土槿皮乙酸诱导小鼠真皮成纤维L929细胞有丝分裂灾变及衰老作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土槿皮乙酸(Pseudolaric acid B, PAB)是由松科植物金钱松(Pseudolarix Kaempferi Gorden)的干燥根皮或近根树皮提取出的新型二萜酸化合物。现代药理研究表明,土槿皮乙酸具有抗真菌、抗微管、抗肿瘤、抗血管生成、抗生育等多种药理作用,目前土槿皮乙酸已做为抗真菌药物被广泛使用。微管是抗癌药物的重要靶点,以往对土槿皮乙酸的研究表明土槿皮乙酸是一种新型的微管抑制剂,而微管蛋白则是抗肿瘤重要靶点之一,因此土槿皮乙酸有望成为抗肿瘤药物。初步研究结果还发现土槿皮乙酸具有明显的体内外抗肿瘤活性,而且在有效剂量范围内对小鼠骨髓、肝、肾等毒性低。之前的研究发现土槿皮乙酸可通过诱导周期阻滞、凋亡等过程抑制多种肿瘤细胞的增殖。本研究选用小鼠纤维肉瘤L929细胞作为研究对象,考察土槿皮乙酸诱导肿瘤细胞发生有丝分裂灾变、衰老、自噬等程序性死亡过程分子机制,进一步为土槿皮乙酸成为抗肿瘤药物提供理论依据。
     本研究中,形态学观察结果显示土槿皮乙酸作用L929细胞后,随着给药时间的延长,细胞变圆、变大、变扁平、紧密贴壁。土槿皮乙酸通过抑制微管聚合,破坏微管束状结构、改变细胞骨架、影响纺锤体功能,引起有丝分裂异常。流式细胞术周期分析显示土槿皮乙酸诱导L929细胞出现G2/M期周期阻滞。p-Histone(p-H3)在M期中表达量最高,可以作为M期的标志蛋白。p-H3蛋白水平变化过程和有丝分裂指数分析结果进一步表明土槿皮乙酸诱导L929细胞出现M期阻滞,而非G2期阻滞。进一步研究发现阻滞于M期的细胞因为cyclinBl-cdc2复合物活力的降低发生纺锤体检查点适应,跳出M期进入下一个分裂周期,形成多核细胞。给药时间大于3天后,一部分多核细胞通过凋亡途径死亡。我们还选用了小鼠真皮纤维细胞和人结肠癌HCT116细胞验证了土槿皮乙酸在L929细胞中出现的有丝分裂灾变是否具有普遍性,结果表明土槿皮乙酸诱导肿瘤细胞发生有丝分裂灾变这一现象并非普遍性,而是细胞特异性。
     上述结果表明土槿皮乙酸诱导L929细胞出现细胞变大、变扁平、紧密贴壁、多核化等衰老细胞的特点。因此,进一步考察有丝分裂灾变细胞的去向显得尤为重要。结果表明药物作用3天后小部分有丝分裂灾变细胞发生凋亡,大部分有丝分裂灾变细胞进入衰老状态。免疫蛋白印迹结果显示土槿皮乙酸通过p19-p53-p21p16-Rb通路诱导L929细胞衰老。研究结果还表明土槿皮乙酸诱导L929细胞产生自噬。进一步研究显示自噬抑制剂3MA和氯喹均能推迟土槿皮乙酸诱导的衰老进程,表明自噬促进衰老过程,其后我们还采用Atg5特异性siRNA验证了该结果。此外,流式细胞术结果显示土槿皮乙酸作用L929细胞后线粒体功能严重受损,包括:细胞胞浆内大量活性氧蓄积,线粒体内超氧阴离子水平增加、线粒体数目增加、呼吸链损伤线粒体比率增加、线粒体ATP生成能力降低。接下来,我们发现土槿皮乙酸在L929细胞中诱导的自噬和活性氧/线粒体损伤相互影响,形成一个正反馈通路,正是该正反馈回路促进衰老的进程。最后,为了检测土槿皮乙酸诱导的衰老细胞可以生存多长时间,延长药物作用时间直至6天,观察形态学变化和周期变化。结果显示土槿皮乙酸作用5天后细胞体积缩小,出现碎片细胞,提示土槿皮乙酸诱导L929细胞形成的衰老细胞持续一定时间后最终走向死亡。
     另外,本研究中还考察了mTOR在土槿皮乙酸诱导L929细胞死亡过程中的作用。研究结果表明AKT/mTOR通路的失活参与土槿皮乙酸诱导的自噬,而且P53、JNK、ROS三者之间互相促进,形成一个正反馈调节通路。进一步研究表明ROS-JNK-p53通路通过抑制mTOR的活力调控自噬,促进衰老进程。胰岛素、雷帕霉素和TSC2特异性siRNA预处理等方法进一步验证mTOR的失活在土槿皮乙酸诱导L929细胞衰老过程中的作用。此外,我们还选用了MCF-7细胞验证mTOR的失活在土槿皮乙酸诱导的衰老过程中的作用是否具有普遍性。结果表明mTOR的失活也参与土槿皮乙酸诱导的MCF-7细胞衰老过程。
Pseudolaric acid B (PAB), the primary biologically active compound isolated from the root bark of P. kaempferi Gordon. Previous studies demonstrated that PAB exhibited multiple pharmacological effects including antifungal, antimicrotubule, antibiosis and antitumor. It is reported that PAB is a novel microtubule-destabilizing agent that exhibits antitumor activity in vivo and in vitro. In addition, PAB shows no obvious toxicities to the liver and kidney. PAB exhibits anti-tumor effect in vitro primarily via cell cycle arrest and apoptosis. In this study, we chose L929cells to study the mechanisms of mitotic catastrophe, senescence, autophagy and ROS generation.
