沉陷区复垦基质中镉的植物去除与利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于采矿引起的土地和生态环境破坏十分严重。因此,在矿区开发建设的同时,保护矿区的生态环境,加强矿区土地复垦与生态重建是一项具有战略意义的系统工程。在采煤沉陷地充填复垦缺乏土壤资源的情况下,寻求来源丰富、养分含量高的复垦基质与适种作物成为土地复垦的研究热点。
     前期研究已用粉煤灰分别与酒糟、污泥、糠醛渣配制的基质,代替土壤用于沉陷地填充复垦,但基质中含有一定量的重金属元素,其中镉含量高于《土壤环境质量标准》(二级标准值),难以广泛用于农业生产。因此本试验基于当前植物修复研究热点,根据复垦基质的理化性质,选取具有经济价值或观赏价值的镉富集植物进行利用试验,研究植物的生长特征、富镉特征及其对基质的修复能力,并对富镉植物的利用价值加以研究,综合评价修复的社会效益、经济效益和生态效益,为加快沉陷区土地复垦和土地利用结构调整提供依据。
     研究结果表明:
     (1)基质的理化性质能满足植物生长需要。三种基质的容重均低于一般土壤,有利于植物生长发育和养分的转化;有机质含量分别为16.29%、18.05%、15.00%,碱解氮含量分别为89.60mg·kg-1、149.12mg·kg-1、56.80mg·kg-1,速效磷含量分别为90.52mg·kg-1、165.89mg·kg-1. 81.36mg·kg-1、速效钾含量分别为219.58mg·kg-1、321.27mg·kg-1. 931.43mg·kg-1,经过植物的吸收和雨水淋洗后有所降低,但在实际生产中可通过施肥的方法解决;三种基质的pH值均在6.5-7.1之间,满足植物生长所需的酸碱环境;基质配置初期盐分含量较高,分别为7.80g·kg-1、6.80g·kg-1、8.93g·kg-1,经过一年的植物种植和降水灌溉的淋洗降至2.00g·kg-1、2.51 g·kg-1,完全满足植物正常生长的需要。
     (2)配制初期,三种基质中Zn、Ni、Hg、Pb、Cr、、As、Cu的含量均未超过土壤环境二级标准值,但镉含量超出标准值(0.3mg·kg-1)6-8倍。利用植物修复技术,通过3-5年的植物种植和降水灌溉的淋洗后,基质中镉含量降至0.3mg·kg-1以下,可作为耕地用于各种作物的生产栽培。
     (3)同种植物在不同基质中生长状况各异。苋菜、羽衣甘蓝、紫花苜蓿和蓖麻在基质1中长势最好;百日草、万寿菊、千日红在基质2中生长最为旺盛;地肤在基质3中长势最好。
     (4)以年去除量和年去除率作为评价植物对基质Cd去除效果指标:羽衣甘蓝对三种基质Cd的去除效果均最好;其次为苋菜和蓖麻;再次为紫花苜蓿和百日草;地肤、万寿菊、千日红在三种基质中的去除效果相对较差。另外,生物量的大小决定了同种植物对不同基质中Cd的去除效果。
     (5)修复植物应用价值研究表明:紫花苜蓿、蓖麻、苋菜、地肤、羽衣甘蓝中Cd含量均达到相应的饲料卫生标准和食品污染物限量指标,可安全饲用、药用或食用;羽衣甘蓝、地肤、万寿菊、千日红、百日草具有较高的观赏价值,可用于园林绿化和环境美化,改善复垦区的生态景观;此外,蓖麻、万寿菊还可用于工业生产获得较高的经济收益。
     (6)利用基质进行沉陷区土地复垦,通过植物修复技术去除基质中超标的Cd,这不仅避免了土地资源浪费和环境污染,而且解决了修复植物难以处理的问题,提高了经济效益、社会效益和生态效益。适宜废弃地的大面积复垦与推广应用,并为改善矿区生态环境提供了新的途径。
The land and the environment is very severe damage because mining. Therefore, when mine development and construction, protecting the ecological environment of mining areas, strengthen the land reclamation and ecological restoration is a strategic systems engineering.Reclaimed Coal Mine Subsiden-ce in the absence of soil resources, the search for sources of rich, high nutrient content of crops suitable for reclamation of media and become a research focus in land reclamation.
