丹江口水库淹没区淅川段土壤氮磷分布及释放影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以南水北调中线源头丹江口水库淹没区(河南淅川段)为研究对象,采取野外调查和实验室模拟分析相结合的方法,系统开展淹没区土壤氮、磷分布特征研究并在此基础上通过实验室模拟进行氮、磷在土壤—水界面释放影响因素研究,研究结果表明:
     ⑴丹江口水库淹没区淅川段土样各营养元素含量均呈正态分布。土壤耕作层(0-20cm)硝氮含量范围介于5.8~77.9mg/kg,其均值为25.02mg/kg;氨氮含量介于5.2~25.6mg/kg之间,其均值为13.53mg/kg;总氮含量介于181.5~1640.6mg/kg之间,其均值为671.92mg/kg;总磷含量介于457.9~1473.2mg/kg之间,其均值为877.3mg/kg;有机质含量介于1.7~45.3g/kg之间,其均值为18.08g/kg。硝氮、氨氮、总氮、总磷及有机质含量在土壤剖面由上向下减少,耕作层含量大于非耕作层。耕作层有机质含量较高为I级,总氮含量较低为III级,总磷平均含量与全国土壤总磷含量范围相比,含量较高。耕作层土壤总氮、总磷平均含量,均大于沉积物中能引起最低级别生态毒性效应的总氮浓度和总磷的浓度。
     ⑵各土地利用类型硝氮含量:村庄>底泥>旱地>消落带>林地>水田;土地利用类型对土壤氨氮的分布影响不显著。除林地耕作层土壤氨氮含量较高外,其他土地利用类型土壤氨氮含量差别较小;水田总氮含量远大于其他土地利用类型土壤含量,可能与土壤中有机质含量有关,底泥由于其累积效应,总氮含量略高于其他土地利用类型;土地利用类型对土壤中总磷含量分布影响不太显著,除消落带和林地较低以外,旱地、村庄,底泥及水田中总磷平均含量相差不大;采样点土壤中有机质含量受土地利用类型影响较为显著,其含量分布:水田>村庄>底泥>旱地>消落带>林地。
     ⑶经分区研究,氮、磷在空间上的含量分布受离河岸远近影响较小,淹没区下游第四区域氮、磷及有机质平均含量略高于其他区域,而第三区域与第五区域氮、磷及有机质含量略低。说明淹没区土壤受人类种植活动影响较大。
     ⑷土地利用类型对土壤—水界面氮、磷营养物释放影响较小;上覆水与土壤—水界面间隙水间营养盐浓度梯度对氮磷释放影响显著;中性条件有利于硝氮、氨氮向上覆水体的释放,而与之相反,总磷在中性条件下释放强度低于酸、碱性条件;温度升高能促进土壤中硝氮、氨氮及总磷的释放;在试验初期,扰动大大加快了硝氮、氨氮、总磷的释放,但达到最大释放量后,其释放强度下降;在无藻类等水生植物生存条件下,光照对硝氮、氨氮及总磷释放影响较小,光照组释放强度略高于遮光组。
In this research,the submerged area of Danjiangkou Reservoir in Xichuan was selected as the research,field study and lab simulation were comprehensivey applied into investigating the distribution characteristics and the release influence factors of nitrogen and phosphor in soil-water interface. The research results are as follows:
     ⑴The contents of nutritive elements all show Normal distribution in the submerged area of Danjiangkou reservoir. The NO_3-N content range of topsoil (0-20cm) is from 5.8 to 77.9mg/kg, and the average is 25.02mg/kg; NH_4-N is between 5.2 and 25.6mg/kg, the average is 13.53mg/kg; TN from 181.5 to 1640.6mg/kg, the average 671.92; TP between 457.9 and 1473.2 mg/kg, the average 877.3mg/kg; Organic matter from 1.7 to 45.3g/kg, the average 18.08g/kg. The content of NO_3-N, NH_4-N, TN, TP and Organic matter decreases from the top to the bottom of soil profiles, and it is bigger than the content of subsoil. The content of Organic matter is relatively high, and can be classified as grade I; the TN low and grade III; the TP higher than the nationwide average. The average contents of TN and TP are higher than the concentration of TN and TP in sediment, which can cause the lowest level ecological toxic effects.
