Fe_3O_4-CMC-5FU纳米载体药物的制备及其对胃癌细胞抗肿瘤作用的电镜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以多面体磁性Fe3O4为纳米颗粒核心,构建载有5-氟尿嘧啶的纳米药物;体外干预胃癌SGC-7901细胞,联合分子生物学方法和电子显微镜技术对纳米药物抗肿瘤效果进行观察,从而为纳米药物的开发、应用提供理论依据。
     方法:利用高温液相法合成形状、大小可控的Fe3O4纳米颗粒,羧甲基壳聚糖(CMC)对Fe304纳米颗粒进行表面包裹、改善生物相容性,进一步结合5-Fu;外加使用外加磁场将Fe3O4-CMC-5-FU纳米药物分离。VSM进行纳米药物磁性检测。采用红外光谱对Fe3O4-CMC纳米颗粒和Fe3O4-CMC-5-FU纳米药物中的化学键进行分析。用CCK-8(cell counting kit-8)试剂盒检测5-Fu和Fe3O4-CMC-5FU对胃癌细胞增殖抑制率的变化。Annexin-V-FITC/PI双染法检测不同浓度药物诱导胃癌细胞凋亡率的变化。采用装备有EDX能谱分析仪和高角暗场像的场发射高分辨率透射电镜对单个的Fe3O4, Fe3O4-CMC, Fe3O4-CMC-5-FU纳米药物,SGC-7901细胞(分别经5FU, Fe3O4纳米颗粒和Fe3O4-CMC-5-FU纳米药物干预后)在纳米/原子尺度进行形态、晶体结构、化学表征的检测。综合超微结构观察的结果,可以对纳米药物抗肿瘤有效性进行推断,并且绘制相应的模拟图示。
     结果:合成直径10nm的多边形Fe304纳米颗粒用于本研究;HAADF-STEM和TEM观察合成的Fe3O4NPs为单体均匀分散。Fe3O4-CMC纳米颗粒平均直径为12nm, Fe3O4-CMC-5FU纳米药物直径为13nm,均匀分散,基本接近理想化的纳米药物直径。Fe3O4-CMC-5FU较单纯5-Fu抑制SGC-7901细胞的增殖的作用增强,呈时间-剂量依赖性。Fe3O4-CMC-5FU纳米药物诱导细胞凋亡、坏死的能力较单纯5-Fu增强,同样呈时间-剂量依赖性。研究中发现,Fe3O4-CMC-5FU干预胃癌细胞24小时后,仍有大量的5FU同Fe3O4-CMC粘附,提示5FU经过一个持续、缓慢的释放过程,从而在细胞质局部形成高浓度。通过透射电镜对加入Fe3O4-CMC-5FU (50μg/ml)纳米药物进行培养的218个胃癌细胞观察发现,其中161个细胞由于纳米药物导致线粒体死亡从而诱导细胞凋亡,占总数的74%。EDX元素分布显示了属于Fe3O4NPS和5FU药物的五种元素C、N、O、 F、Fe在细胞内的分布。
     结论:Fe3O4-CMC-5FU纳米药物对胃癌细胞抗肿瘤效果明显增强。抗肿瘤效果的增强归结于细胞质内局部的纳米药物的高浓度。线粒体途径不仅是纳米药物抗肿瘤活性增强的主要原因,而且也是纳米药物抗肿瘤的新证据。
Objective:The present research was to conduct5-fluorouracil loaded nanodrugs which used polyhedral Fe3O4nanoparticle as core treated gastric cancer cells. Electron-microscopy techniques was used in vitro experiment in order to explore the antitumor mechanism of nano-dugs and provide theory basis for development and application of nanodrug.
     METHODS:Size-and shape-controlled Fe3O4nanoparticles were prepared by using a high temperature liquid phase method. Fe3O4nanoparticles was coated by CMC in order to improve biocompatibility, further immobilize5-Fu onto the CMC coated Fe3O4-CMC NPs. The Fe3O4-CMC-5FU nanomedicine was then collected from the reaction mixture by using a magnet. The chemical bonding of the conjugated Fe3O4-CMC and Fe3O4-CMC-5-FU nanomedicine were investigated by an infrared spectroscopy (IR). A cell counting kit-8(CCK-8) was used to determine the inhibition of drugs (Fe3O4NPs,5FU and Fe3O4-CMC-5FU) against SGC-7901cells. Annexin-V-FITC/PI double staining assay was performed to detect apoptosis of SGC-7901cells. The morphology, crystal structure and chemical characterization of individual Fe3O4, Fe3O4-CMC, Fe3O4-CMC-5-FU, SGC-7901cells incubated with5FU, Fe3O4NPs and Fe3O4-CMC-5-FU nanomedicine were analyzed at the nano/atomic-scale using field emission high-resolution transmission electron microscopywhich is equipped with energy-dispersive x-ray analysis (EDAX), high angle annular dark and scanning transmission electron microscope (HAADF-STEM). The results of ultra-structure changes were Composited to make a deduce which leaded us to draw a analogue map which displayed antitumor effectiveness by nanomedicines.
