estuaries, and of Lake Dianch was Lake Caohai>northern Lake Waihai>southern Lake Waihai.
     (2)According to the correlation analysis of various heavy metals and TOC, there was no positive correlation between these heavy metals and TOC in Lake Taihu, there was a remarkable correlation between Cu and Cd, Cu and Zn, Zn and Cd in Lake Dianchi, but the correlation of heavy metals with TOC was weak.
     (3)The bioavailability of four heavy metals in Lake Taihu varied in the descending order of Zn, Cu, Cd and Pb, while the bioavailability of heavy metals in Lake Dianchi varied in descending order of Zn, Cd, Pb and Cu. Need to be noted that the extractable concentrations of four heavy metals in Lake Taihu all exceeded 60%, which indicated the heavy metals in Lake Taihu had a higher second release potential and a reactivity than Lake Dianchi.
     (4)Based on the potential ecological risk assessment results, Cd was the main ecological risk factor in Lake Taihu, reaching a strong ecological risk, the ecological risk of other three heavy metals was low, and order of ecological risk of heavy metals in lakeside belt of Lake Taihu in the descending order was Cd, Cu, Pb and Zn. Cd was also the main ecological risk factor in Lake Dianchi, but the average Eri reached 533.61, with a much higher ecological risk than Lake Taihu, the order of ecological risk of heavy metals in lakeside belt of Lake Dianchi was same with Lake Dianchi. Lake Taihu only slightly exceeded medium ecological risk, while Lake Dianchi reached a very strong ecological risk.
     (5)The pH values had significant effect on the release of all four heavy metals in sediments. In the condition of six pH values, the higher pH values, the release amount was more. When pH value reached to 2, the release amount of four heavy metals reached the most. When pH value was in alkaline region, the release amount almost did not change. Temperature also had effect on the release of heavy metals from the sediments. The higher temperature, the release amount was more. When the temperature reached to 35℃, the four heavy metals release amount also reached the most. Organic acids tend strongly to combine with heavy metals and had an effect on the release of heavy metals from the sediments, of which the effect of citric acid on the release of Zn was the strongest, and the highest release rate reached to 77.53%, the effect of tartaric acid on the release of Zn was the strongest, and the highest release rate reached to 90.65%, and the effect of oxalate acid on the release of Pb was the strongest, the highest release rate reached to 43.16%. The order of extraction capacity of this three organic acids was tartaric acid>citric acid>oxalate acid. In the condition of same amount of organic acids and different pH values, the release amount of all four heavy metals in sediment decreased with the pH values increased. But compared with the condition of no additional organic acids, the release rate of the four heavy metals increased, and the release rate all exceeded 70% at pH=2. The higher concentration of NaCl, the release amount was more. When the concentration was below 60mmol/L, the change range was small, but when the concentration exceeded 60mmol/L, the change range was very obvious.