     PAB induced mitotic catastrophe in L929cells. The cells became flat, enlarged and adherent after treated with PAB by72h. PAB interfered with the function of the mitotic spindle apparatus by inhibiting microtubule polymerization, resulting in G2/M phase arrest. The level of histone H3phosphorylation, a specific mitotic marker, increased up to24h after treatment and then decreased in a time-dependent manner. In addition, the mitotic index increased during a24h treatment with PAB, suggesting that PAB arrested cell cycle progression at mitosis. The M phase arrested cells undergone mitotic slippage due to the inactivation of the cylinBl-cdc2complex, resulting in multinucleated cells. To investigate whether the mitotic slippage and subsequent apoptosis observed was specific for the L929cell line or the species, the effects of PAB on primary mouse dermal fibroblast cells and colorectal carcinoma HCT-116cells were examined. The results indicated that the mitotic slippage and subsequent apoptosis induced by PAB was not common but instead was specific for L929cells.
     Besides apoptosis, a majority of the cells undergoing mitotic catastrophe entered a period of senescence. PAB induced senescence through p19-p53-p21and p16-Rb pathways in L929cells. Autophagy inhibitors (3-Methyladenine (3MA), chloroquine (CQ) or ATG5siRNA significantly delayed the senescence process, indicating that autophagy facilitated senescence. Further data indicated that PAB triggered serious mitochondrial dysfunction including reactive oxygen species (ROS) generation, the increase in mitochondrial mass, damage to the respiratory chain and ATP production. Moreover, ROS scavenger significantly decreased the autophagic level and improved mitochondrial function. Additionally, autophagy inhibitors effectively reduced ROS levels and ameliorated mitochondrial function, In conclusion, autophagy promoted senescence via enhancement of ROS generation and mitochondrial dysfunction in PAB-treated L929cells. We also investigated the fate of the senescent cells. The results showed that the cells were not stationary senescent, on the contrary, the ratio of dead cells significantly increased after a5-7days exposure of PAB.
     PAB was also found to trigger autophagy via inhibiting Akt/mTOR activity in L929cells, In addition, autophagy was demonstrated to reinforce senescence through regulating the senescence pathways. Thus, we focused on the detailed molecular mechanisms whereby autophagy promoted senescence. PAB triggered a ROS-JNK-p53positive feedback loop played a crucial role in autophagy via repressing the activation of mTOR in L929cells. Furthermore, ROS-JNK-p53positive feedback loop was demonstrated to regulate senescence. TSC1/TSC2heterodimer, a downstream target of growth factor-phosphoinositide3-kinase-Akt signaling, negatively regulates mTOR activity. Activation of mTOR by insulin or inhibition of endogenous TSC2levels by siRNA obviously delayed PAB-induced senescence, In conclusion, mTOR inactivation by ROS-JNK-p53pathway played an important role in autophagy-dependent senescence in PAB-treated L929cells. Finally, mTOR inactivation was also demonstrated to be involved in autophagy-dependent senescence in PAB-treated MCF-7cells.