     Results:Fe3O4NPs with10nm diameter and polyhedral shape were therefore chosen in this study.Both HAADF-STEM and TEM images reveal that individual Fe3O4NPs are fairly uniform and monodispersed. The Fe3O4-CMC hybrids had a mean size of approximately12nm. The average diameter of the Fe3O4-CMC-5FU nanomedicine is about13nm, nearly an ideal diameter of nanomedicines. The data demonstrate that the Fe3O4-CMC-5FU nanomedicine has a much better effect in inhibiting SGC-7901proliferation at all tested concentrations than the traditional pure5FU. The data demonstrate that the Fe3O4-CMC-5FU nanomedicine has a much better effect in inhibiting SGC-7901proliferation at all tested concentrations than the traditional pure5FU. Apoptosis rate detected by flow cytometry reveals that the Fe3O4-CMC-5FU nanomedicine promotes the apoptosis and necrosis of SGC-7901cells much better than the traditional pure5FU. The intensity of apotosis also indicates that the apotosis-inducing effect of the Fe3O4-CMC-5FU nanomedicine on SGC-7901cells is also dose-and time-dependent. We examined218SGC-7901cells incubated with50μg-ml-1Fe3O4-CMC-5FU nanomedicine under transmission electron microscope and found that161cells promoted apotosis due to the mitochondrial death, taking up about74%of the apotosis cases. It is clearly evident that a large amount of5FU was still retained to conjugate with Fe Fe3O4-CMC after24h incubation and5FU should be slowly and continuously released from the surface of the Fe Fe3O4-CMC-5FU nanomedicine agglomerates, thus forming a localized high concentration of5FU in the cytoplasm of SGC-7901cancer cells may induce an acute injury of mitochondrial membrane structure including mitochondria death.
     Conclusions:Fe3O4-CMC-5FU nanomedicine apparently enhances antitumor effect on gastric cancer cells. The enhanced therapeutic efficacy derives from the localized high-concentration of the magnetic nanomedicine in the cytoplasm. Mitochondrial pathway is not only the main reason which enhanced antitumor activity of nanomedicine, but also the new evidence for nanomedicine treating tumour.
引文
[1]A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman, CA. Cancer J. Clin[J]., 2011,61,69-90.
    [2]H. H. Hartgrink, E. Jansen, N. Van Grieken and C. Van de Velde, Lancet[J].,2009,374, 477-490.
    [3]Ministry of Health of the People's Republic of China, China public health statistical yearbook(2012).http://www.moh.gov.cn/publicfiles//business/htmlfiles/zwgkzt/ptjnj/index.htm
    [4]周脉耕,王晓风,胡建平,et al.2004-2005年中国主要恶性肿瘤死亡的地理分布特点[J].中华预防医学杂志,2010,44(004):303-308.
    [5]中国胃癌死亡率高水平地区级名单,中国公共卫生科学数据中心.http://www.phsciencedata.cn
    [6]Sakuramoto S, Sasako M, Yamaguchi T, et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine[J]. N Engl J Med 2007; 357:1810-20.
    [7]Van Cutsem, E., Moiseyenko, V. M., Tjulandin, et al. (2006). Phase Ⅲ study of docetaxel andcisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer:A report of the V325 Study Group[J]. Journal of Clinical Oncology, 24(31),4991-4997.
    [8]Wagner AD, Grothe W, Haerting J, et al.Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data[J]. J Clin Oncol 2006;24: 2903-09.
    [9]NCCN Guidelines Version 2.2011 panel members gastric cancer
    [10]J. Clardy, C. Walsh, Lessons from natural molecules[J]. Nature 432,829-837 (2004).
    [11]A. Jemal et al., Cancer statistics. CA. Cancer. J. Clin[J].58,71-96(2008)
    [12]G. P. Acuna et al., Fluorescence enhancement at docking sites of DNA-Directed self-assembled nanoantennas[J]. Science 338,506-510 (2012).
    [13]R. Weissleder, K. Kelly, E. Y. Sun, T. Shtatland, L. Josephson, Cell-specific targeting of nanoparticles by multivalent attachment of small molecules[J]. Nat. Biotechnol 23,1418-1428 (2005).
    [14]R. K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors[J]. Nat. Rev. Clin. Oncol.7,653-664 (2010).
    [15]H. Lee et al., Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nat. Nanotechnol.7,389-393 (2012).
    [16]J. H. Lee et al., Exchange-coupled magnetic nanoparticles for efficient heat induction[J]. Nat Nano.6,418-422(2011).