引文
毕春娟.潮滩植物根系重金属的时空分布规律及其生物有效性研究[D].华东师范大学博士论文,2001,2-45
    蔡金娟,史衍玺.不同腐殖酸组分对湖泊沉积物中重金属释放的的影响[J].水土保持学报,2006,20(1):108-111
    陈静,和丽萍,李跃青,等.滇池湖滨带生态湿地建设中的土地利用问题探析[J].环境保护科学,2007,33(1):39-41
    陈静生,刘玉机.中国水环境重金属研究[M].北京:中国环境科学出版社,1992,168-170
    陈静生.沉积物重金属污染研究中的若干问题[J].环境科学丛刊,1983,4(8):1-2
    戴秀丽,孙成.太湖沉积物中重金属污染状况及分布特征探讨[J].上海环境科学,2001,20(2):71-74
    范成新,朱育新,吉志军,等.太湖宜潥河水系沉积物的重金属污染特征[J].湖泊科学,2002,14(3):234-241
    范成新.滆湖沉积物理化特征及磷释放腄鈁J].湖泊科学,1995,7(4):341-350
    高丽,杨浩,周健民.环境条件变化对滇池沉积物磷释放的影响[J].土壤,2005,37(2):216-219
    顾征帆,吴蔚.太湖底泥中重金属污染现状调查及评价[J].甘肃科技,2005,21(12):21-23
    何江,王新伟,李朝胜,等.黄河包头段水-沉积物系统中重金属的污染特征[J].环境科学学报,2003,23(1):53-57
    黄顺生,范迪富,陈宝,等.太湖北部沉积物重金属污染及其潜在生态危害评价[J].江苏地质,2005,29(1):43-45
    黄廷林.水体沉积物中重金属释放动力学及试验研究[J].环境科学学报,1996,15(4):440-446
    贾琳,杨林生,欧阳竹,等.典型农业区土壤重金属潜在生态风险评价[J].农业环境科学学报,2009,28(11):2270-2276
    贾振邦,梁涛,林健枝,等.河流重金属污染及潜在生态危害研究[J].北京大学学报(自然科学版),1997,33(4):485-490
    金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M].北京:中国环境科学出版社,1992,185-194
    金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001,147-153
    李海峰,王庆仁,朱永官,等.土壤重金属测定两种前处理方法的比较[J].环境化学,2006,25(1):108-109
    李然,李嘉,赵文谦.水环境重金属污染研究概述[J].四川环境,1997,16(1):18-22
    李仁英,陈捷,余天应,等.盘龙江口滇池沉积物重金属的分布及污染评价[J].土壤,2006,38(2):186-191
    李铁,叶常明.沉积物与水间相互作用的研究进展[J].环境科学进展,1998,6(5):29-40
    李鱼.城市河流淤泥中重金属释放规律的研究[J].水土保持学报,2003,17(1):125-127
    刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J].环境科学,2007,28(6):1377-1383
    刘恩峰,沈吉,朱育新,等.太湖表层沉积物重金属元素的来源分析[J].湖泊科学,2004,16(2):113-119
    刘恩峰,沈吉,朱育新.重金属元素BCR提取法及在太湖沉积物研究中的应用[J].环境科学研究,2005,18(2):57-60
    刘坤,李光德,张中文,等.EDTA及低分子量有机酸对土壤Cd活性的影响研究[J].农业环境科学学报,2008,27(3):894-897
    卢旭音.中国湖泊污染状况的基本评价[J].火山地质与矿产,2000,21(2):161-166
    路永正,阎百兴.重金属在松花江沉积物中的竞争吸附行为及pH的影响[J].环境科学研究,2010,23(1):20-25
    吕晓霞,翟世奎,牛丽凤.长江口柱状沉积物中有机质C/N比的研究[J].环境化学,2005,24(3):255-259
    马德毅.中国主要河口沉积物污染及潜在生态风险评价[J].中国环境科学,2003,23(5):521-525
    马英军,万国江.湖泊沉积物-水界面微量重金属扩散作用及其水质影响研究[J].环境科学,1999,20(2):7-11
    孟凡德,姜霞,金相灿.长江中下游湖泊沉积物理化性质研究[J].环境科学研究,2004,17:24-29
    潘海燕,张鑫.原子吸收法测定土壤中铜锌铅镉[J].环境工程,2005,2(23):1-6
    彭丹,金峰,吕俊杰,等.滇池底泥中有机质的分布状况研究[J].土壤,2004,36(5):568-572
    千娜,金章东,姚拓.太湖梅梁湾沉积物中重金属的赋存相态及其对污染历史的示踪[J].湖泊科学,2007,19(4):397-406
    秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202
    裘祖楠,方宇翘,张仲燕.城市河流底泥中镉的形态分布及其向水相释放的关系[J].中国环境科学,1989,9(6):401-406
    曲久辉.我国水体复合污染与控制[J].科学对社会的影响,2000,1:36-40
    商冉,李光德,曲衍波,等.低分子量有机酸对棕壤吸附铜效果的影响[J].安徽农业科学,2008,63(10):4242-4243
    汤鸿宵.试论重金属的水环境容量[J].中国环境科学,1985,5(5):38-43
    腾彦国.应用地质累积指数评价沉积物中重金属污染:选择地球化学背景的影响[J].环境科学与技术,2000,25(2):7-9
    汪福顺,刘丛强,梁小兵.湖泊沉积物-水界面铁的微生物地球化学循环及其与微量金属元素的关系[J].地质地球化学,2003,31(3):63-69
    王国平,刘景双,张君枝,等.湿地表层沉积物对重金属的吸附研究[J].农业环境科学学报,2003,22(3):325-328
    王海,王春霞,王子健.太湖表层沉积物中重金属的形态分析[J].环境化学,2002,21(5):430-435
    王静雅,李泽琴,程温莹,等.湖湘沉积物中重金属环境污染研究进展[J].地球科学进展,2004,19(6):434-438
    王菊英,张曼平.重金属的存在形态与生态毒性[J].海洋与湖沼,1992,23(2):84-89
    王瑞贤,许晴辉,陈维芬.东山湾表层沉积物中8项化学元素的地球化学特征[J].台湾海峡,1992,11(3):197-202
    王晓蓉,章惠珠,周爱和,等.金沙江重金属在颗粒物中的分布及其基本特征[J].环境化学,1982,1(2):140-146
    王晓蓉.提取剂pH对沉积物释放金属的影响[J].环境化学,1989,8(3):1-9
    魏俊峰,吴大清,彭金莲,等.污染沉积物中重金属的释放及其动力学[J].生态环境,2003,12(2):127-130