引文
1. Gundersen, G.G. and T.A. Cook, Microtubules and signal transduction. Curr Opin Cell Biol, 1999.11(1):p.81-94.
    2. Karin and C.R.a.M., Cytoskeletal Control of Gene Expression:Depolymerization of Microtubules Activates NF-xB. The Journal of Cell Biology,1995.128(6):p.1111-1119.
    3. Koh-ichi Nagata, A.P., Clare Futter, Pontus Aspenstrom, Erik Schaefer, and N.H.a.A.H. Takao Nakata, The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. The EMBO Journal,1998. 17(1):p.149-158.
    4. Pitcher, J.A., et al, The G protein-coupled receptor kinase 2 is a microtubule-associated proteinkinase that phosphorylates tubulin. J Biol Chem,1998.273(20):p.12316-24.
    5. Panda, D., H.P. Miller, and L. Wilson, Determination of the size and chemicalnature of the stabilizing "cap" at microtubule ends using modulators of polymerization dynamics. Biochemistry,2002.41(5):p.1609-17.
    6. Jordan, M.A. and L. Wilson, Microtubules as a target for anticancer drugs. Nat Rev Cancer,2004. 4(4):p.253-65.
    7. Kienitz, A., et al., Partial downregulation of MAD1 causes spindle checkpoint inactivation and aneuploidy, but does not confer resistance towards taxol. Oncogene,2005.24(26):p.4301-10.
    8. Zhou, J. and P. Giannakakou, Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents,2005.5(1):p.65-71.
    9.尚海,潘莉,杨澍,陈虹,程卯生,微管蛋白抑制剂的研究进展.Acta Pharmaceutica Sinica 2010,45 (9):p.1078-1088
    10. McGrogan, B.T., et al., Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta,2008.1785(2):p.96-132.
    11. Ohi, R. and K.L. Gould, Regulating the onset of mitosis. Curr Opin Cell Biol, 1999.11(2):p. 267-73.
    12. Honore, S., E. Pasquier, and D. Braguer, Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci,2005.62(24):p.3039-56.
    13. Lara-Gonzalez, P., F.G. Westhorpe, and S.S. Taylor, The spindle assembly checkpoint. Curr Biol, 2012.22(22):p. R966-80.
    14. Vitale, I., et al., Mitotic catastrophe:a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol,2011.12(6):p.385-92.
    15. Mitra, K., et al., A hyperfused mitochondrial state achieved at Gl-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci U S A,2009.106(29):p.11960-5.
    16. Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer:a changing paradigm. Nat Rev Cancer,2009.9(3):p.153-66.
    17. Takashima, T., et al., Relationship between peroxisome proliferator-activated receptor-gamma expression and differentiation of human esophageal squamous cell carcinoma. Oncol Rep,2005. 13(4):p.601-6.
    18.周开梅,郭瑞珍,细胞周期蛋白在恶性肿瘤中的表达.Medical Recapitulate 2010.16(4):p. 533-536.
    19. Poikonen, P., et al., Cyclin A as a marker for prognosis and chemotherapy response in advanced breast cancer. Br J Cancer,2005.93(5):p.515-9.
    20. Diaz-Padilla, I., L.L. Siu, and I. Duran, Cyclin-dependent kinase inhibitors as potential targeted anticancer agents. Invest New Drugs,2009.27(6):p.586-94.
    21. Zhao, M., et al., Expression profiling of cyclin B1 and D1 in cervical carcinoma. Exp Oncol, 2006.28(1):p.44-8.
    22. Li, Y.J., et al., Beta-catenin up-regulates the expression of cyclinDl, c-myc and MMP-7 in human pancreatic cancer:relationships with carcinogenesis and metastasis. World J Gastroenterol,2005. 11(14):p.2117-23.
    23. Nauman, A., et al., Elevated cyclin E level in human clear cell renal cell carcinoma:possible causes and consequences. Acta Biochim Pol,2007.54(3):p.595-602.
    24.梁彬,邹向阳,细胞周期蛋白依赖性激酶及抑制因子与肿瘤.Chin J Lab Diagn,2006. 10(11):p.1378-1380.
    25. Gartel, A.L. and S.K. Radhakrishnan, Lost in transcription:p21 repression, mechanisms, and consequences. Cancer Res,2005.65(10):p.3980-5.