     ⑵The variation of NO_3-N content is village > sediment > farmland > water fluctuating zone > woodland > paddy. The influence of land use type on the distribution of NH_4-N is not remarkable. The contents of NH_4-N in each land use type are nearly same but the content of woodland topsoil is relatively high; the content of TN in paddy is far bigger than other land use types, which maybe relative to the organic matter in soil. The content of TN in sediment is a little higher than other land use types for accumulation effect. The influence of land use type on TP in the soil is not too remarkable, and the average contents in farmland, village, sediment and paddy show little difference except water fluctuating zone and woodland. The influence of land use type on the organic matter in sampling sites is relatively remarkable, the content distribution is paddy > village > sediment > farmland >water fluctuating zone > woodland.
     ⑶After the division research, the content distribution of nitrogen and phosphor in space is little affected by the distance of riverbank, the average content of nitrogen, phosphor and organic matter in the fourth division is a little higher than other division, however, the third and fifth divisions a little lower. It demonstrates that soil in submerged area is greatly affected by cropping activities.
     ⑷The influence of land use type on the release of nitrogen and phosphor in soil-water interface is relatively low; the release of nitrogen and phosphor is remarkably affected by the concentration gradient of nutrient salts in the interstitial water between overlying water and soil-water interface. Neutral pH conditions are favorable to the release of NO_3-N and NH_4-N to overlying water. In contrast, the release strength of TP under neutral pH conditions is lower than the acid and alkaline conditions. The rise of temperature can promote the release of NO_3-N, NH_4-N and TP. The disturbance can also promote the release of NO_3-N, NH_4-N and TP. when the release is the biggest, the release strength decreases. Under the living circumstance of aquatic plants without algae, light shows a little influence on the release of NO_3-N, NH_4-N, and TP, the release strength of light group is a little higher then dodging group.
引文
[1] Anderson J M. Nitrogen and phosphorous budgets and the role of sediments in six shallow Danish Lakes[J]. Archive fur Hydrobiologie,1974,74:527-550 .
    [2] Bootsma M C, Barendregt A, van Alphen JCA. Effectiveness of reducing external nutrient load entering a eutrophicated shallow lake ecosystem in the Naardermeer nature reserve[J]. Neth Biol Conserv,1999,90 (3): 193 -201.
    [3] Chang S C, Jackson M L . Fractionation of soil phosphorus[J]. Soil Science,1957,84: l33-144.
    [4] De Montigny C,Prairie Y. The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment[J]. Hydrobiology,1993, 253:141-150.
    [5] Eric A Strauss,Nicole L Mitchell,Gary A Lambert. Factors regulating nitrification in aquatic sediments: effects of organic carbon , nitrogen availability and pH[J]. Canadian Journal of Fisheries and Aquatic Sciences,2002.,59:554-563.
    [6] Gachter R. Ten years of artificial mixing and oxygenation: no effect on the internal phosphorus loading of two eutrophic lakes[J]. Environ sci Tech,1998,32(2): 3659-3665.
    [7] Gilbert F.,G .Stora,P. Bonin. Influence of bioturbation on denitrification activity in Mediterranean coastal sediments: an in situ experimental approach[J]. Mar .Ecol. Prog .Ser.,1998,163:99-107.
    [8] Hieltjes A. H .M., Lijklema L.. Fractionation of inorganic phosphates in calcareous sediments[J]. J Environ Qual,1980,9:405-407.
    [9] Jones Simon JGBM , Horsley RW. Microbiological Sources of ammonia in freshwater lake sediment[J]. Journal of General Microbiology,1982,182:2823-2831.
    [10] Kastelan-Macan M,petrovic M. The role of fulvic acids in phosphorus sorption and release from mineral particales[J]. Wat Sci Tech,1996,34:259-265.
    [11] Kim L-H,Choi E. Phosphorous release from sediment with environmental changes in Han- river[C]. Pusan Korea:roceedings of the 4th Conference of Korean Association of Water Quality,1996.
    [12] Liikanen A N U. Effect of temperature and oxygen availibility on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid- boreal lake[J]. Biogeochemistry,2002,59: 269 -286.
    [13] Lijklema L,Komemans A A,Portielje R.Water quality impacts of sediment pollution and the role of early diagenesis[J].Water Science Technol,1993,28:1-12.
    [14] Moore P A,Coale F. Phosphorus fractionation in flooded soils and sediments.In Methods for P Analysis[D]. Raleigh NC:North Carolina State University,2004.