    [17]D. A. Orringer et al., Small solutions for big problems:The application of nanoparticles to brain tumor diagnosis and therapy[J]. Clin. Pharmacol. Ther.85,531-534 (2009).
    [18]G. Mikhaylov et al., Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment[J]. Nat. Nano.6,594-602 (2011).
    [19]P. Goymer, Imaging:Early detection for pancreatic cancer[J]. Nat. Rev. Cancer.8,408-409 (2008).
    [20]G. von Maltzahn et al., Nanoparticles that communicate in vivo to amplify tumour targeting[J]. Nat. Mater.10,545-552 (2011).
    [21]B. Kim et al., Tuning payload delivery in tumour cylindroids using gold nanoparticles[J]. Nat. Nano.5,465-472(2010).
    [22]J. H. Park et al., Biodegradable luminescent porous silicon nanoparticles for in vivo applications[J]. Nat. Mater.8,331-336 (2009).
    [23]Y. Jin, X. Gao, Plasmonic fluorescent quantum dots[J]. Nat.Nano.4,571-576 (2009).
    [24]M. Sena, X. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery[J]. Chem. Soc. Rev.39,4326-4354 (2010).
    [25]X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat. Biotech.22,969-976 (2004).
    [26]Y. R. Chang et al., Mass production and dynamic imaging of fluorescent nanodiamonds[J]. Nat. Nanotechnol.3,284-288(2008).
    [27]X.W. Ma, Y.1. Zhao, X. J. Liang, Nanodiamond delivery circumvents tumor resistance to doxorubicin[J]. Acta Pharmacol. Sin.32,543-544 (2011).
    [28]V. N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds[J]. Nat. Nano.7,11-23 (2012).
    [29]D. Fan et al., Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires[J]. Nat Nano.5,545-551 (2010).
    [30]D. Peer et al., Nanocarriers as an emerging platform for cancer therapy[J]. Nat. Nanotechnol.2, 751-760(2007).
    [31]R. Duncan, Polymer conjugates as anticancer nanomedicines[J]. Nat. Rev. Cancer.6,688-701 (2006).
    [32]J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, V. P. Zharov, Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J]. Nat. Nanotechnol.4,688-694 (2009).
    [33]Z. Liu et al., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice[J]. Nat. Nanotechnol.2,47-52 (2006).
    [34]L. Feng, Z. Liu, Graphene in biomedicine:opportunities and challenges[J]. Nanomed.6, 317-324(2011).
    [35]K. Yang et al., Graphene in mice:ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano. Lett.10,3318-3323 (2010).
    [36]M. K. Yu et al., Drug-Loaded superparamagnetic iron oxide nanoparticles for combined cancer Imaging and therapy in vivo[J]. Angew. Chem. Int. Edit.47,5362-5365 (2008).
    [37]P. Horcajada et al., Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nat. Mater.9,172-178 (2009).
    [38]L. Yang et al., Receptor-targeted nanoparticles for in vivo imaging of breast cancer[J]. Clin. Cancer. Res.15,4722-4732 (2009).
    [39]D. Ghosh et al., M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer[J]. Nat. Nanotechnol.7,677-682 (2012).
    [40]A. Amirfazli, Nanomedicine:magnetic nanoparticles hit the target[J]. Nat. Nanotechnol.2, 467-468 (2007).
    [41]H. Y. Si et at., Improving the Anti-Tumor Effect of genistein with a Biocompatible superparamagnetic drug delivery system[J]. J. Nanosci. Nanotechnol.10,2325-2331 (2010).
    [42]R.Weissleder, Molecular imaging in cancer[J]. Science 312,1168-1171 (2006).
    [43]H. Liu et al., Atomic Structure of Human Adenovirus by Cryo-EM Reveals Interactions Among Protein Networks[J]. Science 329,1038-1043 (2010).
    [44]D. A. Muller, Structure and bonding at the atomic scale by scanning transmission electron microscopy[J]. Nat. Mater.8,263-270(2009).
    [45]M. van SchooneveldMatti et al., Imaging and quantifying the morphology of an Organic inorganic nanoparticle at the sub-nanometre level[J]. Nat. Nanotechnol.5,538-544 (2010).
    [46]Siddiqui, I. A.; Adhami, V. M.; Christopher, J.; Siddiqui, I.; Adhami, V; Christopher, J.; Mukhtar, H., Impact of nanotechnology in cancer:emphasis on nanochemoprevention[J]. International journal of nanomedicine 2012,7,591
    [47]Silva, G. A., Nanotechnology for biology and medicine. [M]. Springer:2012
    [48]Toumey, C., Probing the history of nanotechnology [J]. Nature Nanotechnology 2012,7 (4), 205-206.