    26. Pateras, IS., et al., Downregulation of the KIP family members p27(KIP1) and p57(KIP2) by SKP2 and the role of methylation in p57(KIP2) inactivation in nonsmall cell lung cancer. Int J Cancer,2006.119(11):p.2546-56.
    27. Tury, A., G. Mairet-Coello, and E. DiCicco-Bloom, The cyclin-dependent kinaseinhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral cortical precursors. Cereb Cortex,2011.21(8):p.1840-56.
    28. Tury, A., G. Mairet-Coello, and E. DiCicco-Bloom, The multiple roles of the cyclin-dependent kinase inhibitory protein p57(KIP2) in cerebral cortical neurogenesis. Dev Neurobiol,2012. 72(6):p.821-42.
    29. Hayflick, L., The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res,1965. 37(5):p.614-36.
    30. Harley, C.B., A.B. Futcher, and C.W. Greider, Telomeres shorten during ageing of human fibroblasts. Nature,1990.345(6274):p.458-60.
    31. d'Adda di Fagagna, F., Living on a break:cellular senescence as a DNA-damage response. Nat Rev Cancer,2008.8(7):p.512-22.
    32. Sherr, C.J. and R.A. DePinho, Cellular senescence:mitotic clock or culture shock? Cell,2000. 102(4):p.407-10.
    33. Young, A.P., et al., VHL loss actuates a HIF-independent senescence programmemediated by Rb and p400. Nat Cell Biol,2008.10(3):p.361-9.
    34. Courtois-Cox, S., et al., A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell,2006.10(6):p.459-72.
    35. Kuilman, T., et al., The essence of senescence. Genes Dev,2010.24(22):p.2463-79.
    36. Parrinello, S., et al., Stromal-epithelial interactions in aging and cancer:senescent fibroblasts alter epithelial cell differentiation. J Cell Sci,2005.118(Pt 3):p.485-96.
    37. Dimri, G.P., et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A,1995.92(20):p.9363-7.
    38. Kuilman, T., et al., Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell,2008.133(6):p.1019-31.
    39. Ancrile, B., K.H. Lim, and C.M. Counter, Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev,2007.21(14):p.1714-9.
    40. Chappelll, W.H., et al., Ras/Raf/M EK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors:Rationale and Importance to Inhibiting These Pathways in Human Health.Oncotarget,2011.2(3):p. 135-64.
    41. Zhao, G., et al., SIRT1 RNAi knockdown induces apoptosis and senescence, inhibits invasion and enhances chemosensitivity in pancreatic cancer cells. Gene Ther,2011.18(9):p.920-8.
    42. Rodier, F. and J. Campisi, Four faces of cellular senescence. J Cell Biol,2011.192(4):p.547-56.
    43.陈阳,何琪杨,Skp2相关衰老信号通路的抗肿瘤价值.生理科学进展,2011.42(3):p.221-222.
    44. Lilian Chuaire-Noack, Magda Carolina Sanchez-Corredor, S.R.R.-C., The Dual Role of Senescence in Tumorigenesis. Int. J. Morphol.,2010.28(1):p.37-50.
    45. Sikora, E., et al., Impact of cellular senescence signature on ageing research. Ageing Res Rev, 2011.10(1):p.146-52.
    46. Rauser, C.L., L.D. Mueller, and M.R. Rose, The evolution of late life. Ageing Res Rev,2006.5(1): p.14-32.
    47. Wang, C., et al., DNA damage response and cellular senescence in tissues of aging mice. Aging Cell,2009.8(3):p.311-23.
    48. Bavik, C., et al., The gene expression program of prostate fibroblast senescencemodulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res,2006.66(2):p. 794-802.
    49. Coppe, J.P., et al., Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol,2008.6(12):p.2853-68.
    50. Baker, D.J., et al., Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature,2011.479(7372):p.232-6.
    51.李清泉,汤奇胜,沈亦雯,朱剑虹,王.陈.,细胞衰老与衰老细胞.生物化学与生物物理进展,2012.39(3):p.257-263.
    52. Grivennikov, S.I., F.R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell,2010. 140(6):p.883-99.
    53. Abraham, R.T. and C.H. Eng, Mammalian target of rapamycin as a therapeutic target in oncology. Expert Opin Ther Targets,2008.12(2):p.209-22.
