家蝇蛆抗菌肽的分离纯化和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蝇(Musca domestica)属昆虫纲,双翅目,环裂亚目、蝇科,是我国大部分地区最常见、数量最多的一种蝇类。家蝇中存在大量抗菌活性物质,对抗菌药物的开发具有重要的意义。但家蝇中抗菌肽的种类较多,成分复杂,很难分离纯化出一个单一抗菌肽,目前国内外对其研究较少。本研究从家蝇干蝇蛆中分离纯化出了一个新抗菌肽Muscatoxin并测得其氨基酸序列,也深入开展了生理功能的研究。完成的工作主要包括以下几个方面:
     1、利用短时沸水处理、稀醋酸低温浸提、海藻酸吸附、稀盐酸低温洗脱、盐析、凝胶过滤、CMC23弱阳离子交换柱层析、反相高效液相色谱层析等方法,从家蝇蛆中分离纯化出一组蝇蛆抗菌肽,具有抗菌谱广,最低杀菌浓度低,耐热、耐冻融能力极强等特点。其杀菌活性高低依次为:枯草杆菌>苏云金芽胞杆菌>金黄色葡萄球菌>铜绿假单孢菌>大肠杆菌,最低杀菌浓度依次为:0.039、0.078、1.25、5.0、20.0μg/μl。蝇蛆抗菌肽不是凝集素类物质,对G~+菌的杀灭作用比对G~-菌强,对抗菌药物的开发有重要意义。此外,蝇蛆抗菌肽中存在的大量弱酸性蛋白也有杀菌活性。
     2、结合反相高效液相色谱层析、聚丙烯酰胺凝胶电泳和电洗脱回收等方法,首次在蛋白质水平上,从蝇蛆抗菌肽中分离纯化出一个高纯度的新抗菌肽Muscatoxin,分子量7095 D,等电点8.88,肽质量指纹谱(PMF)分析表明其为一新肽,Edman降解测得其N端40个氨基酸序列为SQLGDLGSGA GKGGGGGGSI REAGGAFGKLEAAREEEYFY,N端有六联体的Gly、二联体的Gly和三联体的Glu结构域,可归类于富含Gly的抗菌肽。Muscatoxin可能存在蛋白质翻译后修饰。
     3、经GeneBank数据库查询,Muscatoxin是一个未曾报道过的新肽,其基因在原核生物和真核生物中都有。此序列与基因库中由果蝇Drosophila melanogaster的NM_166597和AY071315基因推导拟蛋白的24~63aa同源性达97.5%,序列高度一致,仅第三位Val变成了Leu(这两种氨基酸的疏水性质很相似):果蝇中该拟蛋白的序列是从基因序列推导而来的,我们首次从蛋白质水平上分离纯化出了该多肽。
     4、采用扫描电镜技术,发现蝇蛆抗菌肽Muscatoxin能破坏G~+菌(枯草杆菌、苏云金芽胞杆菌、金黄色葡萄球菌)和G~-菌(铜绿假单孢菌、大肠杆菌)的细胞膜,使其形成穿孔,原生质泄漏而死亡;
     5、蝇蛆抗菌肽Muscatoxin能杀灭单核白血病癌细胞(THP-1)。经Muscatoxin(2mg/ml)处理后,白血病癌细胞的贴壁性很快被破坏,大量细胞悬浮并死亡。扫描电镜观察发现,悬浮细胞的细胞间质明显减少,细胞形态发生变化,细胞膜出现大量穿孔、原生质泄漏,细胞破裂死亡。Muscatoxin对癌细胞和细菌的杀灭机制相同:
     6、蝇蛆抗菌肽Muscatoxin有一定的哺乳动物细胞毒性。在高浓度(2 mg/ml)情况下能破坏小鼠全部血细胞的细胞膜,而在低浓度(0.08 mg/ml)情况下仅杀死白细胞,对小鼠的红细胞影响不大,但红细胞的形态变得更圆;
     7、采用膜片钳技术,发现mM级浓度的蝇蛆抗菌肽Muscatoxin能在胰腺β-细胞上形成阳离子通道,而在原生受体和离子通道少的人胚胎肾细胞(HEK293)上不能形成通道。说明Muscatoxin能与β-细胞上特定的受体相互作用后再使细胞膜穿孔形成离子通道,而且这种穿孔效应不依赖于胞外Ca~(2+)的作用;
     8、采用胞内荧光测钙技术,发现mM级浓度的Muscatoxin使胰腺β-细胞膜穿孔后外钙内流,使得胞内钙浓度升高,这种作用与Muscatoxin的剂量无关,具有累积效应。Muscatoxin的作用浓度降低到fM级后仍有明显的效果,Muscatoxin对细胞膜的穿孔作用很强。
     9、从黑果蝇的蝇蛆中分离纯化出另一个新抗菌肽SK84,并测出其全部蛋白序列。SK84与Muscatoxin属于同一抗菌肽家族,并与其它种类的果蝇假蛋白有很高的同源性。SK84在1-100μM范围内无溶血活性。SK84对单核白血病(THP-1)、肝癌(HepG2)、乳腺癌(MCF-7)等细胞有抑制作用,但对人胚胎肾细胞(HEK293)、仓鼠卵巢(CHO)细胞无影响。
Musca domestica, which belongs to insecta, diptera, cyclorrhapha, muscidae, is the most common muscae and the richest resource. It is very significant and valuable to isolate antibacterial peptides from Musca domestica and to develop these peptides into antibacterial medicine. Due to purify a pure peptide from the natural materials (animal, plant and microorganism tissue) is very difficult and complex, few research is going on. For the first time, we have purified a novel antibacterial peptide and designed as Muscatoxin based on its bioactivity and resource from larvae of Musca domestica. We have also chemically and biologically characterized the peptide Muscatoxin.
     1、A group of antibacterial peptides had been isolated from larvae of Musca domestica by a number of batch-wise biochemistry separation followed by several chromatography steps. The antibacterial peptides had characters of broad antibacterial spectrum、low minimum bactericidal concentration (MBC)、high thermostable and freeze-thaw stable. The bactericidal ability order was Bacillus subtilis> Bacillus thuringiensis> Staphylococcus aureus> Pseudomonas aeruginosa> Escherichia coli. and the MBC is 0.039、0.078、1.25、5.0 and 20μg/μl respectively. It is significant to develop antibacterial medicine for that the peptides are not agglutinin and have stronger activity to G~+ than G~-. Furthermore, a plenty of weakly acid protein in the peptides also had bactericidal activity.