    [49]Wolf, E. L.; Medikonda, M., Understanding the nanotechnology revolution[M].Wiley-VCH: 2012
    [50]BBC Research, Nanobiotechnology Applications and Global Markets, New York:BBC Research,2011
    [51]Wang, Z. K.; Lim, H. S.; Zhang, V. L.; Goh, J. L.; Ng, S. C.; Kuok, M. H.; Su, H. L.; Tang, S. L., Collective Spin Waves in High-Density Two-Dimensional Arrays of FeCo Nanowires[J]. Nano Letters 2006,6 (6),1083-1086.
    [52]C. Zheng et al., Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors[J]. Carbon,2012,50(14):5167-5175
    [53]Kovalenko, M. V.; Bodnarchuk, M. I.; Lechner, R. T.; Hesser, G.; Schaffler, F.; Heiss, W., Fatty acid salts as stabilizers in size-and shape-controlled nanocrystal synthesis:the case of inverse spinel iron oxide[J] Journal of the American Chemical Society 2007,129 (20), 6352-6353.
    [54]Kumar, H.; Ghosh, S.; Burger, D.; Zhou, S.; Kabiraj, D.; Avasthi, D. K.; Grotzschel, R.; Schmidt, H., Microstructure, electrical, magnetic, and extraordinary Hall effect studies in Ni: SiO nanogranular films synthesized by atom beam sputtering[J].Journal of Applied Physics 2010,107,113913.
    [55]金重勋.磁性技术手册[M].中国台湾:中华民国磁性技术协会.2003.
    [56]Berry, C. C.; Curtis, A. S., Functionalisation of magnetic nanoparticles for applications in biomedicine[J]. Journal of physics D:Applied physics 2003,36 (13), R198
    [57]Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E., Magnetic nanoparticle design for medical diagnosis and therapy[J]. Journal of Materials Chemistry 2004,14 (14),2161-2175.
    [58]Ma, M.; Wu, Y.; Zhou, J.; Sun, Y.; Zhang, Y.; Gu, N., Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field[J]. Journal of Magnetism and Magnetic Materials 2004,268 (1-2),33-39.
    [59]Hamley I W. Nanotechnology with soft materials.[J].Angew Chem Int Ed Engl,2003, 42(15):1692-1712.
    [60]TePPer T. Zaman TR, Ram RJ, etc al. Magneto-optical Properties of iron oxide films.[J].J APPl Phys,2003,93(10):6948-6950.
    [61]Gupta A K, Gupta M. synthesis and surface engineering of iron oXide nanoparticles for biomedical applications.[J].Biomaterials,2005,26(18):3995-4021
    [62]Gupta, A. K.; Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials 2005,26 (18),3995-4021.
    [63]Zhu A, Yuan L, Liao T. Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan.[J]. Int J Pharm,2008,350(1-2):361-368.
    [64]周利民,王一平,刘峙嵘等.羧甲基化壳聚糖-Fe304纳米粒子的制备及对Zn2+的吸附行为[J].物理化学学报,2006,47(1):254-260.
    [65]赵丽瑞,孙多先,刘满英.羧甲基壳聚糖的性能及其在生物医学领域的应用[J].高分子通报,2007,8(8):43-47.
    [66]Gsmez-Lopera S A. Plaza R C, Delgado AV.Synthesis and Characterization of Spherical Magnetite/Biodegradable Polymer Composite Particles[J]. Journal of Colloid and Interface Science,2001,58(3):384-386.
    [67]Kvseoelu Y. Effect of surfactant coating on magnetic properties of Fe3O4 nanoparticles:ESR study [J].Journal of Magnetism and Magnetic Materials,2006,15(l):E1643-E1645.
    [68]董志伟;乔友林;李连弟等,中国癌症控制策略研究报告.中国肿瘤2002,11(5),250-260.
    [69]Bertuccio, P.; Chatenoud, L.; Levi, F.; Praud, D.; Ferlay, J.; Negri, E.; Malvezzi, M.; La Vecchia, C., Recent patterns in gastric cancer:a global overview. International journal of cancer 2009,125 (3),666-673.
    [70]Chadha, M. K.; Kuvshinoff, B. W.; Javle, M. M., Neoadjuvant therapy for gastric cancer. Oncology (Williston Park, NY) 2005,19 (9),1219.
    [71]Sasako, M., Principles of surgical treatment for curable gastric cancer. Journal of Clinical Oncology 2003,21 (23 suppl),274-275.
    [72]Roth, A., Chemotherapy in gastric cancer:a never ending saga. Annals of oncology 2003,14 (2),175-177.
    [73]Lu, B.; Zhang, J.; Yang, H., Nonphospholipid vesicles of carboplatin for lung targeting. Drug Delivery 2003,10 (2),87-94.