    54. Zhao, L. and P.K. Vogt, Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle,2010.9(3):p. 596-600.
    55.张钦宪,陈培,PTEN_PI3K_AKT细胞信号转导通路与肿瘤.癌变-畸变-突变,2010.22(6):p.484-486
    56. Chalhoub, N. and S J. Baker, PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol, 2009.4(9):p.127-50.
    57. Huang, J. and B.D. Manning, The TSC1-TSC2 complex:a molecular switchboardcontrolling cell growth. Biochem J,2008.412(2):p.179-90.
    58. Sengupta, S., T.R. Peterson, and D.M. Sabatini, Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell,2010.40(2):p.310-22.
    59. Holz, M.K., The role of S6K1 in ER-positive breast cancer. Cell Cycle,2012.11(17):p.3159-65.
    60. Dancey, J., mTOR signaling and drug development in cancer. Nat Rev Clin Oncol,2010.7(4): 209-19.
    61.张哲,于秀月,郭昆峰,孔垂泽,李军,S6K1和4EBP_1蛋白在膀胱尿路上皮癌中的表达及意义.山西医药杂志,2013.42(1):p.12-14.
    62. Foster, K.G. and D.C. Fingar, Mammalian target of rapamycin (mTOR):conducting the cellular signaling symphony. J Biol Chem,2010.285(19):p.14071-7.
    63. Martinet, W., et al., Autophagy in disease:a double-edged sword with therapeuticpotential. Clin Sci (Lond),2009.116(9):p.697-712.
    64. Mizushima, N., T. Yoshimori, and B. Levine, Methods in mammalian autophagyresearch. Cell, 2010.140(3):p.313-26.
    65. Mizushima, N. and B. Levine, Autophagy in mammalian development and differentiation. Nat Cell Biol,2010.12(9):p.823-30.
    66. Mizushima, N., et al., Autophagy fights disease through cellular self-digestion. Nature,2008. 451(7182):p.1069-75.
    67. Mizushima, N., Autophagy:process and function. Genes Dev,2007.21(22):p.2861-73.
    68. Alers, S., et al., Role of AMPK-mTOR-Ulkl/2 in the regulation of autophagy:cross talk, shortcuts, and feedbacks. Mol Cell Biol,2012.32(1):p.2-11.
    69. Efeyan, A. and D.M. Sabatini, mTOR and cancer:many loops in one pathway. Curr Opin Cell Biol,2010.22(2):p.169-76.
    70. Gwinn, D.M., et al., AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell, 2008.30(2):p.214-26.
    71. Beth Levine, S.S., Guido Kroemer, Bcl-2 family members:Dual regulators of apoptosis and autophagy. Autophagy,2008.4(5):p.600-606.
    72. McAuliffe, P.F., et al., Deciphering the role of PI3K/Akt/mTOR pathway in breast cancer biology and pathogenesis. Clin Breast Cancer,2010.10 Suppl 3:p. S59-65.
    73.蔡世忠,王亚平,细胞衰老与细胞自噬的生物学关联及其意义.生命科学,2011.23(4):p.335-341.
    74. Zhang, C. and A.M. Cuervo, Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med,2008.14(9):p.959-65.
    75. Mortensen, M., et al., The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med,2011.208(3):p.455-67.
    76. Hyun Tae Kang, K.B.L., Sung Young Kim, Hae Ri Choi, Sang Chul Park, Autophagy Impairment Induces Premature Senescence in Primary Human Fibroblasts. PLoS One,2011.6(8):p. e23367.
    77. Young, A.R., et al., Autophagy mediates the mitotic senescence transition. GenesDev,2009.23(7): p.798-803.
    78. White, E. and S.W. Lowe, Eating to exit:autophagy-enabled senescence revealed.Genes Dev, 2009.23(7):p.784-7.
    79. Bolisetty, S. and E.A. Jaimes, Mitochondria and reactive oxygen species:physiology and pathophysiology. Int J Mol Sci,2013.14(3):p.6306-44.
    80. Nishikawa, M., Reactive oxygen species in tumor metastasis. Cancer Lett,2008,266(1):p.53-9.
    81. Lau, A.T., Y. Wang, and J.F. Chiu, Reactive oxygen species:current knowledge and applications in cancer research and therapeutic. J Cell Biochem,2008.104(2):p.657-67.
    82.孙国贵,王雅棣,活性氧与肿瘤.癌变-畸变-突变,2011.23(1).p.78-80
    83. Chen, Y., et al., Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci,2007.120(Pt 23):p. 4155-66.
    84. Lu, T. and T. Finkel, Free radicals and senescence. Exp Cell Res,2008.314(9):p.1918-22.
    85. Rufini, A., et al., Senescence and aging:the critical roles of p53. Oncogene,2013. Epub ahead of print
    86.侯丽,崔景荣.,土槿皮乙酸抗肿瘤作用及其分子机制的研究进展.中国药学杂志,2010.45(23):p.1810-1813.