    夏青,陈艳卿,刘宪兵.水质基准与水质标准[M].北京:中国标准出版社,2004
    徐圣友,叶琳琳,阮爱东,等.巢湖沉积物中重金属的BCR形态分析[J].环境科学与技术,2008,31(9):20-28
    徐争启,倪师军,张成江,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115
    严光生,谢学锦.“化学定时炸弹”与可持续发展[J].中国地质,2001,1(28):13-18
    杨汉东,农生文,蔡述明.武汉东湖沉积物的环境地球化学[J].水生生物学报,1994,18(3):208-214
    杨健强.滇池污染的治理和生态保护[J].水利学报,2001,5:17-21
    杨丽丽,张登峰,曾向东.沉积物中重金属释放规律研究[J].安徽农业科学,2007, 35(27):8630-8631
    于瑞莲,胡恭任.泉州湾沉积物重金属形态特征及生态风险[J].华侨大学学报,2008,29(3):419-423
    于颖,周启星.重金属铜在黑土和棕壤中解吸行为的比较[J].环境科学,2000,25(1):128-132
    袁华茂,吕晓霞,李学刚,等.自然粒度下渤海沉积物中有机碳的地球化学特征[J].环境化学,2003,2:115-120
    张凤英,阎百兴,朱立禄.松花江沉积物重金属形态赋存特征研究[J].农业环境科学学报,2010,29(1):163-167
    张雷,郑丙辉,田自强,等.西太湖典型河口区湖滨带表层沉积物营养评价[J].环境科学与技术,2006,29(5):4-13
    张丽萍,袁文权,张锡辉.底泥污染物释放动力学研究[J].环境污染治理技术与设备,2003,14(2):22-26
    张敏,钱天鸣.运河(杭州段)低值有机质与重金属元素相关性探讨[J].环境污染与防治,2000,22(2):34-44
    张中文,李光德,周楠楠,等.茶皂素对污染土壤中重金属的修复作用[J].水土保持学报,2008,22(6):67-70
    赵阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社,1994,15-18
    周孝德,周延林,唐允吉.河流底流中重金属释放的水流紊动效应[J].水利学报,1994(11):22-25
    周以富,董亚英.几种重金属土壤污染及其防治的研究进展[J].环境科学动态,2003,1(2):15-16
    朱季文,季子修.太湖湖滨带的生态建设[J].湖泊科学,2002,14(1):77-82
    Allen H E, Fu G, Deng B. Analysis of AVS and SEM for the estimation of potential toxicity in aquatics sediment[J]. Environment Toxic Chemical, 1993, 12:1441-1453
    Brian R, Neil R, Handong Y, et al. An assessment of toxicity in profundal lake sediment due to deposition of heavy metals and persistent organic pollutants from the atmosphere [J]. Environment International, 2008, 34(3):345-356
    Burgess R M, Pellertier M C. An overview of toxicant identification in sediments and dredged materials [J]. Marine Pollution Bulletin, 2002, 44(4):286-293
    Chapman P M, Hyland J, Ingersoll C, et al. General guidelines for using the sediment quality triad [J]. Marine Pollution Bulletin, 1997, 34:368-372
    Chapman P M. Appropriate applications of sediment quality values for metals [J].Environmental Science﹠Technology, 1999, 33(2):3937-3941
    Christopher G I, Macdonald D D, Ning W. Prediction of sediment toxicity using consensue–based freshwater sediment quality guidelines [M]. The United States EPA, 2000
    Daskalakis K, Oconner T. Normalization and elemental sediment contamination in the coastal Unites States [J]. Environmental Science﹠Technology, 1995,29: 470-477
    Davidson C M, Thomas R P, Mcvey S E, et al. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments[J]. Analytica Chimica Acta, 1994, 291:277
    Di Toro. AVS predicts the acute toxicity of Cd and Ni in sediments [J]. Environment Sciences Technology, 1992, 26:96-101
    Edward R. Predicting the toxicity of sediment-associated trace metals with SEM: AVS and dry weight-normalized concentrations: A critical comparison [J]. Environmental Toxicol Chemistry, 1998, 17(5):972-974
    Feng S P, Li X, Zhao X F, et al. Speciation analysis of heavy metals in sediment from daming lake [J]. Modern Scientific Instruments, 2006, 6:96-98
    Filgueiras A V, Lavilia I, Bendicho C. Chemical sequential extraction for metal partitioning in environmental solid samples [J]. Journal of Environmental Monitoring,2002, 4(6):823-857