     Previous studies have used fly ash, respectively lees, sludge, furfural residue prepared substrate, instead of soil to fill for the reclamation of subsidence, but the matrix contains a certain amount of heavy metals, including cadmium content higher than the "soil environmental quality standards ", it is difficult widely used in agricultural production. Therefore, this test based on the current phytoremediation research focus, according to the physical and chemical properties of reclaimed Matrix, select the value of economic value or ornamental plants using cadmium accumulation experiment, plant growth characteristics, and its effect on cadmium-rich matrix of the repair capacity, and Cd-rich plants to study the use of the value of comprehensive evaluation of rehabilitation of social, economic and ecological benefits, to expedite the subsidence of land reclamation and land use provide the basis for restructuring.
     The results showed that:
     (1) Matrix of the physical and chemical properties to meet the needs of plant growth. Three kinds of substrates were lower than average bulk density of soil is conducive to plant growth and nutrient transformation; organic matter, available nitrogen, phosphorus and potassium content of plants through the absorption and decreased after the rain leaching, but in the actual production can be Fertilization methods to solve; three kinds of substrate pH values were between 6.5-7.1, the pH required to meet the plant growth environment; matrix high salt content of the initial configuration, after a year of plant cultivation and reduced precipitation leaching irrigation to 2.00g·kg-1-2.51g·kg-1, fully meeting the needs of normal growth of plants.
     (2) Early preparation, three matrix Zn, Ni, Hg, Pb, Cr,, As, Cu content of no more than two standard values of the soil environment, but the cadmium content than the standard value (0.3g·kg-1) 6-8 times. Use of phytoremediation, plants grow by 3-5 years of irrigation, leaching and precipitation, the cadmium content in the matrix decreased 0.3mg·kg-1 the following can be used for the production of arable land for cultivation of various crops.
     (3) Tthe same species growing in different soil conditions are different. Amaranth, kale, alfalfa, and castor grow best in substrate 1; zinnia, marigold and amaranth grow best in substrate 2; cypress grow best in the substrate 3.
     (4) In an annual removal and removal of plants on the matrix as an evaluation index Cd removal:the three matrix kale Removal of Cd are the best; followed by amaranth, and castor; again alfalfa and zinnia; Kochia, Marigold, amaranth in the removal of three matrix of relatively poor. In addition, biomass determines the size of the same species on different substrates removal of Cd.
     (5) Value of fixed plant that:alfalfa, castor, amaranth, cypress, kale Cd content in the feed to the appropriate health standards and food contaminants limited targets, safe feed, pharmaceutical or food; kale, Kochia, Marigold, amaranth, zinnia has a high ornamental value, can be used for gardening and landscaping to improve the ecological landscape reclamation area; In addition, castor, marigold can also be used for industrial production obtain higher economic returns.
     (6) Subsidence of land reclamation carried out by matrix, phytoremedia-tion technology to remove through the matrix exceeded the Cd, not only to avoid the waste of land resources and environmental pollution, and solve the difficult problem of plant repair, improve economic efficiency, social and ecological benefits. Suitable for large areas of wasteland reclamation and promote the use of, and to improve the ecological environment in mining areas to provide a new approach.
引文
[1]Anguissola Scotti,S.Silva,C.Baffi,Effects of Fly ash pH on the Uptake of Heavy Metals by Chicory[J]Water, Air,& Soil Pullution,2003,109(1-4):397-406.
    [2]Anderson C W N,Brooks R R,Chiarucci A,et al.Phy-tomining for nickel,thallium and gold[J].Journal of Geochemical Ex-ploration,2003,67(1-3):407-415.
    [3]Anguissola Scotti,S.Silva,C.Baffi,Effects of Fly ash pH on the Uptake of Heavy Metals by Chicory[J]Water, Air,& Soil Pullution,2004,109(1-4):397-406.