    87. Zhao, D., et al., Pseudolaric acid B induces apoptosis via proteasome-mediated Bcl-2 degradation in hormone-refractory prostate cancer DU145 cells. Toxicol In Vitro,2012.26(4):p.595-602.
    88. Qi, M., et al., Pseudolaric Acid B-Induced Autophagy Contributes to Senescencevia Enhancement of ROS Generation and Mitochondrial Dysfunction in Murine Fibrosarcoma L929 Cells. J Pharmacol Sci,2013.121(3):p.200-211.
    89. Tan, W.F., et al., Pseudolarix acid B inhibits angiogenesis by antagonizing the vascular endothelial growth factor-mediated anti-apoptotic effect. Eur J Pharmacol,2004.499(3):p. 219-28.
    90. Mei-Hong Li, Z.-H.M., Wen-Fu Tan,, C.Z. Jian-Min Yue, Li-Ping Lin,, and a.J.D.Xiong-Wen Zhang, Pseudolaric Acid B Inhibits Angiogenesis and Reduces Hypoxia-Inducible Factor 1 a by Promoting Proteasome-Mediated Degradation. Clinical Cancer Research,2004.10(15):p.8266-8274.
    91. Sarkar, T., et al., Interaction of pseudolaric acid B with the colchicine site of tubulin. Biochem Pharmacol,2012.84(4):p.444-50.
    92. Wong, V.K., et al., Pseudolaric acid B, a novel microtubule-destabilizing agent that circumvents multidrug resistance phenotype and exhibits antitumor activity in vivo. Clin Cancer Res,2005. 11(16):p.6002-11.
    1. Wong, V.K., et al., Pseudolaric acid B, a novel microtubule-destabilizing agent that circumvents multidrug resistance phenotype and exhibits antitumor activity in vivo. Clin Cancer Res,2005. 11(16):p.6002-11.
    2. Gong, X.F., et al., Pseudolaric acid B induces apoptosis through p53 and Bax/Bcl-2 pathways in human melanoma A375-S2 cells. Arch Pharm Res,2005.28(1):p.68-72.
    3. Khan, M., et al., Pseudolaric Acid B induces caspase-dependent and caspase-independent apoptosis in u87 glioblastoma cells. Evid Based Complement Alternat Med,2012.2012:p. 957568.
    4. Gong, X., et al., Pseudolaric acid B induces apoptosis via activation of c-Jun N-terminal kinase and caspase-3 in HeLa cells. Exp Mol Med,2004.36(6):p.551-6.
    5. Cheng, Y, et al., Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38-nuclear factor-kappa B survival pathways in oridonin-treated murine fibrosarcoma L929 cells. FEBS J,2009.276(5):p.1291-306.
    6. Ye, Y.C., et al., Oridonin induces apoptosis and autophagy in murine fibrosarcoma L929 cells partly via NO-ERK-p53 positive-feedback loop signaling pathway. Acta Pharmacol Sin,2012. 33(8):p.1055-61.
    7. Rogers, K.M., D.H. Black, and R. Eberle, Primary mouse dermal fibroblast cell cultures as an in vitro model system for the differential pathogenicity of cross-species herpesvirus papio 2 infections. Arch Virol,2007.152(3):p.543-52.
    8. Giannakakou, P., et al., Combinations of paclitaxel and vinblastine and their effects on tubulin polymerization and cellular cytotoxicity:characterization of a synergistic schedule. Int J Cancer, 1998.75(1):p.57-63.
    9. Ingemarsdotter, C.K., et al., Low-dose paclitaxel synergizes with oncolytic adenoviruses via mitotic slippage and apoptosis in ovarian cancer. Oncogene,2010.29(45):p.6051-63.
    10. Hirota, T., et al., Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature,2005.438(7071):p.1176-80.
    11. Johansen, K.M. and J. Johansen, Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Res,2006.14(4):p.393-404.
    12. Potapova, T.A., et al., The reversibility of mitotic exit in vertebrate cells. Nature,2006.440(7086): p.954-8.
    13. Xu, H.Z., et al., Pharicin A, a novel natural ent-kaurene diterpenoid, induces mitotic arrest and mitotic catastrophe of cancer cells by interfering with BubRl function. Cell Cycle,2010.9(14):p. 2897-907.