    [74]Torchilin, V. P., Multifunctional nanocarriers. Advanced drug delivery reviews 2006,58 (14), 1532-1555.
    [75]Haley, B.; Frenkel, E. In Nanoparticles for drug delivery in cancer treatment, Urologic Oncology:Seminars and original investigations, Elsevier:2008; pp 57-64.
    [76]Wang, M.; Thanou, M., Targeting nanoparticles to cancer. Pharmacological Research 2010, 62 (2),90-99.
    [77]Aggarwal, A.; Chhajer, P.; Maheshwari, S., Magnetic drug delivery in therapeutics.cancer 2012,6,7.
    [78]Kim GJ, Nie S. Targeted cancer nanotherapy. Materials Today.2005;8:28-33.
    [79]Wang, M.; Thanou, M., Targeting nanoparticles to cancer. Pharmacological Research 2010, 62 (2),90-99.
    [80]Jones, A.; Harris, A. L., New developments in angiogenesis:a major mechanism for tumor growth and target for therapy. The cancer journal from Scientific American 1998,4 (4), 209-217
    [81]Baban, D. F.; Seymour, L. W., Control of tumour vascular permeability. Advanced drug delivery reviews 1998,34 (1),109-119.
    [82]Nie, S.; Xing, Y.; Kim, G.J.; Simons, J. W., Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng.2007,9,257-288.
    [83]Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R., Biodegradable long-circulating polymeric nanospheres. Science 1994,263 (5153),1600-1603.
    [84]Vassiliou, A. A.; Papadimitriou, S. A.; Bikiaris, D. N.; Mattheolabakis, G.; Avgoustakis, K., Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers. Journal of Controlled Release 2010,148 (3),388-395.
    [85]Acharya, S.; Sahoo, S. K., PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced drug delivery reviews 2011,63 (3),170-183.
    [86]Park, J.-S.; Young Yoon, S.; Kim, J.-M.; Yeom, Y.-I.; Kim, Y. S.; Kim, N.-S., Identification of novel genes associated with the response to 5-FU treatment in gastric cancer cell lines using a cDNA microarray. Cancer letters 2004,214 (1),19.
    [87]Bu, X.; Jia, F.; Wang, W.; Guo, X.; Wu, M.; Wei, L., Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma cells. BMC cancer 2007,7(1),208.
    [88]Wang, J.; Liu, W.; Zhao, Q.; Qi, Q.; Lu, N.; Yang, Y.; Nei, F.-F.; Rong, J.-J.; You, Q.-D.; Guo, Q.-L., Synergistic effect of 5-fluorouracil with gambogic acid on BGC-823 human gastric carcinoma. Toxicology 2009,256 (1),135-140.
    [89]Yang, L.; Wu, D.; Luo, K.; Wu, S.; Wu, P., Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells. Cancer letters 2009,276 (2),180.
    [90]Zhu YF. Techniques of Characterization and Test for Nanomaterials (纳米材料的表征与测试技术)[M]. Beijing:Chemical Industry Press,2006:62,84.
    [91]Huang X Y. The Microstructure of Materials andIts Electron Microscopy Analysis(材料微观结构的电子显微学)[M]. Beijing:Metallurg Ind Press,2008.253
    [92]Bals, S.; Kabius, B.; Haider, M.; Radmilovic, V.; Kisielowski, C., Annular dark field imaging in a TEM [J]. Solid state communications 2004,130 (10),675-680.
    [93]Daniela B, Giovanni R, Giovanni T, et al. Novel polymeric/lipidic hybrid systems (PLHs) for effective cidofovir delivery:preparation, characterization and comparative in vitro study with polymeric particles and liposomes [J]. Int J Pharm,2011,413:220-228.
    [94]Zhou WJ, Gao P, Shao L, et al. Drug-loaded, magnetic, hollow silica nanocomposites for nanomedicine [J]. Nanomedicine,2005,1:233-237.
    [95]Lopez T, Ortiz E, Alvarez M, et al. Catalytic nanomedicine:functionalisation of nanostructured cryptomelane [J]. MaterChem Phys,2010,120:518-526.
    [96]Huynh NT, Passirani C, Saulnier P. Lipid nanocapsules:a new platform for nanomedicines [J]. Int J Pharm,2009,379:201-209.
    [97]Lu WL, Hu JH, Zhu QG, et al. Preparation of scopolamine hydrobromide nanoparticles-in-microsphere system [J]. Acta Pharm Sin(药学学报),2010,45:914-919.
    [43]Sophie L, Silvio D, Urs OH, et al. Magnetic fluid hyperthermia:focus on superparamagnetic iron oxide nanoparticles [J].Adv Colloid Interface Sci,2011,166:8-23.