    [4]Chaney,R.L.Plant uptake of inorganic waste constituents In:Land Treatment of H azardous Wastes Ed.By part,J.F.et al.Noyes Data Corp,Park Ridge.2003:50-76.
    [5]Chen T B and Wei C Y.Arsenic hyperaccumulation in some plant species in so uth China [M].Proceedings of Soil-Rem.2005,194-195.
    [6]Ernst W.H.O.Bioavailability of heavy metals and decontamination of soil by pla nts. Appl.Geochem.1996,11:163-167.
    [7]Gao L,Wang Y,Ge F.Environmental management and Pollution eontrol in mine[J]. Proeeedings Restoration and Management of Mined Lands,2004:18-21.
    [8]Garbisu C,Alkorta I.Phytoextraction:a cost-effective plant-based technology for th e removal of metals from the environment.Bioresource Technology,2005,77:229-236.
    [9]Hetland M D,Gallagher J R,Daly D J,Hassett D J,Heebink L V.Processing of pl ants used to phytoremediate lead-contaminated sites.In:Leeson A,Foote E A,Ban ks M K, Magar V S (Eds.),Phytoremediation wetlands and sediments,The SixthI nternational in situ and on-site Bioremediation Symposium,San Diego.California, 4-7 June.Battelle Press, Columbus,Richland,pp 2004:129-136.
    [10]Kene-DR,Lanjewar-SA,Physicochemical properties of coal fly ash from geother mal power station koradi[J],Journal of Soil and Crops,2001(1-2):120-123.
    [11]Kawachi T,Kubo H.Model experimental study on the migration behavior of hea vy metals in electtokinetic remedration process for contaminated soil[J].Soil Sci. Plant Nutr,2004,45(2):259-268.
    [12]Lasat M M.Phytoextraction of toxic metals:A review of biological mechanisms. J. Environ.Qual,2002,31:109-120.
    [13]McGrath S P,Sidoli C M D,Baker A J M, Reeves R D.The potential for the metal accumulating plants for the insitude contamination of metal polluted soils. In:Integrated soiland sediment research:A Basis for proper protection.Ed.byEjisac kers,H J P.and Hamers,T.Kluwer Academic publisher,Dordrecht.2003,673-676.
    [14]Meagher R B,etc.Engineering phytoremediation of mercury pollution in soil and water using bacterial genes[A].phycoremediation of contaminated soil and water 2004,201-219.
    [15]Nanda kumar P.B.A.Phtoextraction:the use of plants to remove heavy metals fr om soil.Environ[J].Sci.&Technol.2001,29(5):1232-1238.
    [16]Sas-Nowosielska A,Kucharski R,Malkowski E,Pogrzeba M,Kuperberg J M.Phyto-extraction crop disposal-an unsolved problem. Environmental Pollution,2004,128: 373-379.
    [17]Salt,D.A,Smith,R.D.and Raskin,I.Phytore mediation Annual review of plant phys iology and plant molecular biology,2002,49:643-668.
    [18]Salt E D, Blaylock M B,Kumar NPBA,et al.Phytore-mediation:A novel stragety for the removal of toxic metals from the environment using plants [J] Biotechn ology,2005,13:468-474.
    [19]Shuman L.M.Wang J.Effect of rice variety on zinc,cadmium,iron and manganes e content in rhizosphere and non-rhizosphere soil fracti-on[J].Communications in Soil Science and Plant Analysis,2004,28(1):23-36.
    [20]白中科等.工矿区土地复垦与生态重建[M].北京:中国农业科技出版社,2000.
    [21]白中科,郭青霞,王改玲等.矿区土地复垦与生态重建效益演变与配置研究[J].自然资源学报,2001,16(6):525-530.
    [22]池冬华.垃圾焚烧飞灰在水泥中的固化稳定化研究.东华大学,2004,22-23.
    [23]陈静波,阎君,张婷婷,等.四种暖季型草坪对长期盐胁迫的生长反应[J].草业学报,2008,17(5):30-36.