     2、Using reverse-phase HPLC、polyacrylamide gel electrophoresis and electroelution, the novel antibacterial peptide Muscatoxin had been purified in high degree of purity. It was determined pI 8.88 with IEF-PAGE, Mr 7095 D with MALDI-TOF-MS spectrometer. PMF showed Muscatoxin was a novel peptide and the N-terminal amino acid sequence was SQLGD LGSGA GKGGG GGGSI REAGG AFGKL EAARE EEYFY. Muscatoxin was belong to glysine-rich peptides with (Gly)_6、(Gly)_2 and (Glu)_3 domains and maybe had been post-translation modified.
     3、Searching in Genebank database, Muscatoxin was a novel peptide which had not been reported. Muscatoxin was 97.5% homologenous with pseudoprotein of Drosophila melanogaster (NM_166597 and AY071315, 24~63aa) from fruit fly gene bank except the third residue Leu vs. Val.
     4、Obseved by scanning electric mirror (SEM), antibacterial peptide Muscatoxin could destroy the cell membrane of G~+ (Bacillus subtilis、Bacillus thuringiensis、Staphylococcus aureus) and G~- (Pseudomonas aeruginosa、Escherichia coli. ) bacterium. The mechanism was to perforate the cell membrane and lead to bacterium lysis and die;
     5、Muscatoxin could kill mononuclear leukaemia cancer cells (THP-1). After treated by Muscatoxin ( 2mg/ml ) , most leukaemia cells suspended for the destroyed anchorage-dependent characterization and died. Obseved by SEM, the intercellular substance decreased obviously and cell morphology had changed. The mechanism was also to perforate the cell membrane and lead to cancer cells lysis and die;
     6、Muscatoxin showed certain cytotoxicity to mammalian cells. In high concentration (2mg/ml), it could totally lysis all blood cells membrane; but in low concentration (0.08 mg/ml), it just killed leucocyte and had few effect on rat akaryocyte except more round morphology;
     7、Using patch clamp technique, it was found that Muscatoxin in mM could form cationic channels in pancreas 3-cells but not in human embryo-kidney cells (HEK293) which had few innate receptors and ion channels. It was suggested that Muscatoxin could interact with certain receptors inβ-cells and then perforated the cells membrane to form ion channels. The perforating effect did not depend on extracellular Ca~(2+);
     8、Using intracellular Ca~(2+) fluorimetry technique, it was found that Muscatoxin in mM could perforateβ-cells and make the extracellular Ca~(2+) flow inwardly to increase the intracellular Ca~(2+) concentration. The effect is cumulative and not related to Muscatoxin dose. It was also apparently effective even the Muscatoxin concentration decreased to fM.