    [15] Ogilvie B,Nedwell D B,Harrison R M,Robinson A.,Sage A. High nitrate muddy estuaries as nitrogen sinks:the nitrogen budget of the River Colne estuary (United Kingdom) [J].Marine Ecology Progress Series,1997,150:217- 228.
    [16] Osgood R A. A hypothesis on the role of Aphanizomenon in translocatiing phosphorus[J]. Hydrobiologia ,1988,169:69-76 .
    [17] Powers J S.Changes in soil carbon and nitrogen after contrasting landuse transition in Northeastern Costa Rica[J].Ecosystem,2009,7(2):134-146.
    [18] Reddy K R,Fisher M M,Ivanoff D. Resuspension and diffrsive flux of nitrogen and phosphorus in a hypereutrophic lake[J]. Journal of Environmental Quality,2004, 25(1):363-371.
    [19]Rossi G,Premazzi G. Delay in lake recovery caused by internal loading[J]. Wat Res,1991,25:567-575.
    [20] Sundbck K, Miles A,Gransson E. Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow water sediments:an annual study[J]. Marine Ecology Progress Series,2000, 200: 59-76.
    [21] Torrent J,Schwertmann U,Barron V. Phosphate sorption by natural hematites[J]. European J Soil Sci,1994,45:45-51.
    [22] Tunney H,Carton O T,Brookes P C,et al.Phosphorus loss from soil to water[M].UK:CAB international,1997,253-271.
    [23] WF Hu,W-Lo,H Chua,et al. Nutrient release and sediment oxygen demand in a eutrophic land - locked embayment in Hong Kong[J]. Environmental International,2001,26:369– 375.
    [24]白晓慧,钟卫国,陈群燕,杨虹.城市内河水体污染修复中沉积物的影响与控制[J].环境科学,2002,23(增刊):89-92.
    [25]包先明,丁卓利,祝鹏飞.不同沉水植物在太湖污染底泥上适应性生长过程及水体氮磷的响应[J].土壤通报,2007,38(6):1191-1195.
    [26]曹杰军,毛亮,史冬梅,周陪.不同土地利用方式下冲积沙岛土壤硝态氮空间分布特征研究[J].上海交通大学学报(农业科学版),2010,28(2):155-170.
    [27]陈后合,孔健健,王淑贤.深水型湖泊底泥NH4+—N释放的环境因子影响实验研究[J].环境科学与管理,2006,31(7) :57-60.
    [28]范成新,相崎守弘.好氧和厌氧条件对霞浦湖沉积物—水界面氮磷交换的影响[J].湖泊科学,1997,9(4):337~342.
    [29]方茜,张朝升,张可方,荣宏伟.溶解氧对反硝化聚磷菌的影响研究[J].中国给水排水,2008,24(1):35-39.
    [30]韩莎莎.富营养化湖泊底泥释磷机理研究[J].环境与可持续发展,2009, 4:63-65.
    [31]何桐,谢健,余汉生,方宏达,高全洲.大亚湾表层沉积物氮的形态特征[J].热带海洋学报,2009,28(2):86-91.
    [32]何桐.大亚湾水体和沉积物中营养盐的赋存、循环及其交换特征[D].广州:中山大学自然地理学,2009.
    [33]侯立军,陆健健,刘敏,许世远.长江口沙洲表层沉积物磷的赋存形态及生物有效性[J].环境科学学报,2006,26(3):488-494.
    [34]胡雪峰,高效江,陈振楼.上海市郊河流底泥氮磷释放规律的初步研究[J].上海环境科学,2001,20(2):66-70.
    [35]黄清辉,王东红,王春霞,马梅,王子健.沉积物中磷形态与湖泊富营养化的关系[J].中国环境科学,2003,23(6):583-586.
    [36]黄建军,赵新华,孙井梅,张丹.城市河道底泥释磷的影响因素研究[J].中国给水排水,2010,26(5):93-95.
    [37]黄延林,柴蓓蓓,邱二生,朱维晃.水体—沉积物多相界面磷循环转化微生物作用实验研究[J].应用基础与工程科学学报,2010,18(1):61-70.
    [38]金相灿等.中国湖泊环境(第一册) [M].北京:海洋出版社,1995.
    [39]金相灿,屠清瑛.湖泊富营养化调查规范(第二版) [M].北京:中国环境科学出版社,1990.
    [40]刘静静.巢湖内源氮磷的形态、释放规律及控制研究[D].安徽:合肥工业大学环境工程,2006.