    [98]Longley, D. B.; Johnston, P. G.,5-Fluorouracil. In Apoptosis, Cell Signaling, and Human Diseases, Springer:2007; pp 263-278.
    [99]van Schooneveld, M. M.; Gloter, A.; Stephan, O.; Zagonel, L. F.; Koole, R.; Meijerink, A.; Mulder, W. J.; de Groot, F. M., Imaging and quantifying the morphology of an organic-inorganic nanoparticle at the sub-nanometre level [J].Nature Nanotechnology 2010,5 (7),538-544.
    [100]徐海飞.磁性纳米粒子跨膜转运机制及生物学效应和碳纳米管对钾通道影响的研究.中国协和医科大学[D],2010
    [101]Unfried, K.; Albrecht, C.; Klotz, L.-O.; Von Mikecz, A.; Grether-Beck, S.; Schins, R. P. F., Cellular responses to nanoparticles:Target structures and mechanisms [J]. Nanotoxicology 2007,1(1),52-71.
    [1]易家康.纳米医学正在改变诊断和治疗方法[J].世界科学,2010,(1):20-21,
    [2]王晓光,胡红,刘又宁.应用纳米免疫磁珠检测早期肺癌循环血中肿瘤细胞[J].中华医学杂志,2004,84(16):1393-1395.
    [3]段箐华,王柯敏,谭蔚泓,等.新型有机荧光染料嵌合的核壳荧光纳米材料的研制[J].高等学校化学学报,2003,24(2):255-259.
    [4]Yang H H, QuHY, Lin P. Nanometer fluorescent hybrid silica particle as uhrasensitive and photostable biological labels[J]. Analyst,2012,128(5):462-466.
    [5]Massoud T F, Gambhir S S. Molecular imaging in livingsubjects:seeing fundamental biological processes in a new light[J]. Genes Dev,2008,17:545-580.
    [6]Alivisatos A P. The use of nanocrystals in biological detection[J]. Nat Biotechnol,2004, 22:47-52.
    [7]Bulte M, Kraitchman D L. Iron oxide MR contrastagents for molecular and cellular imaging[J]. NMR Biomed,2004,17:484499。
    [8]Bellin M F. MR contrast agents, the old and the new[J]. Eur J Radiol,2006,60:314-323.
    [9]Zhao M, Beauregard D A, Loizou L, et al.Non。invasivedetection of apoptosis using magnetic resonance imaging and a targeted contrast agent[J]. Nat Med,2010,7:1241'1244.
    [10]Vernimmed D, Gueders M, Pisvin S, et al. Diferentmechanisms are implicated in ERBB2 gene overexpression in breast and in other cancers[J]. Br J Cancer,2003,89899-906.
    [11]Jun Y W, Hum Y M, Choij S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging[J]. J Am Chem Soc,2011, 127:5732-5733.
    [12]Hun Y M, Jun Y, Song H T, et al. In vivo magnetic resonance detection of cancer by using muhifunctional magnetic nanocrystals[J]. J Am Chem Soc,2005,127:12387-12391.
    [13]Hu F Q,Wei L, Zhou Z, et al. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer[J]. Adv Mater,2006,18:2553-2556.
    [14]Choij S, Jun Y w, Yeon S I, et al. Biocompatible heterostructured nanoparticles for muhimodal biological detection,[J]. J Am Chem Soc,2006,128:15982-15983.
    [15]Gao J, Liang G, Zhang B, et al. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells[J]. J Am Chem Soc,2007,129:1428-1433.
    [16]Kim J, Lee J E, Lee J, et al. Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres[J]. Angew Chem Int Ed,2006,45:4789-4793.
    [17]Daniel C, Astruc D. Gold nanoparticles:assembly。supramolecular chemistry, quantum-size-related prope-ies, and aplications toward biology, catalysis, and nanotechnology[J]. Chem Rev,2008,104:293-346.
    [18]Han S,Lytton Jean, et al. Colorimetric screening of DNA-binding molecules with gold nanoparticle probes[J]. Angew Chem Int Ed,2006,45:1807-1810.
    [19]Rosin L, Mirkin C A. Nanostructures in biodiagnostics[J]. Chem Rev,2005,105: 1547-1562.
    [20]Elsayed I H, Huang X H, Elayed M A. Aptamer nano flares for molecular detection in living cells[J]. NanoLeter,2005,5:829-834.
    [21]Gun R, Lir T, Li X L, et al. Dual functional alginic acid hybrid nanospheres for cell imaging and drug delivery[J]. Small,2009,5:709-717.
    [22]Hu Y, Chen Q, Ding Y, et al. Entering and lighting up nuclei using hollow chitosano gold hybrid nanospheres[J]. Adv Mater,2009,21:3639-3643.
    [23]Michalet X, Pinaud F F, Bentolila L A, et al. Quanrum dots for live cells, in vivo imaging, and diagnostics[J]. Science,2005,307:538-544.