    [24]陈怀满等.中国土壤重金属污染现状与防治对策[J].AMBIO:人类环境杂志,1999,28(2):130-134.
    [25]陈少萍.千日红栽培管理与病虫害防治.中国花卉园艺.2008年第14期.
    [26]陈龙乾等.矿区破坏土地破坏与复垦整治研究[M].北京:中国大地出版社,2003.
    [27]池银花.浅谈优秀豆科牧草—紫花苜蓿[J].福建畜牧兽医,2002,3(3):36-38.
    [28]蔡阿兴.糠醛渣防治碱土及增产效果的初步研究[J],农业现代化研究,1997,18(4):240-243.
    [29]丁园.重金属污染土壤的治理方法[J].环境与开发,2000,15(2):25-28.
    [30]樊锦春,黄海涛.蓖麻开发利用和高产技术栽培.上海农业科技,2003年第14期.
    [31]付梅臣.煤矿区复垦农田景观演变及其控制研究[D].北京:中国矿业大学,2004.
    [32]耿春女,等.菌根生物修复技术在沈抚污水灌区的应用前景[J].环境污染治理技术与设备,2002,3(7):51-55.
    [33]海力且木,买热木尼沙·木盖提,阿布都热西提·阿不力克木.美国万寿菊高产栽培技术.新疆农业科技,2007年05期.
    [34]胡晓丹,王建中,李波.药用及观赏植物-金盏菊.中国林副特产.2001年第01期.
    [35]黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报,2003,40(2):161-169.
    [36]韩正明.采煤塌陷矿区土地整理模式研究[D].北京:中国农业大学,2004.
    [37]韩润平等.用植物消除土壤中的重金属[J].江苏环境科技,2000,13(1):28-29.
    [38]胡守林,赵书珍等.12个紫花苜蓿品种营养价值分析[J].草业科学,2005,22(4):23-25.
    [39]蒋玉根.农艺措施对降低污染土壤重金属活性的影响[J].土壤,2002,34(3):145-147.
    [40]蒋先军,等.重金属污染土壤的植物修复研究[J].土壤,2000.32(2):71-74.
    [41]蒋金龙,王梅农,宋胜其.土地复垦整治综合技术[A].西部大开发科教先行与可持续发展——中国科协2000年学术年会文集[C],2000年.
    [42]康惊涛,粉煤灰与酒糟、污泥对土地复垦的可行性研究[D].山东泰安:山东农业大学,2004.
    [43]刘震,刘金祥,张世伟.刈割对豆科牧草的影响[J].草业科学,2008,25(8):79-83.
    [44]刘秀梅,重金属铅污染的植物修复研究[D],山东农业大学硕士学位论文,2002.
    [45]刘西敏.采煤塌陷地复垦基质中镉的植物去除研究[D].山东泰安:山东农业大学,2007.
    [46]刘云国,等.土壤镉污染生物整治研究[J].湖南大学学报,2000,27(3):34-38.
    [47]廖敏.重金属在土水系统中的迁移特征[J].土壤学报,1998,35(2):179-184.
    [48]李靖霞,李金琴等.蓖麻经济价值和高产栽培技术.内蒙古农业科技,2005(1):35-36.
    [49]李新举等.采煤塌陷地复垦土壤质量研究进展[J].农业工学报,2007,23(6):276-280.
    [50]李树志.生态农业复垦技术[J].能源环境保护,1994,(1):67-71.
    [51]聂发辉,关于超富集植物的新理解[J].生态环境,2005,14(1):136-138.
    [52]钱暑强,刘铮.污染土壤修复技术介绍[J].化工进展,2008(4):10-12,20.
    [53]秦俊梅,白中科,李俊杰等.矿区复垦土壤环境质量剖面变化特征研究—以平朔露天矿区为例[J].山西农业大学学报,2006,26(1):101-105.
    [54]任继凯,陈清朗,陈灵芝等.土壤锡污染与作物[J].植物生态学与地植物学丛刊.
    [55]苏德纯,黄焕忠.油菜作为超累积植物修复镉污染土壤的潜力[J].中国环境科学,2002,22(1):48-51.