     9、Another novel antibacterial peptide named SK84 was purified from larvae of
     Drosophila virilis and characterized total protein sequence. SK84 had no haemolytic activity from 1 to 100μM. SK84 could inhibite THP-1、HepG2 and MCF-7 cancer cells, but not affect HEK293 and CHO cells.
引文
[1]Andreas R.Koczulla,Robert Bals.Current status and therapeutic potential.Drugs,2003,63(4):389-460.
    [2]Hancock,K.E.W.,T.Falla.Cationic bactericidal peptides.Adv Microb Phsiol,1995,37:135-175.
    [3]Kleinkauf.H.,H.Von Dohren.Peptide antibiotics,beta-lactams and related compounds.Crit Rev Biotechnol,1988,81-32.
    [4]Perlman,D.M.Bodansdy.Biosythesis of peptide antibiotics,ann Rev Biochem,1971,40:449-464.
    [5]邱晓燕.抗菌肽的分布及其药用前景.生物学通报,2002,37(5):4-6.
    [6]Stein T.,J.Vater,V.Kruft.The multiple carrier model of nonribosomal peptide biosynthesis at modular mutienzyme templates.J Biol Chem Sci,1996,27115428-15435.
    [7]Tsubery H.,Ofek I.,Cohen S.N-terminal modifications of Polymyxin B nonapeptide and their effect on antibacterial activity.Peptides,2001,22:1675-1681.
    [8]Robert E W Hancock,Daniel S.Chapple peptide antibiotics.Antimierob Agents Chemother,1999,1:1317-1323.
    [9]Robert E W Hancock.Cationic peptides-effectors in innate immunity and novel antimicrobials.THE LANCET Infectious Diseases,2001,1:156-164.
    [10]Tollin M.,Bergman P.,Svenberg T.Antimicrobial peptides in the first line defenee of human colon mucosa.Peptides,2003,24:523-530.
    [11]Ganz T.Defensins:antimicrobial peptides of innate immunity.Nat Rev Immunol,2003,3(9):710-720.
    [12]周联,俞瑜.防御素与先天性免疫及获得性免疫.国外医学免疫学分册,2005,28(2):68-72.
    [13]Setsted ME.Primary struetures of MCP-1 and MCP-2,natural peptide antibiotics of rabbit lung macrophages.J Biol Chem,1983,258 14485-14489.
    [14]Shin Yomogida,Isao Nagaoka,Tatsuhisa Yamashita.Purification of the 11-and 5-kDa Antibacterial Polypeptides from Guinea Pig Neutrophils.Archives of Biochemistry and Biophysics,1996,328(2):219-226.
    [15]罗刚,魏泓.哺乳动物抗菌肽研究进展.四川动物,2002,21(4):255-258.
    [16]赖仞,梁建国,张云.两栖类皮肤抗菌多肽及其应用.动物学研究,2004,25(5):465-468.
    [17]赖仞,赵宇,刘衡.两栖类动物皮肤活性物质的利用兼论中国两栖类资源开发的策略.动物学研究,2002,23(1):65-70.
    [18]赖仞,赵宇,杨东明.六种常见两栖类动物皮肤分泌物的生物活性比较.动物学研究,2002,23(2):113-119.
    [19]赖仞,叶文娟,冉永禄.大蹼铃蟾皮肤分泌液中抗菌活性肽的分离纯化及其性质.动物学研究,1998,19(4):257-262.