    Gambrell R P. Trace and toxic metals in wetlands [J]. Environment Quality, 1994, 23: 883-891
    Ghirardini V, Birkemeyer T, Novelli A, et al. An integrated approach to sediment quality assessment: the Venetian lagoon as a case study [J]. Aquatic Ecosystem Health and Management, 1999, 2:435-447
    Gomez J L, Giraldez I, Sanchez D, et al. Comparision of the feasibility of three extraction procedures for trace metal partitioning in sediments from south-west Spain [J]. Science Total Environment, 2000, 246:271-283
    Hakanson L. An ecological risk index for aquatic pollution control: a sediment logical approach [J]. Water Research, 1980, 14(8):975-1001
    He M C, Wang Z J, Tang H X. Pollution and ecological risk assessment for heavy metals in sediments of Lean River [J]. Environmental Science, 1999, 23(1):7-10
    He T R, Li B Z, Li X L, et al. Heavy metals pollution in water, suspended matter and sueface sediment in typical mountainous urban river: A case study in Qingshui Stream in Chongqing, China [J]. Journal of Central South University of Technology, 2009, 16(1):286-291
    Kersten M, Foerstner U. Chemical fractionnation of heavy metals in anoxic estuarine and coastal sediments [J].Water Science Technology, 1986, 18:121-130 Kot A. The role of speciation in analytical chemistry [J].Trends in Analysis Chemistry, 2000, 19(2):69-79
    Kwon Y T, Lee C W. Ecological risk assessment of sediment in wastewater discharging area by means of metal speciation [J]. Micro-Chemical Journal, 2001, 70(3):255-264
    Kwon Y T, Lee C W.Application of multiple ecological risk indices for the evaluation of heavy metal contamination in a coastal dredging area [J]. Science of the Total Environment, 1998, 214:203-210
    Li J, Zheng C J. Handbook of the environmental background value [M]. Beijing: China Environmental Science Publishing House, 1989:343-348
    Li R Z, Shu K, Luo Y Y, et al. Assessment of heavy metal pollution in estuarine surface sediments of Tangxi River in Chaohu Lake basin [J]. Chinese Geographical Science, 2010,20(1):9-17
    Li X D, Shen Z G. Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River estuary [J]. Marine Pollution Bulletin, 2001, 42:215-223
    Long E R, Wilson C J. On the indentification of toxic hot spots using measures of the sediment [J]. Marine Pollution Bulletin, 1997, 34:373-374
    Loring D H, Naes K, Dahle S, et al. Arsenic, trace metals and organic micro contaminants in sediments from the Pechora Sea [J]. Russia Marine Geology, 1995, 128:153-167
    Lu X Q, Werner I, Young T M. Geochemistry and bioavailability of metals in sediments from northern San Francisco Bay [J].Environment International, 2005, 31:593-602
    Miller B S, Pirie D J, Redshaw C J. An assessment of the contamination and toxicity of marine sediments in the Holy Loch, Scotland [J]. Marine Pollution Bulletin, 2000, 40(1):22-35
    Moriilo J, Usero J, Gracia I. Heavy metal distribution in marine sediments from the southwest coast of Spain [J]. Chemosphere, 2004, 55:431-442
    Muhammad B A, Tasneem G K, Muhammad K J, et al. Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: A comparison with modified sequential extraction procedure [J]. Journal of Hazardous Materials, 2008, 154(15):998-1006