    [56]孙波.超积累植物吸收金属机理的研究进展[J].土壤,1999,31(3):13-19.
    [57]司秋亮,王恩德,丁姝.采煤沉陷区土地复垦的几种简易方法[J].资源环境与工程,2007,(5):85-90.
    [58]盛莉.百日草的栽培管理[J].中国花卉盆景,2000年05期.
    [59]邵会发,刘刚.糠醛渣为主要原料的引火饼的研究[J],环境保护科学,2006(8):11-15.
    [60]施顺生.矿山林业复垦的技术特点[J].中国工程科学,2005,(1):36-70.
    [61]滕云,等.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环境,2002,11(1):85-89.
    [62]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833-839.
    [63]吴双桃.镉污染土壤超富集植物选择和镉-锌复合污染实验研究[D].中南林学院,2003:16-18.
    [64]吴龙华,骆永明,等.铜污染土壤修复的有机调控研究[J],可容性有机物和EDTA对污染土壤的释放作用.土壤,2000,32(2):62-70.
    [65]王贵荣.酒糟利用情况调研[J],酿酒,1998(2):1-5.
    [66]王建林等.水稻根际中铁的形态转化[J].土壤学报,1992,29(4):358-363.
    [67]王宏树,剑树范.日本土壤重金属污染及其对策[J].农业环境保护,1987,6(6):33-36.
    [68]王伟,万晓.垃圾焚烧飞灰中重金属的存在力式及形成机理城市环境与城市生态,2003,16(11)7-9.
    [69]王新.不同作物对重金属复合污染物吸收特征研究[J].农业环境保护,1998,17(5):193-196.
    [70]谢少镇等.污水处理厂污泥成分的分析及探讨其利用[J],广州化工,2006(2):14-18.
    [71]许嘉琳等.陆地地生态系统中的重金属[M].北京:国环境利学出版社.1995,24-36.
    [72]肖玫,赵仁静.苜蓿的矿物元素测定及其产业化发展前景[J].粮油食品科技,2006,16(1):48-49.
    [73]项长兴等.南京栖霞山铅锌矿区土壤环境质量评价[J]土壤,1993,25(6):319-323.
    [74]夏来坤,郭天财,康国章,岳艳军.土壤重金属污染与修复技术研究进展[J].河南农业科学,2005,(5):41-45.
    [75]夏汉平.土壤植物系统中的Cd研究进展.应用环境生物学报.1997,3(3):289-298.
    [76]阎允庭,陆建华,陈德存等.唐山采煤塌陷区土地复垦与生态重建模式研究[J].资源产业,2000,(7)15-19.
    [77]杨秀红.粉煤灰充填复垦土地风险评价及稳定化修复技术[J].科技导报,2006,24(3):33-35.
    [78]中华人民共和国土地复垦规定[S].1988年10月21日国务院二十二次常务会通过.
    [79]张杰等.矿区土地复垦与生态恢复技术研究初探[J].露天采煤技术,2002,(1):36-37.
    [80]王激清,张宝悦,苏德纯.修复镉污染土壤的油菜品种的筛选及吸收累积特征研究[J].河北北方学院学报(自然科学版),2005,21(1):58-61.
    [81]王晓玲.采煤塌陷地新型复垦基质利用与评价研究[D].山东农业大学学位论文,2005.
    [82]张若冰,池涌,陆胜勇.垃圾焚烧过程中重金属分布特性的研究.工程热物理学报,2003,24(1):149-152.
    [83]张蕾娜.山东省采煤沉陷地复垦模式及可持续利用研究[D].山东泰安:山东农业大学,2001.
    [84]郑喜坤等.土壤重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [85]张丛.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000.
    [86]张春梅,胡喜峰.紫花苜蓿的营养价值及应用研究进展.中国饲料,2005,(1):15-17.
    [87]张永兴.地肤全身是宝产值高[J].河北农业科技,2001.(3):13-14.
    [88]张黎.多年生黑麦草形态特征与生长习性[J].中国农业科学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700