    [20]赖仞,冉永禄.铃蟾肽.生命的化学,1997,17(6):33-36.
    [21]赖仞,冉永禄.两栖类皮肤活性肽与活性生物胺.大自然探索,1999,18(67):71-74
    [22]Charles L.B.M.Z.Peptides from frog skin.Ann Rev Biochem,1990,59:395-414.
    [23]陈艳,赵文明,田颖川.植物多肽抗生素研究进展.生物化学生物物理进展,2003,30(6):838-843.
    [24]Hancock R.E.W.S.M.G.The role of antimicrobial peptides in animal defenses.Proc Natl Acad Sci U SA,2000,97(16):8856-8861.
    [25]Lee.D.G.,Shin S.Y.,Maeng C.-Y.Isolation and Characterization of a Novel Antifungal Peptide from Aspergillus niger.Biochemical and Biophysical Research communications,1999,263:646-651.
    [26]Boman H.G.Peptide antibiotics and their role in innate immunity.Curr Biol,1995,34:35-448.
    [27]宋春满,雷朝亮.昆虫免疫的研究.湖北植保,1999,4:31-37.
    [28]Lung O.,Kuo L.,Wolfner M.F.Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates.J Insect Physiol,2001,47(6):617-622.
    [29]G.H.Gudmundsson,D.-A.Lidholm,B.Asling.The Cecropin Locus,Cloning and expression of a gene cluster engoding three antibacterial peptides in Hyalophora Cecropia.J Bio Chem,1991,266(18):11510-11517.
    [30]刘先凯,赵彤言.昆虫抗菌肽研究进展.寄生虫与医学昆虫学报,2001,8(2):115-121.
    [31]Natori S.,Shiraishi H.,Hori S.The roles of Sarcophaga defense molecules in immunity and metamorphosis.Developmental and Comparative Immunology,1999,23:317-328.
    [32]陈留存,王金星.昆虫抗菌肽研究现状.生物工程进展,1999,19(5):55-60.
    [33]Matsuyama K.,Natori.S..Purification of three antibacterial proteins from the culture medium of NIH-Sape-4,an embryonic cell Dine of Sarcophaga peregrine.J.Biol.Chem.,1988,263:17112-17116.
    [34]Lchane M.J.,Wu D.,Lehane S.M.Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans.Proc Natl Acad Sci U S A,1997,94(21):11502-11507.
    [35]Yamada K N.Purification,sequence and antibacterial activity of two novel sapecin homologues from Sarcophaga embryonic cells:similarity of sapecin B to charybdotoxin.Biochem J,1993,291:275-279.
    [36]Se-Rok Lee,Shoichiro Kurata,Shunji Natori.Molecular cloning of cDNA for sapecin B,an antibacterial protein of Sarcophaga,and its detection in larval brain.FEBS letters,1995,368:485-487.
    [37]Bulet P.,Dimarcq J.L.,Hetru C.,et al.A novel inducible antibacterial pcptidc of Drosophila carries an O-glycosylated substitution.J Biol Chem,1993,268(20):14893-14897.
    [38]Peter Casteels C.A.F.J.Functional chemical characterization of Hymenoptaecin,an antibacterial polypeptide that is infection-inducible in the Honeybee(Apis mellifera).J Bio Chem,1993,268(10):7044-7054.
    [39]Zasloff M.Antimicrobial peptides of multicellular organisms.Nature,2002,415(24):389-395.
    [40]Soballe P.W.,Maloy W.L.,Myrga M.L.Experimental local therapy of human melanoma with lytic magainin peptides.Int J Cancer,1995,60:280-284.
    [41]Peck-Miller K.A.,Blake J.,cosand W.L.Structure-activity analysis of the antitumor and hemolytic properties of the amphiphilic a-helical peptide,C18G.Int J Pept Protein Res,1994,44:143-151.
    [42]Florentine M.,Hubertus H.,Markus R..Cloning,structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity.Gene,1995,167:167-171.
    [43]J.Lacadena,a.Martinez del Pozo,M.Gasset.Characterization of the Antifungal Protein Secreted by the MouldAspergillus giganteus.Archives of Biochemistry and Biophysics,1995,324(2):273-281.