    [41]刘利花,杨淑英,吕家珑.长期不同施肥土壤中磷淋溶“阈值”研究[J].西北农林科技大学学报(自然科学版),2003,31(3):47-49.
    [42]刘培桐,薛纪渝,王华东.环境学概论[M].北京:高等教育出版社,1995.
    [43]刘淑欣,熊德中.土壤吸磷与供磷特征的研究[J].土壤通报,1989,28(5):217-218.
    [44]李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究[J].农业环境科学学报,2003,22(2) :170-173.
    [45]鲁如坤.土壤—植物营养学原理和施肥[M].北京:化学工业出版社,1998.
    [46]卢学伟等.田庄水库内源氮释放和外源氮淋滤行为研究[J].四川环境,2006,25(6):81-85.
    [47]罗玉兰.城市内河沉积物营养盐污染特性及释放规律研究[D].南京:河海大学环境科学,2007.
    [48]马红波等.渤海沉积物中氮的形态及其在循环中的作用[J].地球化学,2003,32(1):48-52.
    [49]马利民,张明,滕衍行,赵建夫.三峡库区消落区周期性干湿交替环境对土壤磷释放的影响[J].环境科学,2008,29(4) :1035-1039.
    [50]毛建忠,王雨春,赵琼美,吴秀萍.滇池沉积物内源磷释放初步研究[J].中国水利水电科学研究院学报,2005,3(3):229-233.
    [51]缪绅裕,陈桂珠.模拟湿地系统中土壤氮磷释放的动态研究[J].生态科学,1998,17(2):24-27.
    [52]秦伯强等.长江中下游地区湖泊水和沉积物中营养盐的赋存、循坏及其交换特征[J].中国科学D辑,2005,35(增刊II) :1-10.
    [53]沈其荣.土壤肥料学通论[M].北京:高等教育出版社,2001:217-218.
    [54]宋春雷,曹秀云,刘兵钦,周易勇.池塘水华与底层磷营养状态的关系[J].水生生物学报,2004,28(1):7-11.
    [55]宋静,骆永明,赵其国等.沉积物-水界面营养盐释放研究[J].土壤学报,2000,37(4):515-520.
    [56]苏玲,章永松,林咸永.干湿交替过程中水稻土铁形态和磷吸附解吸的变化[J].植物营养与肥料学报,2001,7 (4):410-415.
    [57]孙刚,盛连喜,千贺裕太郎.生物扰动在水层—底栖界面耦合中的作用[J].生态环境,2006,15(5):1106-1110.
    [58]田世洪,马文林.中国环境科学学会学术年会优秀论文集(2008)[C].北京:中国环境科学出版社,2008.
    [59]王庭建等.城市富营养化湖泊沉积物磷负荷及其释放对水质的影响[J].环境科学研究,1994,7(4):12-20.
    [60]吴敏,汪雯,黄岁樑.疏浚深度和光照对海河表层沉积物氮磷释放的实验研究[J].农业环境科学学报,2009,28(7):1458-1463..
    [61]吴群河,曾学云,黄钥.河流底泥中DO和有机质对三氮释放的影响[J].环境科学研究,2005,18(5):34-39.
    [62]吴云鑫.水库蓄水出其水质控制研究[D].浙江:浙江大学建筑工程学院水文与水资源,2009.
    [63]徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展[J].重庆环境科学,2003,25(11) :147-149.
    [64]杨春霞,王圣瑞,金相灿,吴丰昌.轻组有机质对太湖沉积物氮、磷矿化的影响[J].环境科学研究,2009,22(9):1001-1007.
    [65]杨丽,杜文渊.沉积物磷的分级提取方法及提取相的共性分析[J].宁波工程学院学报,2006,18(4):45-48.
    [66]叶常明等.多介质环境污染研究[M].北京:科学出版社,1997:8-9.
    [67]于军亭,张帅,张志斌,王立鹏,魏垒垒,谭晓波.环境因子对浅水湖波沉积物中氮释放的影响[J].山东建筑大学学报,2010,25(1):58-61.
    [68]郑忠明.刺参养殖池塘沉积物—水界面营养盐通量的研究[D].青岛:中国海洋大学水产养殖,2009.
    [69]朱新旺,刘光逊,梁丽君,马丽丽,王玉秋.天津玉桥水库沉积物理化特征及磷赋存形态研究[J].农业环境科学学报,2010,29(1):168-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700