    14. Booher, R.N., P.S. Holman, and A. Fattaey, Human Mytl is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem,1997.272(35):p.22300-6.
    15. Kumagai, A. and W.G. Dunphy, Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev,1999.13(9):p.1067-72.
    16. Brito, D.A. and C.L. Rieder, Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint CurrBiol,2006.16(12):p.1194-200.
    17. Roninson, I.B., E.V. Broude, and B.D. Chang, If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat,2001.4(5):p.303-13.
    18. Vitale, I., et al., Mitotic catastrophe:a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol,2011.12(6):p.385-92.
    19. Ma, G., et al., Selective inhibition of human leukemia cell growth and induction of cell cycle arrest and apoptosis by pseudolaric acid B. J Cancer Res Clin Oncol,2010.136(9):p.1333-40.
    20. Zhao, D., et al., Pseudolaric acid B induces apoptosis via proteasome-mediated Bcl-2 degradation in hormone-refractory prostate cancer DU145 cells. Toxicol In Vitro,2012.26(4):p.595-602.
    21. Gong, X.F., et al., [Pseudolaric acid B induces human melanoma A375-S2 cell apoptosis in vitro]. Zhongguo Zhong Yao Za Zhi,2005.30(1):p.55-7.
    22. Meng, A.G. and L.L. Jiang, Pseudolaric acid B-induced apoptosis through p53-dependent pathway in human gastric carcinoma cells. J Asian Nat Prod Res,2009.11(2):p.142-52.
    23. Yu, J.H., et al., Pseudolaric acid B induces apoptosis, senescence, and mitotic arrest in human breast cancer MCF-7. Acta Pharmacol Sin,2007.28(12):p.1975-83.
    1. Kuilman, T., et al., The essence of senescence. Genes Dev,2010.24(22):p.2463-79.
    2. Vitale, I., et al., Mitotic catastrophe:a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol,2011.12(6):p.385-92.
    3. Kang, H.T., et al., Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One,2011.6(8):p. e23367.
    4. Young, A.R., et al., Autophagy mediates the mitotic senescence transition. Genes Dev,2009.23(7): p.798-803.
    5. Liu, B., et al., Role of ROS in the protective effect of silibinin on sodium nitroprusside-induced apoptosis in rat pheochromocytoma PC12 cells. Free Radic Res,2011.45(7):p.835-47.
    6. Schapira, A.H., Mitochondrial disease. Lancet,2006.368(9529):p.70-82.
    7. Biederbick, A., H.F. Kern, and H.P. Elsasser, Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol,1995.66(1):p.3-14.
    8. Cheng, Y., F. Qiu, and T. Hcejima, Molecular mechanisms of oridonin-induced apoptosis and autophagy in murine flbrosarcoma L929 cells. Autophagy,2009.5(3):p.430-1.
    9. Zhou, R., et al., A role for mitochondria in NLRP3 inflammasome activation. Nature,2011. 469(7329):p.221-5.
    10. Rodier, F. and J. Campisi, Four faces of cellular senescence. J Cell Biol,2011.192(4):p.547-56.
    11. Sherr, C.J., Divorcing ARF and p53:an unsettled case. Nat Rev Cancer,2006.6(9):p.663-73.
    12. Stein, G.H., et al., Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol,1999.19(3):p. 2109-17.
    13. Knudsen, E.S. and K.E. Knudsen, Tailoring to RB:tumour suppressor status and therapeutic response. Nat Rev Cancer,2008.8(9):p.714-24.
    14. Mizushima, N., et al., A protein conjugation system essential for autophagy. Nature,1998. 395(6700):p.395-8.
    15. White, E. and S.W. Lowe, Eating to exit:autophagy-enabled senescence revealed. Genes Dev, 2009.23(7):p.784-7.
    16. Anna V. Knizhnik, W.P.R., Teodora Nikolova, Steve Quiros, Karl-Heinz Tomaszowski, and B.K. Markus Christmann, Survival and Death Strategies in Glioma Cells:Autophagy, Senescence and Apoptosis Triggered by a Single Type of Temozolomide-Induced DNA Damage. PLoS One.,2013. 8(1):p. e55665.