    [44]Steinstraesser L.,Oezdogan Y.,Wang S.C.Host defense peptides in burns.Burns,2005,30:619-627.
    [45]赵东红,张双全,戴祝英.重组家蚕抗菌肽CM4对癌细胞骨架及核骨架破坏作用的观察.高技术通讯,2000,1:23-27.
    [46]许玉澄,张双全,戴祝英.家蚕抗菌肽的抗癌作用.动物学研究,1998,19(4):263-268.
    [47]郭玉梅,戴祝英,胡云龙.家蚕抗菌肽的一些性质及抗肿瘤活性.南京师大学报,1995,18(1):62-66.
    [48]张双全,贾红武,戴祝英.抗菌肽CM4抗K562癌细胞的超微结构研究.生物化学与生物物理进展,1997,24(2):159-163.
    [49]胡云龙,郭玉梅,戴祝英.昆虫抗菌肽作用于K562细胞病理过程的超微结构研究.中国媒介生物学及控制杂志,1995,6(1):76-79.
    [50]康华光.膜片钳技术及其应用.科学出版社,北京,2003.
    [51]Park C.B.,Lee J.H.,Park I.Y.,et al.A novel antimicrobial peptide from the loach,Misgurnus anguillicaudatus.FEBS Lett,1997,411(2-3):173-178.
    [52]Skerlavaj B.,Benincasa M.,Risso A.SMAP-29:a potent antibacterial and antifungal peptide from sheep leukocytes.FEBS Lett,1999,463:58-62.
    [53]Ebran N.,Julien S.,Orange N.,et al.Isolation and characterization of novel glycoproteins from fish epidermal mucus:correlation between their pore-forming properties and their antibacterial activities.Biochim Biophys Acta,2000,1467(2):271-280.
    [54]Basanez G.,Shinnar A.E.,Zimmerberg J.Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes.FEBS Left,2002,632:115-120.
    [55]Yuki Nakajima,Juan Alvarez-Bravo,Jang-hyun cho.Chemotherapeutic activity of synthetic antimicrobial peptides-correlation between chemotherapeutic activity and neutrophil-activating activity.FEBS Letters,1997,415:64-66.
    [56]Lichtenstein A.K.,ganz T.,Nguyen T.M.Mechanism of target cytolysis by peptide defensins.Target cell metabolic activities,possibly involving endocytosis,are crucial for expression of cytotoxicity.J Immunol,1988,140:2686-2694.
    [57]Lichtenstein A.K.Mechanism of mammalian cell lysis mediated by peptide defensins.Evidence for an initial alteration of the plasma membrane.J clip,Invest,1991,88:93-100.
    [58]高秀秋,尚德志.哺乳动物防御素.锦州医学院学报,2002,23(3):56-58.
    [59]Zhang L,Hancock REW.Peptide antibiotics.In:Hughes D,Andersson DI,eds.Antibiotic resistance and antibiotic development.Reading:Harwood Academic Publishers,2000:209-232.
    [60]傅南雁,许家喜.抗菌肽研究进展.生命的化学,1998,18(2):25-28.
    [61]Jean-Luc Dimarcq,Philippe Bulet,Charles Hetru.Cysteine-Rich Antimicrobial.Biopolymers(Peptide Science),1998,47:465-477.
    [62]Saito A.,Ueda K.,Imamura M.,et al.Purification and cDNA cloning of a novel antibacterial peptide with a cysteine-stabilized alphabeta motif from the longicorn beetle, Acalolepta luxuriosa. Dev Comp Immunol, 2004, 28(1): 1-7.
    [63] Raj P.A., Dentino A.R. Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiology Letters, 2002, 20(6): 9-18.
    [64] Hornef M.W., Putsep K., Karlsson J. Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Nat Immunol, 2004, 5(8): 836-843.
    [65] Fernandes J.M.O., kemp GD., Smith V.J. Two novel muramidases from skin mucosa of rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys B, 2004, 138: 53-64.
    [66] E.GAbraham , J. Nagaraju , D. Salunke , et al. Purification and Partial Characterization of an Induced Antibacterial Protein in the Silkworm, Bombyx mori. J.Invertebr.Pathol., 1995, 65: 17-24.