    [24]Vourea E B, Jaiswal J K, Mattoussia H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission'scanning microscopy[J]. Nat Med, 2004,10:993。998.
    [25]Ito A,Shinkai M, Honda H. Medical application of functionalized magnetic nanoparticles[J]. J Bioeng,2005,100(1):1-11.
    [26]Lepek M, Plappiner F. Novel transducers for nano-optical biosensor chips based on biological and synthetic polymers with analyte-de pendent swelling/shrinking behavior[J]. J Nanotechnol,2004,4(1/2):106-114.
    [27]张阳德,张蕾,刘新生.纳米技术在肿瘤诊断与治疗中的现状与展望[J].中国医学工程,2007,1,12(6):14.
    [28]Murday J S, SiegelR W, Stein J, et al. Translational nanomedicine:status assessment and opportunities[J]. Nanomedicine:Nanotechnology, Biology, and Medicine,2009,5:251-273.
    [29]赵迎欢.纳米药物的风险及控制[J].医学与哲学:人文社会医学版,2010,31(7):27--28.
    [30]李霞,彭蜀晋,张云龙,等.纳米材料在生物医学领域的应用[J].化学教育,2006,11:10-13.
    [31]Alexiou C, Amold W, Klein J K, et al. Locoregional cancer treatment with magnetic drug targeting[J]. Cancer Res,2001,60(23):6641-6648.
    [32]Mu L, Feng S S. A novel controlled release formulation for the anticancer drug paelitaxel(Taxol(R)):PLGA nanoparticles containing vitamin E TPGS[J]. Journal of Controlled Release,2010,86(1):33-48.
    [33]杨凯,温玉明.颈淋巴结靶向抗癌纳米微粒的研制及其对口腔癌颈淋巴结转移灶靶向治疗的研究[J].现代口腔医学杂志,2006,20(4):337-340.
    [34]Erdogan S. Liposomal nanocarriers for tumor imaging[J]. J Biomed Nanotechnol,2009,5: 141-150.
    [35]Sun W, Xie C, Wang H, et al. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain[J]. Biomaterials,2004,25(15):3065.
    [36]Kepan G. Jing X G. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate80 coated poly butyl cyanoacrylate nanopartieles[J]. Int J Pharm,2006, 310(10):213.
    [37]PetriB, Bootz A, Khalansk Y A, et al. Chemotherapy of brain tumor using doxorubicin bound to surfaetant'coated poly(butyl cyanoac。rylate)nanopartieles:revisiting the role of surfactants[J]. J Controlled Release,2007,22(1):51.
    [38]Oliver J C. Drug transport to brain with targeted nanoparticles[J]. J Am Sci,2005,2(1): 108.
    [39]Ulbrich K, Hekmatara T, Herbert E, et al. Transfertin and transferrin。receptor。 antibody"modified nanoparticlesenable drug delivery across the bloods-brain barrier(BBB)[J]. Eur J Pharm Biopharm,2009,71(2):251-256.
    [40]Kurakhmaeva K B, VoroninaT A, Kapicai G, et al. Antiparkinsonian efect of nerve growth factor adsorbed on polybutylcyanoacrylate nanoparticles coated with polysorbate-8O[J]. Bull Exp Biol Med,2008,145(2):259-262.
    [41]Liu L, Venkatraman S S, YangY Y, et al. Polymeric miceUes anchored with TAT for delivery of antibiotics across the blood-brain barrier[J]. Biopolymers,2008,90(5):617-623.
    [42]Mesiha M S, Sidhom M B, Fsaipe B. Oral and subcutaneous absorption of insulin poly (isobutylcyanceerylate)nanopartieles[J]. Int J Pharm,2005,288-289.
    [43]Merisko L, Mcgurk S L, Liver-sidged G。Insulin nanoparticles:a novel form ulation approach for poorly water soluble Zn-insulin[J]. Pharm Res,2004,21:1545.
    [44]Christiane D, Philippe M, Nathalie U. Oral delivery of insulin associated to polymeric nanopartieles in diabetic rats[J]. J Con-oHed Release,2007,117:163.
    [45]Yang J, Song C X, Sun H F, et al. A new type gene delivery system gene nanoparticles[J]. Key Eng Mater,2005,288:143.
    [46]Lambert G, Fattal E, Couvereur P. Nanoparticulate systems for the delivery of antisense oligonucleotides[J]. Adv Drug Deliv Rev,2001,47(1):99-112.
    [47]王潇婕,许智轩,赵彦涛,等.添加纳米二氧化钛树脂基托材料抗菌性能的研究[J].临床口腔医学杂志,2007,23(5):270272.