    17. Mizushima, N., T. Yoshimori, and B. Levine, Methods in mammalian autophagy research. Cell, 2010.140(3):p.313-26.
    18. Azad, M.B., Y. Chen, and S.B. Gibson, Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal,2009.11(4):p.777-90.
    19. Brookes, P.S., et al., Calcium, ATP, and ROS:a mitochondrial love-hate triangle. Am J Physiol Cell Physiol,2004.287(4):p. C817-33.
    20. Pendergrass, W., N. Wolf, and M. Poot, Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A, 2004.61(2):p.162-9.
    21. Moiseeva, O., et al., Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol,2009.29(16):p.4495-507.
    22. Skulachev, V.P., Functions of mitochondria:from intracellular power stations to mediators of a senescence program. Cell Mol Life Sci,2009.66(11-12):p.1785-93.
    23. Kim, E.H. and K.S. Choi, A critical role of superoxide anion in selenite-induced mitophagic cell death. Autophagy,2008.4(1):p.76-8.
    24. Mammone, T., D. Gan, and R. Foyouzi-Youssefi, Apoptotic cell death increases with senescence in normal human dermal fibroblast cultures. Cell Biol Int,2006.30(11):p.903-9.
    25. Ohshima, S., Apoptosis and necrosis in senescent human fibroblasts. Ann N Y Acad Sci,2006. 1067:p.228-34.
    26. Yu, L., et al., Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A,2006.103(13):p.4952-7.
    27. Scherz-Shouval, R., et al., Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J,2007.26(7):p.1749-60.
    1. Hsieh, A.C., et al, The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature,2012.485(7396):p.55-61.
    2. Thoreen, C.C., et al., A unifying model for mTORCl-mediated regulation of mRNA translation. Nature,2012.485(7396):p.109-13.
    3. Johnson, S.C., P.S. Rabinovitch, and M. Kaeberlein, mTOR is a key modulator of ageing and age-related disease. Nature,2013.493(7432):p.338-45.
    4. Menendez, J.A., et al., mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency:a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle,2011.10(21):p.3658-77.
    5. Mizushima, N., T. Yoshimori, and B. Levine, Methods in mammalian autophagy research. Cell, 2010.140(3):p.313-26.
    6. Mizushima, N. and B. Levine, Autophagy in mammalian development and differentiation. Nat Cell Biol,2010.12(9):p.823-30.
    7. Mizushima, N., et al., Autophagy fights disease through cellular self-digestion. Nature,2008. 451(7182):p.1069-75.
    8. Cho, S. and E.S. Hwang, Status of mTOR activity may phenotypically differentiate senescence and quiescence. Mol Cells,2012.33(6):p.597-604.
    9. Janku, F., et al., Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol,2011.8(9):p. 528-39.
    10. Fan, S., et al., P53 activation plays a crucial role in silibinin induced ROS generation via PUMA and JNK. Free Radic Res,2012.46(3):p.310-9.
    11. Gong, X., et al., Involvement of JNK-initiated p53 accumulation and phosphorylation of p53 in pseudolaric acid B induced cell death. Exp Mol Med,2006.38(4):p.428-34.
    12. Vigneron, A. and K.H. Vousden, p53, ROS and senescence in the control of aging. Aging (Albany NY),2010.2(8):p.471-4.
    13. Feng, Z. and A.J. Levine, The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol,2010.20(7):p.427-34.
    14. Zhang, H.H., et al., Insulin stimulates adipogenesis through the Akt-TSC2-mTORCl pathway. PLoS One,2009.4(7):p. e6189.
    15. Gao, X., et al., Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol,2002.4(9):p.699-704.
    16. Goncharova, E.A., et al., Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem,2002.277(34):p.30958-67.
    17. Inoki, K., et al., TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol,2002.4(9):p.648-57.
    18. Yu, J.H., et al., Pseudolaric acid B induces apoptosis, senescence, and mitotic arrest in human breast cancer MCF-7. Acta Pharmacol Sin,2007.28(12):p.1975-83.
    19. Astle, M.V., et al., AKT induces senescence in human cells via mTORCl and p53 in the absence of DNA damage:implications for targeting mTOR during malignancy. Oncogene,2012.31(15):p. 1949-62.
    20. Gao, N., et al., Gl cell cycle progression and the expression of Gl cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol, 2004.287(2):p. C281-91.
    21. Huang, J., et al., SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One,2008.3(3):p. e1710.
    22. Kang, H.T., et al., Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One,2011.6(8):p. e23367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700