    [67] Anderson R.C., Yu P.L. Isolation and characterisation of proline/arginine-rich cathelicidin peptides from ovine neutrophils. Biochem Biophys Res Commun, 2003, 312(4): 1139-1146.
    [68] Robert E.W., Hancock, Robert L. Cationic peptides: a new source of antibiotics. Tibtech February, 1998, 16: 82-88.
    [69] Scott M.G.; Rosenberger C.M.; Gold M.R. An a-helical cationic antimicrobial peptide selectively modulates macrophage response to LPS and directly alters macrophage gene expression. J Immunol. 2000, 165: 3358-3365.
    [70] Scott M.G.; Hancock.R.E.W. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol, 2000, 20: 407-431.
    [71] Varbanac D.; Zanetti M.; Romeo D. Chemotactic and protease-inhibition activities of antibiotic peptide precursors. FEBS Lett , 1993, 317: 255-258.
    [72] Wanecek M.; Weitzberg E.; Rudehill A. The endothelin system in septic and endotoxin shock. Eur J Pharmacol, 2000, 407 1-15.
    [73] Hancock R.E.W.; Scott M.G The role of antimicrobial peptides in animal defences. Proc Natl Acad Sci USA,2000,97:8856-8861.
    [74]宋春满,雷朝亮.昆虫免疫的研究(二).湖北植保,1999,(5):31-33.
    [75]Pellegrini A.,Thomas U.,Bramaz N.Isolation and identification of three bactericidal domains in the bovine a-lactalbumin molecule.Biochimica et Biophysica Acta,1999,1426:439-448.
    [76]Hideaki Kobayashi,shoichiro Kurata,Shunji Natori.Purification of a 200 kDa Protein-binding Protein from the Fat Body of Sarcophaga peregrina Larvae.Insect Biochem Molec Biol,1995,25(3):393-399.
    [77]Samakovlis C.;D.Hultmark.The immune response in Drosophila:pattern of cecropin expression and biological activity.EMBO J,1990,9:2969-2976.
    [78]Hamilton J.V.,Munks R.J.L.,Lehane S.M.Association of midgut defensin with a novel serine protease in the blood-sucking fly Stomoxys calcitrans,Insect Molecular Biology,2002,11(3):197-205.
    [79]Paskewitz S.M.;B.M.Christensen.Immune response of vectors.In:The Biology of Disease Vectors.1996,371-392.
    [80]Boman H.G.;J.Y.Lee.Cell-free immunity in cecropia A model system for antibacterial proteins.Eur J Biochem,1991,201:23-31.
    [81]G.B.Irvine.Size-exclusion high-performance liquid chromatography of peptides:a review.Analytica Chimica Acta,1997,352:387-397.
    [82]Recio I.,Visser S.Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin.In situ enzymatic hydrolysis on an ion-exchange membrane.J Chromatogr A,1999,831(2):191-201.
    [83]I.Lovsin Kukman,M.Zelenik-Blatnik,V.Abram.Isolation of low-molecular-mass hydrophobic bitter peptides in soybean protein hydrolysates by reversed-phase high-performance liquid chromatography.journal of Chromatography,1995,704:113-120.
    [84]Weston R.J.,Brocklebank L.K.,Lu Y.R.Identification and quantitative levels of antibacterial components of some New Zealand honeys.Food Chem,2000,70: 427-435.
    [85]Liepke C.,Zucht H.-D.,Forssmann W.-G.Purification of novel peptide antibiotics from human milk.J Chromatography B,2001,752:369-377.
    [86]Yamauchi H.Two novel insect defensins from larvae of the cupreous chafer,Anomala cuprea-purification,amino acid sequences and antibacterial activity.Insect Biochem Molec Biol,2001,32:75-84.
    [87]Ying Zhang,Kim Lewis.Fabatins:new antimicrobial plant peptides.FEMS Microbiology Letters,1997,149:59-64.
    [88]Monica B.,Marco S.Elena P.,et al.Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates.Peptides,2004,25:2055-2061.
    [89]Kirill A.Martemyanov,Alexander S.Spirin,Anatoly T.Gudkov.Direct expression of PCR products in a cell-free transcription/translation system:synthesis of antibacterial peptide cecropin.FEBS Letters,1997,414:268-270.