    [48]郭春兰.纳米银医用抗菌敷料在预防外科手术部位切口感染中的应用[J].护理学报,2007,14(10):79.
    [49]Liu Y, Jiao F, Qiu Y, et al. The effect ofGd@C82(OH)22 nanoparticles on the relea se of Thl/Th2 cytokines and induction of TNF-alpha mediated cellularimmunity[J]. B iomaterials,2009,30(23-24):3934-3945.
    [50]付莉,冯卫,彭芝兰,等.羟基磷灰石纳米粒子对卵巢癌作用的体外实验研究[J].中国生物医学工程学报,2007,26(4):584-609.
    [51]Chen J, Cao X Y, Li S P, et al. The influence of nanoapa. tite on cmyc and p53 gene in the hepatocellular carcinoma[J]. J Wuhan Univ Technol:Mater Sci,2005,20(2):57-59.
    [52]Cao X Y, Dai H L, Yan Y H. Selective antihepatoma fleated with titanium oxide nanoparticles in vitro [J]. J Wuhan Univ technol:Mater Sci,20o3,18(1):52-54.
    [53]Silva G A. Seeing the benefits of ceria[J]. Nature Nanotechnology,2006,1:9294.
    [54]Min B M, Lee G, Kim S H, et al. Eleetrospinning of silk fibroin nanofibe~ and its efect on the adhesion and spreading of normal human keratinocytes and flbroblasts in vitro[J]. Biomaterials,2004,25(7/8):1289-1297.
    [55]Silva G A, Czeisler C, Niece K L, et al. Selective differentiation of neural progenitor ceils by high-epitope density nanofibem[J]. Science,2004,303(5662):1352-1355.
    [56]Price R L, Waid M C, Habberstroh K M, et al. Selective bone cell adhesion on formulations containing carbon nanofibers[J]. Biomaterials,2003,24(11):1877-1887.
    [57]MckeinzieJ L, Waid M C, Shi R, et al. Decreased functions of astrocytes on carbon nanofiber materials[J]. Biomaterials,2004,25(7/8):1309-1317.
    [58]Freites R A. Exploratory design in medical nanotechnolngy:a mechanical artificial red cell[J]. Artif Cells Blood Substit Imomobil Biotechnol,2005,26(4):411-430.
    [59]Murphy J, Cart B, Atkinson T. Nano technology in medicine and the biosciences[J]. Trends Biotechnol,1994,12(2):289-290.
    [60]Ellis-behnke R G, Liang Y X, You S W, et al. Nano neuro knitting:peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision[J]. Proc Natl Acad Sci USA,2006,103:5054-5059.
    [61]凌昌全,苏永华.构建纳米方剂体系的可能性和必要性[J].中西医结合学报,2010,8(2):101-105.
    [62]成进学,成钢,李云.负离子远红外纳米银、锌、硒元素中药外治烧烫伤药剂的应用研究进展[J].广东微量元素科学,2010,17(6):12--16.
    [63]马碧涛,吴敏.纳米中药的制备方法研究进展[J].上海中医药杂志,2009,43(12):77--80.
    [64]李云,孙利伟,赵胜芳,等.P-环糊精包合技术在中药药剂中的应用[J].中国现代药物应用,2009,3(1):189-191.
    [65]王子好,王丽,张东生.纳米雄黄脂质体的制备、特性检测和体外抗肿瘤细胞作用的研究[J].东南大学学报:医学版,2009,28(3):175-179.
    [66]吴敏,刘娟,张欣.辛夷挥发油纳米脂质体的制备工艺研究[J].中西医结合学报,2007,5(3):314-317.
    [67]张路,简江波,盛燕,等.马钱子碱脂质体的大鼠离体透皮性能和兔皮肤刺激性研究[J].中国医药工业杂志,2006,37(3):172--174.
    [68]罗琥捷,李临生.鱼腥草挥发油纳米脂质体的制备及其肺靶向效果[J].时针国医国药,2006,17(1):56-57.
    [69]Vegaviuja K R, Takemote J K, Yanez J A, et al. Clinical toxicities of nanocarrier systems[J]. Adv Drug DelivRev,2008,60(8):929-938.
    [70]周国强,陈春英,李玉锋,等.纳米材料生物效应研究进展[J].生物化学与生物物理进展,2008,35(9):998-1006.
    [71]Yeo M K, Kang M. Efects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis[J]. Bull Korean Chem Soc,2008,29(6):1179-1184.
    [72]Hoet P, Legiese B, Geys J, et al. Do nanomedicines require novel safety assessments to ensure their safety for longterm human use?[J]. Drug Saf,2009,32(8):625-636.
    [73]Donaldson K, Stone V, Tran C L, et al. A new frontier in particle toxicology relevant to both the workplace and general environment and to consumer safety [J]. Occup Environ Med, 2004,61(9):727-728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700