    Mungur A S, Shutes R B, Revitt D M, et al. An assessment of metal removal by a laboratory scale wetland [J]. Water Sciences Technology, 1997, 35(5):125-133 Niu H Y, Deng W J, Wu Q H, et al. Potential toxic risk of heavy metals from sediment of the Pearl River in south china [J]. Jounal of Environmental Science, 2009,21:1053-1058
    Peng D, Jin F, Lv J J, et al.Content and distribution of organic matter in Dianchi sediment [J]. Soils, 2004, 36(5):568-572
    Peng S H, Wang W X, Li X D, et al. Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches [J].Chemosphere, 2004, 57(8):839-851
    Quevauviller P H, Rauret G, Lopez J F, et al. Certification of trace metal extractable contents in a sediment reference material following a three-step sequential extraction procedure [J]. Science Total Environment, 1997, 205:223-234
    Reddy K R, Fisher M M, Ivanoff D. Resuspension and diffusive flux nitrogen andphosphorus in a hypereutrophic lake [J]. Journal of Environmental Quality, 1996, 25:363-371
    Seralathan K B. Prabhu D B, Lee K J, et al. Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed in the pulicat lake, southeast India [J]. Chemosphere, 2008, 71(7):1233-1240
    Shang Y N, Ni S J, Zhang C J, et al. Pollution of heavy metals in the surface sediments from rivers in Chengdu and their potential ecological risk[J].Ecology and Environment, 2005,14(6):827-829
    Sondergaard M. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso Denmark [J]. Hydrobiologia, 1992, 28(1):91-99
    Svete P, Milagic R, Pihlar B. Partitioning of Zn, Pb and Cd in river sediments from a lead and zinc mining area using the BCR three-step sequential extraction procedure [J]. Journal of Environmental Monitoring, 2001, 3(6):586-590 Tessier A, Campbell P, Bisson M. Sequential extraction procedure for the speciation of trace metals [J].Analytical Chemistry, 1979, 51:844-851
    Vesk P A, Allaway W G. Spatial variation of copper and lead concentrations of water hyacinth plants in a wetland receiving urban run-off [J]. Aquatic Botany, 1997, 59:33-44
    Wang S F, Jia Y F, Wang S Y, et al. Fraction of heavy metals in shallow marine sediments from Jinzhou Bay, China [J]. Journal of Environmental Sciences, 2010, 22(1):23-31
    Warren L A, Zimmerman A P. Suspended particulate oxides and organic matter interaction in trace metal sorption reactions in small urban river [J]. Biogeochemistry, 1994, 23:21-34
    Wei C Y, Wang C, Yang L S. Characterizing spatial distribution and sources of heavy metals in the soils from mining-smelting activities in Shuikoushan, Hunan Province, China [J]. Journal of Environmental Sciences, 2009, 21(9):1230-1236
    Wilianson R B, Dam L F, Bell R G. Heavy metal and suspended sediment fluxes from a contaminated intertidal inlet Hamilon. New Zealand Marine Pollution Bulletin, 1996, 32(11):812-822
    Zhu G W, Chen Y X, Zhou G D, et al. Distribution of heavy metals in the sediments from the Grand Cannal(Hangzhou section) [J].China Environmental Science, 2001,21(1):65-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700