    [90]Soon S.P.,Sang W.S.,Doo-Sang P.,Protein Purification and cDNA Cloning of a Cecropin-like Peptide from the Larvae of Fall Webworm(Hyphantria cunea).Insect Biochem Molec Biol,1997,27(8):711-720.
    [91]Zhang L.,Scott M.G.,Yan H.Interaction of polyphemusin I and structural analogs with bacterial membranes,lipoplysaccharide and lipid monolayers.Biochem,2000,39:14504-14514.
    [92]Hancak R.E.W.Peptide antibiotics.The Lancet,1997,349:418-422.
    [93]王明福,佟艳丰,薛万琦.蝇类资源及其利用前景展望.资源科学,2004,26(5):153-159.
    [94]盛长忠,安春菊,耿建华.一种家蝇幼虫热稳定抗菌肽的分离纯化.南开大学学报(自然科学版),2002,1(35):6-10.
    [95]宫霞,乐国伟,施用珲.电泳制备家蝇幼虫抗菌肽及其性质.无锡轻工大学学报,2003,22(6):25-30.
    [96]陈留存,王金星,刘瑶.家蝇抗菌肽的分离纯化及性质研究.山东大学学报(自 然科学版),2001,36(3):351-356.
    [97]周永富,饶军华,阳建华.家蝇抗菌物质的诱导.生物学杂志,1997,14(77):23-26.
    [98]饶军华,周永富,阳建华.家蝇免疫血淋巴的性质研究.昆虫天敌,1999,21(3):121-125.
    [99]王远程,左晓峰,孙东旭.家蝇幼虫抗菌物质组成及其理化性质.微生物学报,1997,37(2):148-153.
    [100]柏鸣,周立.家蝇抗菌蛋白的分离纯化及部分性质.应用与环境生物学报,2001,7(6):568-571.
    [101]宫霞,施用珲,乐国伟.抗菌活性肽与细菌染色体DNA的相互作用机理.自然科学进展,2004,14(5):509-513.
    [102]宫霞,施用珲,乐国伟.家蝇幼虫抗菌肽MDL-l的分离纯化及其对大肠杆菌超微结构的影响.昆虫学报,2004,47(1):8-13.
    [103]柏鸣,周立.家蝇抗菌蛋白的部分结构信息及生物学活性.中国生物化学与分子生物学报,2002,18(5):633-637.
    [104]赵永芳.生物化学技术原理及其应用(第二版).武汉,武汉大学出版社,1994.
    [105]汪家政,范明.蛋白质技术手册.北京,科学出版社.2002.
    [106]杨涨原,钱小红,盛龙生,生物质谱技术与方法.北京,科学出版社,2003.
    [107]陶慰孙,李惟,姜涌明.蛋白质分子基础(第二版).北京,高等教育出版社,1995,239
    [108]Nakagawa M.,OohataA.A.,Tojo H.Aprespore-cell-inducing factor in Dictyostelium discoideum.Biochem J,1999,343:265-271.
    [109]Dong X.-Z.,Xu H.-B,Huang K.-X.The preparation and characterization of an antimicrobial polypeptide from the loach,Misgurnus anguillicaudatus.Protein Expression and Purification,2002,26:235-242.
    [110]钱小红等译.蛋白质组学:从序列到功能.北京,科学出版社.2002.
    [111]Talbo G.H.,suckau D.,Malkoski M.MALDI-PSD-MS analysis of the phosphorylation sites of caseinomacropeptide.Peptides,2001,22:1093-1098.
    [112]钱存柔,黄仪秀.微生物学实验教程.北京,北京大学出版社.1999.
    [113]李秀兰,戴祝英,张双全.抗菌肽琼脂糖孔穴扩散法与比浊法测活比较及其相关性.南京师大学报(自然科学版),1998,21(2):81-83.
    [114]中华人民共和国卫生部.消毒技术规范(2002版).2002:85-86.
    [115]李阜棣,喻子牛,何绍江.农业微生物学实验技术.北京,中国农业出版社,1996.
    [116]Hermann Schagger,Gebhard Von Jagow,Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1to 100kD.Analytical Biochemistry,1987,166:368-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700